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Sézary syndrome (SS) is a genetically and clinically distinct entity among cutaneous

T-cell lymphomas (CTCL). SS is characterized by more aggressive disease compared

to the most common indolent type of CTCL, mycosis fungoides. However, there

are limited available genomic data regarding SS. To characterize and expand current

mappings of the genomic landscape of CTCL, whole exome sequencing (WES) was

performed on peripheral blood samples from seven patients with SS. We detected

21,784 variants, of which 21,140 were novel and 644 were previously described.

Filtering revealed 551 nonsynonymous variants among 525 mutated genes−25

recurrent mutations and 1 recurrent variant. Several recurrently mutated genes crucial

to pathogenesis pathways, including Janus kinase (JAK)/signal transducers and

activators of transcription (STAT), peroxisome proliferator-activated receptors (PPAR),

PI3K-serine/threonine protein kinases (AKT), and fibroblast growth factor receptors

(FGFR), were identified. Furthermore, genetic mutations spanned both known and

novel genes, supporting the idea of a long-tail distribution of mutations in lymphoma.

Acknowledging these genetic variants and their affected pathways may inspire future

targeted therapies. WES of a limited number of SS patients revealed both novel

findings and corroborated complexities of the “long-tail” distribution of previously

reported mutations.

Keywords: cutaneous T-cell lymphoma, Sézary syndrome, whole exome sequencing, genomics, translational

oncology

INTRODUCTION

Cutaneous T-cell lymphoma (CTCL) consists of a rare heterogeneous group of clonal T-cell
lymphoproliferative disorders, including mycosis fungoides (MF) and Sézary syndrome (SS).
Whereas MF is the most common indolent type of CTCL, SS exhibits more aggressive disease,
which characteristically manifests with generalized erythroderma and circulating malignant cells
in peripheral blood (1). Several studies have shown that there are distinct molecular pathogeneses
and gene mutations between MF and SS (2, 3). In MF, gains in anti-apoptotic proteins and loss
of cell cycle inhibitors result in increased cell survival. In SS, chromosomal alterations resulting
in the dysregulation of the MYC oncogene and IL-2 receptor signaling pathway, the activation
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of cytokine pathways, and the inhibition of P53 accounts for the
increased cell proliferation and leukemic behavior observed in
patients with this disease (3, 4).

There are limited studies on whole exome sequencing
(WES) of CTCL, yielding varying results. In one study, WES
analyses of 42 CTCL cases, including 25 SS and 8 MF cases,
showed highly prevalent chromosomal deletions involving the
TP53, RB1, PTEN, DNMT3A, and CDKN1B tumor suppressors,
which broadly implicates epigenetic regulation and signaling
(5). In another study, whole genome and transcriptome next-
generation sequencing analyses of nine patient samples showed
copy variations in 8q (MYC, TOX), 17p (TP53, NCOR1), 10q
(PTEN, FAS), 2p (DNMT3A), 11q (USP28), and 9p (CAAP1),
but no recurrent rearrangements were identified (6). The largest
retrospectiveWES analysis of CTCL to date included 220 patients
with CTCL (including 186 SS patients and 25 MF patients) and
used publicly available sequencing data across nine studies (7).
This study identified 55 putative driver genes and implicated 17
novel gene mutations involving pathways that affect chromatin
remodeling (BCOR, KDM6A, SMARCB1, TRRAP), immune
surveillance (CD58, RFXAP), MAPK signaling (MAP2K1, NF1),
NF-κB signaling (PRKCB, CSNK1A1), PI-3-kinase signaling
(PIK3R1, VAV1), RHOA/cytoskeleton remodeling (ARHGEF3),
RNA splicing (U2AF1), T-cell receptor signaling (PTPRN2,
RLTPR), and T-cell differentiation (RARA) (7). Point mutations,
single gene alterations, and copy number alterations in SS
represent genomic diversity involving multiple pathways, such
as T-cell receptor signaling, NF-kB and JAK/STAT pathways,
apoptosis control, chromatin remodeling, and DNA damage
response (8). Therefore, the clinical heterogeneity of MF and SS
cannot be solely explained by known mutations.

Other WES analyses, such as those performed by Choi
et al. (9) further confirmed that CTCL genomic diversity
involves multiple pathways, including T-cell receptor signaling,
NF-kB and JAK/STAT pathways, apoptosis control, chromatin
remodeling, and DNA damage response.

Given these limited studies and varying results, we used
WES to further expand and characterize the genomic landscape
of SS. The main aim of the present study was to validate
current understandings of SS genomics and identify previously
unreported novel mutations.

METHODS

Eight patients with SS were identified through institutional query
following scientific review committee and institutional review
board approval (MCC17922). Patient samples were collected
from peripheral blood and cryopreserved. Neoplastic cells from
all samples were CD3+ and accounted for>50% of mononuclear
cells, as assessed by flow cytometry. CD3− mononuclear cells
sorted by flow cytometry were used as germline controls. DNA
was extracted in accordance with standard protocols of the
diagnostic molecular laboratory at H. Lee Moffitt Cancer Center
and Research Institution (Tampa, FL, USA). WES analyses
were performed at Hudson Alpha Institute for Biotechnology
(Huntsville, AL, USA) on samples from eight patients. One
patient lacked a paired normal sample and was excluded from
the analysis.

Library prep was performed by using NimbleGen SeqCap
EZ Exome Library v3.0. Sequencing was performed on
HiSeq X sequencers (Illumina, San Diego, CA) at 100×
for tumor sample and 30× for paired normal sample. A
combined pipeline using Strelka (Illumina, San Diego, CA)
and Mutect (Broad Institute, Cambridge, MA) was used
to perform bioinformatics analyses. Variants with a minor
allele frequency >1% in germline databases (1,000 Genomes
Project) were excluded. Intronic, untranslated regions, and
synonymous variants were also excluded. WEB-based GEne SeT
AnaLysis Toolkit (WebGestalt) was used to perform enrichment
analyses, and Kyoto Encyclopedia of Genes and Genomes
(KEGG), Reactome, and Wikipathways were used to perform
pathway analyses.

RESULTS

WES was finalized on paired tumor/normal samples from
seven unique patients (clinical characteristics are described in
Table 1). After filtering, mutations that were present in both total
mononuclear cells and CD3− mononuclear cells were assumed
to be germline and were excluded. WES analyses detected 21,784
somatic mutations across seven samples. Twenty-six percent
of variants detected were found to have no protein changes
(synonymous mutations).

Further filters were applied to exclude synonymous variants,
variants that were present at>1% in 1,000 genomes, and variants
with a quality score <3. WES revealed 551 non-synonymous
variants distributed across 525 genes, including 478 missense
mutations and 73 nonsense, splicing, or frameshift mutations.
The following recurrent variants were detected: C7orf42 p.T187P
(two patient samples), PTPN4 splicing variant c.1814-2A (one
patient sample), and ANKRD46 splicing variant c.312-2A>T
(one patient sample). The PTPN4 and ANKRD46 variants were
considered to be sequencing artifacts because of their presence
in a homopolymer region and presence in control specimens.
The C7orf42 p.T187P variant was also suspected to be a
technical artifact but was retained for having met predetermined
quality criteria.

Out of the 21,784 somatic variants detected, 21,140 (97%)
were novel variants and 644 were previously described variants
based on Ensemble analyses; 86.8% of mutations were missense
and 13.3% of mutations were truncating. The 525 genes
affected by nonsynonymous somatic changes (single nucleotide
variants and indels), along with genes affected by copy number
loss or gain (i.e., TP53, STK11, MYC, MAP2K4, GNA11),
were further analyzed (Supplementary Table 1). Recurrently
mutated genes (mutated in >2 patient samples) included
ANK3, CAMSAP1, C7orf42, CSMD1, DH11, FAT1, FLAD1,
FLNB, FRAS1, GLUD2, GRIA2, ITGB8, KCND2, LRP1B,
LRP2, MYH4, NRCAM, OR2L2, PAPPA2, PCLO, PKHD1L1,
UNC13C, VWA3B, and XIRP2. LRP2 was mutated in three
patient samples. Certain genes were not mutated across
patient samples but harbored multiple mutations in the same
patient sample.

Among the genes that were mutated more than once
(regardless of whether the mutation occurred twice in the same
patient), the most frequently mutated genes were GLUD2, LRP2,
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TABLE 1 | Clinical characteristics.

Patient Stage %TBSA Sezary load/µL No. of systemic therapies Disease status Deceased OS* (months)

1 T4N1M0B2 50 10,223 5 CR N 80

2 T4NxM0B2 100 1,867 6 PD Y 43

3 T4NxM0B2 50 53,000 5 PD Y 15

4 T4N1M0B2 100 19,600 1 SD Y 12

5 T4N2M0B2 100 7,710 6 PR N 82

6 T3N1M0B2 50 2,737 5 SD Y 33

7 T2N1M0B2 80 12,070 3 PD N 35

Seven patients with Sezary Syndrome and their clinical characteristics.

TNMB staging, tumor-node-metastasis-blood; %TBSA, percentage of total body surface area.

*Overall survival reflects the last day of follow-up for patients who are not deceased.

and PABPC3 (Table 2). Copy number variant analyses showed
three samples with TP53 loss, three samples with STK11 loss,
three samples with MYC gain, three samples with MAP2K4 loss,
and three samples with GNA11 loss (Supplementary Figure 1).

WEB-based GEne SeT AnaLysis Toolkit (WebGestalt) gene
ontology functional database was used to investigate the role
of the identified altered genes. GoSlim summary divided genes
into biological processes, cellular components, and molecular
function categories. Four hundred eighty-seven genes and 42
IDs were excluded from the analysis, as they were inadequately
mapped to Entrez Gene IDs. A minimum of five genes per
category were required for binning. Genes in the biological
processes category were most commonly involved in biological
regulation, metabolic processes, and response to stimuli. The
molecular functions of the genes involved were most commonly
protein binding, iron binding, and nucleic acid binding.

WebGestalt enrichment analyses showed enrichment of genes
in the glutamate receptor signaling pathway (enrichment ratio
= 4.81, P = 9.83 × 10−5). Similar overrepresentation analyses
(ORA) performed using KEGG demonstrated enrichment of
genes in the PI3K-AKT signaling pathway (R = 1.98; P = 5.43
× 10−3) (Supplementary Figure 2). This finding was confirmed
by Wikipathways analyses. Overall mapping of mutated genes
to cancer pathways showed that pathways, including the PPAR
and JAK/STAT pathways, were mainly involved in providing
proliferation signals. KEGG gene mapping further confirmed the
involvement of the PPAR and JAK/STAT pathways. Reactome
pathway analyses reconfirmed that the PI3K pathway and signal
transduction particularly involved the fibroblast growth factor
receptor (FGFR; Supplementary Figure 3).

DISCUSSION

WES analyses were used to elucidate the molecular biology of SS
and its genomic landscape. Despite having a limited sample size,
this study validated the genomic diversity of SS, characterized
by the disease’s long-tail distribution of genomic mutations.
By focusing on recurrent gene mutations in multiple samples
from seven SS patients, we highlighted both novel and known
mutations and pathways.

Multiply mutated genes included LRP2, GLUD2, and PABC3.
LRP2 is a member of the LDLR family and an endocytic receptor.

LRP2 is expressed on the apical surface of absorptive epithelial
cells and facilitates internalization of different ligands, such
as lipoproteins, sterols, vitamin-binding proteins, hormones,
signaling molecules, and extracellular matrix proteins (10). Once
internalized, these ligands undergo lysosomal degradation or
transcytosis (10). LRP2 can also form complexes with cubilin,
which can be inhibited by sodium maleate (11, 12). LRP2
expression has been shown to be crucial for cell maintenance
in malignant melanoma, and siRNA-mediated reduction of
LRP2 in melanoma cells significantly decreased melanoma cell
proliferation and survival rates (12). LRP2 gene polymorphisms
have also been studied in regards to prostate cancer given the
influence of steroid hormone uptake by endocytic receptors in
prostate epithelial cells (13).

GLUD2 mutations have not been previously mentioned in
regards to SS. GLUD2 is a housekeeping gene that is widely
expressed and plays a crucial role in glutamate metabolism (14).
RNA sequencing of triple-negative breast cancer samples has
shown GLUD2 variant mutations (15).

Another multiply mutated gene was PABPC3, which is known
to be an important RNA-binding protein in the translational
regulation of mRNAs in spermatogenesis (16). WES analyses of
six follicular thyroid cancer cell lines revealed PABPC3 to be
a recurrently mutated cancer driver gene (17). These findings
support the idea of a potential pathogenic role of these mutations
in SS.

Our study confirmed the dysregulation of the PI3K/AKT
pathway in SS, as previously reported (18). The PI3K/AKT
pathway is implicated in multiple malignancies and is involved
with tumor suppression when antagonized by PTEN. PI3K
overexpression is an oncogenic factor in squamous cell
carcinomas and is considered to be a therapeutic target (19).
Interestingly, the cytokine IL-31R was found to be involved with
the PI3K/AKT pathway in relation to the pathogenesis of intense
pruritis among MF/SS patients (20, 21). Furthermore, AKT
activation as a proxy for hyperproliferation and growth was more
often found in SS skin cells than in circulating SS cells, suggesting
a molecular pathogenesis of cutaneous manifestations (22).

Activated AKT is considered to be a survival factor for

inhibiting apoptosis via phosphorylation of several key targets,
including FOXO transcription factors (23). Inactivation of
various elements of the FOXO family has been reported in the
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TABLE 2 | Recurrent mutations.

Gene No. of mutations in gene Sézary 1 Sézary 2 Sézary 3 Sézary 4 Sézary 5 Sézary 6 Sézary 7

ANK3 2

C7orf42 1

CAMSAP1 2

CSMD1 2

DH11 1

FAT1 2

FLAD1 1

FLNB 2

FRAS1 2

GLUD2a 6

GRIA2 2

ITGB8 2

KCND2 2

LRP1B 1

LRP2 3

MYH4 2

NRCAM 2

OR2L2 2

PAPPA2 2

PCLO 2

PKHD1L1 2

TACR3 2

UNC13C 2

VWA3B 2

XIRP2 2

All genes found to be mutated in two or more patients and/or genes with multiple mutations within the same gene (bolded genes discussed further in text). Dark blue indicates a missense

mutation; light blue indicates a truncating mutation. Genes mutated more than once had multiple mutations within the same gene, whereas recurrently mutated genes were mutated

twice or more in >1 SS patient.
aBolded genes discussed in the text in more detail.

mut, mutated; trunc, truncated.

development of multiple myeloid leukemias and oncogenesis
in pre-B acute lymphoblastic leukemia (24). In SS patients,
FOXO1A was found to be downregulated, resulting in loss of
control mechanisms for cell cycle, cell death, cell metabolism, and
oxidative stress (25).

Cristofoletti et al. discovered PTEN to be deleted in 36% of
patients with SS and downregulated in almost all SS samples (n=
44) (22). The PTEN gene (locus at 10q23) may enhance resistance
to apoptosis in SS cells by downregulating FOXO3a, thereby
contributing to malignant expansion (22). In mice studies, T-cell
PTEN deletions have resulted in the development of CD4+ T-cell
lymphomas (26). In MF and SS, PI3K inhibition has been shown
to potentiate HDAC-inhibitor antitumor activity (27). However,
the role of PIK3 inhibition as a single agent or adjuvant therapy
remains to be elucidated.

Reactome analyses showed FGFR signaling involvement.
Mutations in the FGFR family of proteins have been reported
in regards to several malignancies (28). In certain malignancies,
FGFR signaling inhibition can result in antiproliferative and/or
proapoptotic effects, and FGFRs can activate several oncogenic
pathways, such as STAT-dependent signaling, Ras-dependent
MAPK, and Ras-independent PI3K/AKT signaling pathways

(28). Several targeted therapies against FGFR, ranging from
monoclonal antibodies to specific inhibitors, are currently being
studied in phase 1/2 clinical trials for the treatment of several
types of cancer (28, 29). As anti-FGFR therapy for CTCL has not
been studied, our data provide the basis for further therapeutic
investigation of this therapy.

We also detected a 17p deletion in three out of seven SS
patients. This finding was consistent with that of Prasad et al.
who reported a TP53 gene deletion and/or mutation in 58%
of SS patients (30). Given the positive regulatory relationship
between TP53 and PTEN, the combined dysfunction of PTEN
and TP53 is suspected to contribute to the genetic instability of SS
cells. This genetic instability facilitates chromosomal alterations,
namely losses, gains, and rearrangements (22). The recurrent
nature of TP53 aberrations in SS patients may constitute a
distinct clinical subtype (8). Pharmacological activation of P53
may be considered in the future if it is combined with traditional
chemotherapies (31).

Several studies have shown large regions of chromosomes
affected by recurrent copy number variations in regions of known
oncogenes (4, 32). Our copy number variant analyses showed that
several genes had losses in three tumor samples (TP53, STK11,
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MAP2K4, GNA11), and one gene had a gain in three tumor
samples (MYC).

STK11 loss was found in three out of seven patients in
our study. STK11 is a tumor suppressor gene that plays a
crucial role in cell growth regulation and apoptosis (33). STK11
kinase activity elimination is associated with the Peutz-Jeghers
syndrome and an elevated cancer risk (34). In a genotypically and
phenotypically distinct subset of lung adenocarcinoma cell lines,
STK11 inactivation was found to be common and to attenuate
the PI3K/AKT pathway (35). In one case report, a patient with
triple-negative breast cancer with a point mutation in STK11
with loss of heterozygosity had a near-complete response with
everolimus therapy. This response may be explained by the
relationship between STK11 and the PI3K/AKT/mTOR signaling
pathway (36).

Copy number variation analyses, as reported by Lee et al.
(37) also showed loss of STK11, MAP2K4, GNA11, and MYC
gene gain-of-function aberrations. The observed loss in this study
supports the theory that the more aggressive behavior of SS
involving blood, skin, and lymph nodes may be facilitated via
MYC dysregulation (4).

MAP2K4 loss was seen in three out of seven of our patients.
The MAPK pathway, similar to the PI3K pathway, contributes to
oncogenesis by cell proliferation and antiapoptotic activity (38).
The loss-of-function mutation in MAP2K4 has been observed
to be highly frequent in several cancers (37–40). Xue et al. (38)
demonstrated that inactivating mutations in MAP2K4 increased
cell line sensitivity to MEK inhibitor therapy, thereby enhancing
response to the therapy.

GNA11 loss was observed in three out of seven patients.
GNA11 is considered to be an early driver mutation in
leptomeningeal and uveal melanomas (41, 42). Over 80% of uveal
melanomas are known to have mutations in GNA11 (43). Using
GNA11mutatedmelanoma cell lines, MEK inhibitors to suppress
MAPK pathways, and suppressing protein kinase C led to the
synergistic inhibition of proliferation (44).

MYC gene gain-of-function aberrations from translocation,
amplification, or overexpression are common in tumorigenesis
(45) and are associated with TP53 loss mutation. Both MYC gain
and TP53 loss are inversely related to poor 5-year overall survival
rates (46). When the proto-oncogene MYC is overactivated,
it triggers an antioncogenic mitosis-differentiation checkpoint
in human epidermal keratinocytes, resulting in impaired cell
division, and squamous differentiation (47). Our data appear to
support the hypothesis that disseminated leukemic behavior of SS
may be affected byMYC dysregulation (4).

Our study underscores the need to sequence more SS
cases, given the genomic heterogeneity of this disease and

the potential for identifying targetable therapies. To further
understand the implications of the genomic alterations in
SS described in this study, functional characterization of the
detected genetic alterations, prospective studies using larger
sample sets, therapeutic clinical trials with targeted agents, and
correlation with outcomes are all needed.
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