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Purpose: to predict the occurrence of late subcutaneous radiation induced fibrosis (RIF)

after partial breast irradiation (PBI) for breast carcinoma by using machine learning (ML)

models and radiomic features from 3D Biologically Effective Dose (3D-BED) and Relative

Electron Density (3D-RED).

Methods: 165 patients underwent external PBI following a hypo-fractionation protocol

consisting of 40 Gy/10 fractions, 35 Gy/7 fractions, and 28 Gy/4 fractions, for 73, 60, and

32 patients, respectively. Physicians evaluated toxicity at regular intervals by the Common

Terminology Adverse Events (CTAE) version 4.0. RIF was assessed every 3 months after

the completion of radiation course and scored prospectively. RIF was experienced by 41

(24.8%) patients after average 5 years of follow up.

The Hounsfield Units (HU) of the CT-images were converted into relative electron density

(3D-RED) and Dose maps into Biologically Effective Dose (3D-BED), respectively. Shape,

first-order and textural features of 3D-RED and 3D-BED were calculated in the planning

target volume (PTV) and breast. Clinical and demographic variables were also considered

(954 features in total). Imbalance of the dataset was addressed by data augmentation

using ADASYN technique. A subset of non-redundant features that best predict the

data was identified by sequential feature selection. Support Vector Machines (SVM),

ensemble machine learning (EML) using various aggregation algorithms and Naive Bayes

(NB) classifiers were trained on patient dataset to predict RIF occurrence. Models were

assessed using sensitivity and specificity of the ML classifiers and the area under the

receiver operator characteristic curve (AUC) of the score functions in repeated 5-fold

cross validation on the augmented dataset.

Results: The SVM model with seven features was preferred for RIF prediction and

scored sensitivity 0.83 (95% CI 0.80–0.86), specificity 0.75 (95% CI 0.71–0.77) and
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AUC of the score function 0.86 (0.85–0.88) on cross-validation. The selected features

included cluster shade and Run Length Non-uniformity of breast 3D-BED, kurtosis and

cluster shade from PTV 3D-RED, and 10th percentile of PTV 3D-BED.

Conclusion: Textures extracted from 3D-BED and 3D-RED in the breast and PTV can

predict late RIF and may help better select patient candidates to exclusive PBI.

Keywords: radiomics, radiotherapy, machine learning, breast cancer, fibrosis

INTRODUCTION

Subcutaneous radiation induced fibrosis (RIF) is characterized
by a progressive induration and thickening of the subcutaneous
tissues and is one of the late adverse effects of breast radiotherapy
(RT) mostly affecting cosmesis. It is a dose dependent and
slowly progressive side effect originating from a proliferative
response of surviving fibrocytes to growth factors (e.g., the
transforming growth factor β (TGF-β), released in response to
tissue injury) (1).

The available tools to predict late subcutaneous fibrosis in
patients treated with RT are of limited quality. Models to predict
Normal Tissue Complication Probability (NTCP) for RIF after
breast RT have been first fitted to published data of rates of
incidence from whole breast irradiation (WBI) (2). Later, models
for NTCP of RIF have been refined by including dose volume data
from simulated dose distributions of WBI (3) and partial breast
irradiations (PBI) (4).

Quantitative analysis of medical images could provide
information about intensity, shape, size or volume, and texture
of tumor or organs at risk that is distinct or complementary
to that provided by other data sources (5). Recently, the
combination of quantitative analysis of radiological images with
Machine Learning (ML) methods, also known as “radiomics,”
has been applied also to predict side effects of RT such as
lung-injury following Stereotactic Body RT (SBRT) for lung
cancer (6), gastrointestinal and genitourinary toxicities (7) and
xerostomia (8).

Other 3D information, as dose distribution delivered in RT
calculated on pre-treatment Computer Tomography (CT), can be
integrated in the radiomics analysis. The textural analysis of dose
distribution could provide more detailed spatial information on
the 3D dose distribution: it attempts to extract spatial features
from dose distribution to predict RT response instead of dose-
volume histogram (DVH) typically used in NTCP models.
Dosiomics, or integration of dose features from the irradiated
lung, has shown to be predictive of radiation pneumonitis with
higher accuracy than DVH-based NTCP models (9).

The purpose of the present work is to develop a model
to improve the accuracy of prediction of RIF by integrating
data from pre-treatment CT, 3D dose distribution and clinical
variables. For this purpose, we developed a ML classifier, that
is, a predictive model assigning an unseen patient to one of
two possible classes: patient with or without RIF during follow-
up. Our study is the first, to the best of our knowledge, to
derive a classifier for RIF which includes radiomic variables and
individual dose data using ML algorithms.

METHODS

Patient Data
One hundred sixty-five patients treated with breast

conservative surgery for an early stage ductal carcinoma
who underwent external PBI were retrospectively analyzed.
Patient characteristics, with results of univariate statistical tests

to investigate correlation with RIF, are shown in Table 1. All
patients underwent a complete free breathing pre-treatment

planning CT to include all the organs at risk (OAR), according

to the RTOG 0413 protocol (10). CTs were acquired with a
GE Lightspeed RT (GE Medical Systems, Waukesha, WI) or

a Toshiba Aquilion LB (Toshiba Medical Systems Europe,

Zoetermeer, the Netherlands) using 120 kVp, 215–300mAs
5mm slice thickness, and voxel size ranging from 0.977 to
1.074 mm.

The clinical target volume (CTV) consisted of the
lumpectomy cavity, identified by the post-surgery seroma
or by the surgical clips, uniformly expanded by 15mm, limited
to 5mm from the skin surface and 5mm from the lung-chest
wall interface. The planning target volume (PTV) was calculated
from the CTV using uniform 3D expansion of 1 cm, then it
was limited to exclude the part outside the ipsilateral breast, the
first 5mm of tissue under the skin and the expansion beyond
the posterior extent of breast tissue. Breast tissue visible on the
pre-treatment planning CT was outlined, according to the RTOG
“Breast Cancer Atlas for Radiation therapy planning: consensus
definition” (11).

Patients were treated following a hypo-fractionation protocol
(12) designed using iso-effective doses for subcutaneous RIF
based on NTCP models (4). The hypofractionation schemes
consisted of 40Gy in 10 fractions (73 patients), 35Gy in 7
fractions (60) and 28Gy in 4 fractions fractions. The RT
technique consisted of “field-in-field” planning (forward-planned
intensity modulated RT) (14) using multiple planar and non-
coplanar 6-MV photon beams, and delivered by a Trilogy linear
accelerator equipped with a kV on-board imager system and
a 120-leaves Millennium multi-leaf collimator (Varian Medical
Systems, Palo Alto, CA, US).

All treatments were developed using the Eclipse treatment
planning system (Varian Medical), and dose calculations were
carried out using the anisotropic analytical algorithm (AAA)with
a grid resolution of 2.5mm, taking into account heterogeneity
correction. The CT scan, dose matrix and Region Of Interest
(ROI) contours were exported in a DICOM format.

Physicians evaluated toxicity at regular intervals by the
Common Terminology Criteria for Adverse Events (CTCAE)
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TABLE 1 | Patients characteristics with statistical tests to investigate correlation

with RIF.

Categorical variable Patients (%) p-value (Chi-square test)

Number of patients 165 (100)

No RIF 124 (75.2)

RIF Grade 1 26 (15.7)

RIF Grade 2 12 (7.3)

RIF Grade 3 3 (1.8)

RIF any grade 41 (24.8)

Tumor histology

Ductal 155 (93.9) 0.540

Lobular 10 (6.1)

Laterality

Left 73 (44.2) 0.3651

Right 92 (55.8)

Quadrant (cm)

Upper, outer 80 (48.5.3) 0.056

Upper, inner 32 (19.4)

Lower, outer 15 (9.1)

Lower, inter 23 (13.9)

Central 15 (9.1)

Comorbidity

No 112 (67.9) 0.658

Yes 53 (32.1)

Fractionation regimen

40 Gy/10 fx 73 (44.2) 0.5396

35 Gy/7 fx 60 (36.4)

28 Gy/4 fx 32 (19.4)

Chemotherapy

No 152 (92.1) 0.064

Yes 13 (7.9)

Hormone therapy

No 51 (30.9) 0.793

Yes 114 (69.1)

Continuous variable Average (95% CI) p-value (Wilcoxon test)

Age (years) 69.8 (61.0–82.9) 0.611

Pathological tumor size (mm) 12.1 (4–25) 0.552

Follow-up (months) 60.2 (17.2–82.9) 0.384

(version 4.0). Clinical and demographic variables, age, presence
of comorbidities (diabetes and rheumatological disorders),
tumor histology, laterality and quadrant, administration of
chemotherapy and hormone therapy, were considered (954
features in total). The presence of RIF of any grade (grade 1
or more) was assessed every 3 months after the completion of
radiation course and scored in a prospective database. Forty-
one (24.8%) patients experienced RIF after average 5 years of
follow up. Fibrosis of grade 1, 2, and 3 occurred in 26, 12, and
3 patients, respectively. The maximum toxicity score (Grade 4)
was not recorded during follow up.

Radiomic Analysis of BED and RED
Prior to the calculation of radiomic features, resampling to
isotropic voxel size was applied to have standardized voxel
spacing across the cohort (15). For example, all CT images were
resampled to 3× 3× 3mm3 (16). Voxel intensities were grouped

into 64 equally spaced bins to reduce image noise and normalize
intensities across all different patients.

In order to remove dependency on the Hounsfield scale
used by the two scanners (17), the images were converted from
Hounsfield Units to electron density relative to water (3D-
RED) using the Hounsfield Units—RED conversion scales of the
CTs (Figure 1) as measured on phantom on each CT scanner.
Since patients were treated with different fractionation schemes,
the 3D dose distributions were converted into 3D Biologically
Effective Dose (3D-BED) using the number of fractions of the
treatment, and an assumed value of α/β of 3Gy, typical of late-
responding tissues as subcutaneous tissue, which has also been
used to model RIF (2, 18). A total of 21 shapes, 57 radiomic
and 57 dosimetric textural features were calculated from the PTV
and breast volume in the 3D-RED and 3D-BED. The radiomic
features were calculated following definitions and nomenclature
from the Image Biomarker Standardization Initiative (IBSI) (19)
using an in-house Matlab code. The in-house code had been
previously validated by comparing its results with the Ibex open
source software (20). The same features were also calculated
after application of one between Gaussian, Laplacian of Gaussian
(LoG), or Median filtering to 3D-RED and 3D-BED. The clinical
variables follow up, age, tumor location, pathological tumor size,
chemo and hormone therapy, were also collected and included in
the analysis, so that the variables were 954 in total. A common
problem in application of ML classifiers is that some classes have
a significantly higher number of examples, a problem which is
referred to as class imbalance. The effect of imbalanced datasets
on ML performance is detrimental (21, 22), and there are two
methods for overcoming this issue, namely under-sampling and
over-sampling, of which the latter has been proven to be more
effective in ML (21).

We then applied the Adaptive Synthetic Sampling Method
for Imbalanced Data (ADASYN) over-sampling technique (23),
an improved variant of the Synthetic Minority Over-sampling
Technique (SMOTE), which generates synthetic data points by
interpolating new feature values between the minority instance
and its neighbors, according to the Euclidean distance, in the
feature space. In ADASYN, the new minority samples are
generated using a density distribution based on the number of
out-of-class neighbors so that a minority instance surrounded
by more out-of-class instances is considered hard-to-train, and
is thus given a higher probability to be augmented (24).

ADASYN was applied to the level that the imbalance was
completely eliminated, resulting in an augmented dataset of
252 patients, of which 50% had late RIF. All the analysis was
performed using Matlab (Mathworks, Natick, MA).

ML Models
The occurrence of RIF in patients was converted into a binary
outcome, positive for patients who experienced any grade (one
or more) of RIF, and negative for patients who did not experience
RIF during follow up.

The ML process includes two phases (5). First, to prevent
overfitting, prior to applying ML classification, Stepwise forward
feature selection was used to select a subset of variables best suited
to predict late fibrosis. In Stepwise feature selection, terms from a
generalized linear model are removed or added in order to find
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FIGURE 1 | Axial views of 3D-BED and 3D-RED in a patient who did not experience late RIF (A) and one who developed late RIF during follow up (B).

the subset of variables in the data set resulting in the smallest
model with lowest prediction error (25).

Forward stepwise selection is a wrapper method of feature
selection, that is, a method which uses a learning technique,
in our case a generalized linear model (GLM), to evaluate the
importance of the features. Forward selection starts with an
empty model. Then at each iteration, the single feature that best
improves the fit of the GLM according to a specified criterion
is determined (26). As a criterion we used the deviance of the
values predicted by the GLM from the test data in a 5-fold
cross validation. This is repeated until a best subset predictors
(features) are selected.

In order to choose a proper number of variables, the
process was initially performed with 4 variables allowed in
the feature selection, then repeated with increasing number
of variables.

After feature selection, the following binary ML classifiers
were applied to the dataset to predict RIF:

1) SVM, which, by means of a kernel function, projects the
data into a higher-dimensional feature space and determine
a hyperplane in this feature space which separates data points
into two categories (27). During the optimization, the proper
box constraint level and kernel scale are chosen.

2) Ensemble machine learning (EML) which aggregates multiple
learners into a single learner. Decision Trees were used as
weak learners (5). During training, the best ensemble EML
algorithm is selected between Random forests, Adaptive
Logistic Regression and various boosting algorithms:
Adaptive, Gentle, and Random Undersampling boosting (28)
as well as the optimal number of learning cycles, learning
rate, and minimum leaf size.

3) Naïve-Bayesian (NB) classifier which calculates the
probability of each class assuming the conditional
independence of the attributes using the Naive Bayes
formula. A new instance is classified into the class with
maximum calculated probability (29, 30). The optimizer also

TABLE 2 | Features selected to predict late fibrosis.

Image

(3D-RED/

3D-BED)

Filter ROI Variables Wilcoxon-Mann–

Whitney test

p

3D-BED LoG Breast Cluster shade 0.1389

3D-BED LoG Breast RLN 0.0084

3D-RED None PTV Kurtosis 0.0238

3D-RED Gaussian PTV Range 0.1021

3D-RED Gaussian PTV Cluster shade 0.6687

3D-BED Gaussian PTV 10th Percentile 0.0054

3D-BED LoG PTV Variance 0.1624

LoG, Laplacian of Gaussian filter; RLN, run length non-uniformity.

searches the best type of probability distribution (Gaussian or
Kernel) and width of the kernel function.

Themodel to predict the occurrence of RIF was chosen according
to the following criteria. First, the performance of the models
was evaluated by calculating the average and 95% confidence
intervals of sensitivity and specificity of the classifier and the
AUC of the score function used by the classifiers in a 5-fold
cross validation repeated 500 times in the augmented dataset.
Finally, the sensitivity, specificity, and AUC were recalculated on
the original, non-augmented dataset.

The models were required to have at least sensitivity and
specificity of 0.75, and AUC of the model score of 0.85. Second,
models were required to provide a realistic description of
occurrence of RIF vs. BED variables. For this purpose, the
score used by the best performing models to predict RIF was
calculated vs. variables from 3D-BED variables. For biological
consistency, models were required to have a continuously
monotonic response to increasing dose. Models with non-
monotonically increasing dose response were discarded, as this
would imply that two different doses can lead to the same risk of
side effects and that increasing dose could reduce the risk (31).
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TABLE 3 | Performances of different models as a function of increasing number of variables allowed.

Model Number of

variables

Cross-validation in the augmented dataset, with

95% CI

Original (non-augmented) dataset

Sensitivity Specificity AUC Sensitivity Specificity AUC

SVM 4 0.77 (0.74–0.80) 0.69 (0.66–0.71) 0.80 (0.79–0.81) 0.68 0.70 0.78

5 0.82 (0.79–0.84) 0.68 (0.65–0.71) 0.83 (0.82–0.84) 0.73 0.66 0.81

6 0.85 (0.83–0.87) 0.71 (0.68–0.73) 0.85 (0.84–0.86) 0.81 0.73 0.84

7 0.83 (0.80–0.86) 0.75 (0.71–0.77) 0.86 (0.85–0.88) 0.81 0.77 0.86

8 0.84 (0.81- 0.87) 0.76 (0.73–0.78) 0.88 (0.87–0.88) 0.83 0.81 0.89

EML 4 0.78 (0.73–0.84 0.73 (0.68–0.78) 0.83 (0.80–0.85) 1.00 1.00 1.00

5 0.84 (0.79–0.88) 0.73 (0.69–0.78) 0.87 (0.84–0.90) 1.00 1.00 1.00

6 0.86 (0.81–0.89) 0.77 (0.73–0.82) 0.87 (0.85–0.90) 1.00 1.00 1.00

7 0.87 (0.82–0.91) 0.78 (0.73–0.84) 0.91 (0.88–0.93) 1.00 1.00 1.00

8 0.89 (0.84–0.94) 0.78 (0.73–0.81) 0.92 (0.90–0.94) 1.00 1.00 1.00

NB 4 0.88 (0.84–0.91) 0.44 (0.41–0.47) 0.65 (0.63–0.68) 0.90 0.46 0.71

5 0.92 (0.90–0.93) 0.44 (0.42–0.47) 0.82 (0.81–0.83) 0.90 0.45 0.71

6 0.91 (0.88–0.92) 0.47 (0.45–0.49) 0.82 (0.81–0.83) 0.90 0.46 0.71

7 0.89 (0.86–0.91) 0.40 (0.35–0.43) 0.78 (0.76–0.81) 0.90 0.45 0.71

8 0.95 (0.94–0.95) 0.36 (0.34–0.38) 0.80 (0.78–0.82) 0.90 0.45 0.71

For each model and number of variables, the specificity and sensitivity of the classifier and the AUC with 95% CI calculated in repeated cross-validation are reported, as well as the

specificity, sensitivity and AUC in the original (non-augmented) dataset.

RESULTS

The variables selected for ML are shown in Table 2. Two were
textural variables of 3D-BED from the breast, cluster shade and
Run Length Non-uniformity (RLN) after application of LoG
filter, two were histogram (kurtosis and range) and one textural
(Gray Level Co-occurrence Matrix Cluster shade) features (19)
from the 3D-RED in the PTV and two histogram (10th percentile
and inverse variance) variables of 3D-BED in the PTV. Among
these, three variables (RLN of 3D-BED in breast, kurtosis of
3D-RED in PTV, 10th percentile of 3D-RED in PTV) were
significantly correlated with occurrence of RIF according to
the Wilcoxon-Mann-Whitney test for independent samples. No
clinical variable was selected in the model.

EML with Adaptive Boosting was the best performing model
for any number of variables, and it scored anAUCof the radiomic
signature of 0.87 (0.85–0.90) with only 6 variables. SVM was
the second best performing classifier as it achieved acceptable
scores with 7 variables, while Native Bayes gave generally poor
performance in terms of specificity (Table 3).

To interpret the features, their values were investigated in the
two subsets of patients having extreme values of the function
score. These patients were chosen as the 5% with the lowest score
function among those without RIF, and the 5% with the highest
score function of those who had RIF. Their features are shown in
Table 4.

The score functions of the SVM and EML classifiers, were
plotted against the 10th percentile of 3D-BED in the PTV for
two values of kurtosis, that is, the average values of the patients
at low and high risk of RIF, with the other features fixed at their
average values among all the patients (Figure 2). The EMLmodel
was then discarded, as it showed a non-monotonically increasing
dose-score function. The 7 variables SVM, scoring sensitivity

0.83 (95% CI 0.80–0.86), specificity 0.75 (95% CI 0.71–0.77) and
AUC of the score function 0.86 (0.85–0.88) on cross-validation,
was chosen as the preferred model. The model had sensitivity,
specificity and AUC of 0.81, 0.77, and 0.86 respectively in the
original dataset.

DISCUSSION

SupervisedMLmethods have been increasingly used inmedicine,
especially in the field of radiomics (32) to identify patients as
responders or not responders but also to predict side effects
in OARs (13, 13, 27). They are prone to overfitting, an event
in which the model will better reflect noise in the image than
the data themselves (33). Hence, careful feature selection and
validation must be performed to tackle this limitation. In our
results, EML is an example of ML models which overfitted the
data, as it provided the best performance on repeated cross-
validation for any number of variables, but produced unrealistic
dose-response (Figure 2A) which was notmonotonic. It was then
discarded in favor of the SVM, whose score was monotonically
increasing as a function of dose (Figure 2B). SVM models are
more robust to overfitting than other ML methods such as
decision trees (34), because they tolerate some points on the
wrong side of the hyperplane, thus improving model robustness
and generalization (5). Because the AUC of the SVM model of
0.86 on the non-augmented dataset is considered excellent (35)
and, as the sum of sensitivity and specificity is 1.58, larger than
1.5, the model fulfills the rule of thumb for being useful of a
clinical test (36), it can be used to stratify patients according to
the risk of subcutaneous RIF.

To the best of our knowledge, this is the first study
using radiomic features extracted from dose distribution after
conversion to 3D-BED, which was necessary since our patients
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TABLE 4 | Values of radiomic variables of the patients with low (A) and high (B) risk of RIF.

Image: 3D-BED 3D-BED 3D-RED 3D-RED 3D-BED 3D-BED 3D-BED

Filter: Log LoG None Gaussian Gaussian Gaussian LoG

ROI: Breast Breast PTV PTV PTV PTV PTV

Feature: Cluster shade RLN Kurtosis Range Cluster shade Percentile area 10 Variance

(A)

Patient:

1 −22517 0.58 441.8 3.6 15.2 91.0 0.31

2 −8696.7 0.55 50.7 0.47 −2250.1 74.8 0.43

3 −4993.3 0.62 320.5 1.64 410.6 87.3 0.42

4 −32445.8 0.59 64.2 0.66 −714.9 80.4 0.38

5 −17231.7 0.60 176.7 1.83 400.1 88.4 0.43

6 −10022.4 0.47 15.7 0.90 −2546.9 65.6 0.41

7 35401.4 0.63 92.4 0.64 131.1 90.4 0.39

8 −5332.1 0.54 19.8 0.52 −9583.5 52.41 0.41

Average: −8229.7 0.57 147.7 1.28 −1767.3 78.8 0.40

(B)

Patient:

1 −18557.7 0.62 19.9 0.75 −3129.0 82.2 0.44

2 −3426.54 0.60 23.4 0.71 −2300.7 84.7 0.48

3 −53664.9 0.70 13.5 0.65 −3202.5 82.3 0.43

4 −80106.7 0.51 1.9 0.19 539.1 94.0 0.47

5 −29002.7 0.57 15.9 0.56 −6021.6 84.8 0.44

6 −29432.7 0.58 18.1 0.70 −1762.5 81.0 0.46

7 −10230.9 0.63 17.1 0.71 −2367.8 88.7 0.47

Average −32060.3 0.60 15.7 0.61 −2606.4 85.4 0.46

These were defined as the 5% patients without RIF and with the lowest function score and the 5% patients with RIF with the highest function score, respectively.

FIGURE 2 | Score function of EML (A) and SVM (B) used to classify patients vs. 10th percentile of 3D-BED in the PTV. The curves are calculated for values of kurtosis

typical of patients at low and high risk of RIF, chosen as average of kurtosis in the 10 patients without RIF with lowest score (blue lines) and in 10 patients with RIF with

highest score (red lines).

had different fractionation schemes. As the BED variables
were the most correlated with RIF, our analysis confirms that
radiation-induced RIF is governed by BED calculated with α/β
= 3Gy to the whole breast and to the high dose region, the

PTV. This result is in agreement with previous clinical findings
showing that fibrosis is related to dose and dose per fraction (18).
On the other hand, a correlation between RIF and maximum
dose has been observed in clinical data for both WBI (37) and
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PBI (38). RIF after PBI has been related to minimum PTV
dose (39).

The features that were most correlated with RIF were BED
features10th percentile and variance in the PTV and RLN of the
breast, cluster shade to both PTV and breast.

Among the BED features, the 10th percentile in PTV is a
descriptor of the minimum BED to the PTV, and describes the
dependency of fibrosis on the lowest fractionation-corrected dose
covering at least 90% of PTV. Cluster shade of BED in the PTV
describes asymmetry of the GLCM. A larger module of cluster
shade implies large GLCM asymmetry (19), which means that
there are regions in the PTV with large differences in BED from
their neighbors and may be related to the presence of hot spots in
the PTV. Of note, if a PTV is close to the patient’s surface, like in
Figure 1B, there is a sudden change of dose in the build-up region
which may increase cluster shade of BED. These associations are
confirmed by larger variance of BED to the PTV in patients with
RIF (Table 4).

RLN of BED in the breast describes the similarity among run
lengths, defined as the lengths of consecutive voxels having the
same dose value in a specified direction, in number of voxels (19)
throughout the breast. RLN is related to homogeneity of dose,
and lower values indicate more homogeneity among run lengths
in the image. In our results patients without RIF had lower RLN
of BED (more inhomogeneity). This may be due to larger “out-
of-field” areas of the breast in patients less at risk of fibrosis
(Figure 1A) that, being irradiated with low, uniform doses from
scattered radiation, tend to have larger runs of voxels with the
same values of dose from scattered radiation. An example of
this situation can be observed in Figure 1A, and suggests that
a steep dose gradient outside of the PTV may be beneficial to
prevent fibrosis.

These findings indicate that the radiomic BED variables show
that higher BED and presence of hot spots of BED in the PTV,
as well as higher volumes receiving intermediate doses out of the
PTV, as in Figure 1B, are related to occurrence of fibrosis.

The hypothesis underlying the application of radiomics to
predict side effects in OARs is that a patient who is more at
risk of side effect has a particular appearance of the organ at
risk in pretreatment CT from the patient at lower risk. Often,
these models are still perceived as “black boxes,” meaning that
it is difficult to determine how they arrive at their predictions,
which impairs their use by clinicians as part of their clinical
practice (40, 41). To address this issue, we provide interpretation
of the radiomic features that are selected by the models. In
our results, it was found that 3D-RED kurtosis in the PTV
was correlated with a higher risk for RIF. Because kurtosis
describes inhomogeneity of the electron density of the breast, the
patients with more inhomogeneous breast (small kurtosis) are

more sensitive, that is, have higher function score for all dose
values (Figure 2). Fat, which is radiolucent, appears dark on a
CT, while epithelial and stromal tissue appear radiodense and
may represent connective tissues (42, 43). Senescence may in the
human mammary epithelium be at the origin of RIF (44) and
RT may have a more pronounced effect on stroma (42). Thus, an
already dense breast could be more prone to developing fibrosis.
As younger patients have more inhomogeneous breast, this result
seems in agreement with studies reporting worse cosmetic results
in young patients [e.g., (45)], who typically have a denser breast.
In our results, however, fibrosis was not correlated with age,
neither kurtosis (Pearson correlation p = 0.28). This lack of
correlations with age could be due to the limited range of age
of our patients (95%CI 61.0–82.9 years), that do not include
younger (<50) patients. The relationship of fibrosis and radiomic
features from CT of the breast with age therefore could be the
subject of future investigation.

CONCLUSION

The models implemented show that radiomic and dose textural
variables extracted from the breast and PTV volumes after
correction for fractionation and CT density scale can predict RIF
and may help better select patients candidate to exclusive PBI.
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