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New tools are needed to match cancer patients with effective treatments. Patient-derived

organoids offer a high-throughput platform to personalize treatments and discover novel

therapies. Currently, methods to evaluate drug response in organoids are limited because

they overlook cellular heterogeneity. In this study, non-invasive optical metabolic imaging

(OMI) of cellular heterogeneity was characterized in breast cancer (BC) and pancreatic

cancer (PC) patient-derived organoids. Baseline heterogeneity was analyzed for each

patient, demonstrating that single-cell techniques, such as OMI, are required to capture

the complete picture of heterogeneity present in a sample. Treatment-induced changes

in heterogeneity were also analyzed, further demonstrating that these measurements

greatly complement current techniques that only gauge average cellular response. Finally,

OMI of cellular heterogeneity in organoids was evaluated as a predictor of clinical

treatment response for the first time. Organoids were treated with the same drugs

as the patient’s prescribed regimen, and OMI measurements of heterogeneity were

compared to patient outcome. OMI distinguished subpopulations of cells with divergent

and dynamic responses to treatment in living organoids without the use of labels or

dyes. OMI of organoids agreed with long-term therapeutic response in patients. With

these capabilities, OMI could serve as a sensitive high-throughput tool to identify optimal

therapies for individual patients, and to develop new effective therapies that address

cellular heterogeneity in cancer.
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INTRODUCTION

Tumor organoids have emerged as an appealing method to
tailor anti-cancer treatments by performing high-throughput
drug screening directly on a patient’s tumor cells (1–3). In vitro
organoids, fully encapsulated in a basement membrane matrix,
recapitulate the genetic and histopathological characteristics
of the original tumor, along with its complex 3-dimensional
organization (4–9). Organoid cultures also preserve interactions
between tumor cells, immune cells (10), and fibroblasts (11),
which can influence tumor drug response and are potential drug
targets (12, 13). Generally, methods for measuring drug effects

in organoids have involved either cell viability assays, pooling
of proteins, DNA, and RNA from many organoids, or tracking
of organoid diameter changes. These methods homogenize

the response of an entire organoid or many organoids and

ignore cellular heterogeneity, which drives tumor treatment
resistance (14–17). It is possible for minority subpopulations of
lethal drug-resistant cells to go completely undetected without
more advanced assessment tools. Additionally, these methods
generally neglect cellular metabolism, which is a major factor
determining cellular drug response and heterogeneity (18–20).
A study of inter-tumor metabolic heterogeneity detected unique
metabolomic profiles in each of over 180 melanoma patient
tumors (21), highlighting the importance of metabolism in
personalized medicine.

Optical metabolic imaging (OMI) is a novel, non-destructive,
high-resolution fluorescence microscopy technique that
quantifies the metabolic state of individual cells within a
single organoid using cellular autofluorescence (22, 23). The
fluorescence properties of NADH and NADPH overlap and are
referred to as NAD(P)H. NAD(P)H, an electron donor, and
FAD, an electron acceptor, are fluorescent metabolic co-enzymes
present in all living cells. The optical redox ratio, defined as
the ratio of the fluorescence intensity of NAD(P)H to that of
FAD, reflects the redox state of the cell (24–26), and is sensitive
to shifts in metabolic pathways (23, 27, 28). The fluorescence
lifetimes of NAD(P)H and FAD are both two-exponential with
distinct lifetimes for the free- and protein-bound conformations,
and thus reflect the protein-binding activities of NAD(P)H and
FAD (29–31). The lifetime of free NAD(P)H is shorter than
bound NAD(P)H, and conversely, free FAD is longer than bound
FAD. As a result, fluorescence lifetime imaging microscopy
(FLIM) of endogenous biomarkers detects early metabolic
changes in response to anti-cancer drug treatment (32–34). The
optical redox ratio, NAD(P)H, and FAD fluorescence lifetimes
all provide complementary information, and can be combined
into a composite endpoint called the OMI index (35). This
metric distinguishes drug-resistant and responsive cells by their
metabolic states and is robust and sensitive in pancreatic and
breast cancer organoids (1, 35).

OMI of organoids could improve predictions of patient
outcomes for several reasons. First, drug-induced changes in cell
metabolism measured by OMI precede changes in tumor size or
overall cell viability (1, 23, 35, 36), and thus can measure drug
response faster than conventional methods such as apoptosis and
proliferation assays. Second, OMI analysis of cell subpopulations

identifies and quantifies tumor heterogeneity (36, 37), which
is vital for accurately capturing patient drug response. Finally,
OMI is non-invasive and does not require exogenous labels,
so treatment response can be tracked over time in the same
organoids. This is not possible with standard techniques which,
by necessity, destroy samples. Therefore, OMI could provide a
fast, dynamic method to evaluate heterogeneous drug response at
the organoid and single-cell level, and therefore integrate tumor
heterogeneity into clinical treatment planning and pre-clinical
drug discovery.

In this study, cellular metabolic heterogeneity in patient
organoids is characterized using a panel of quantitative
techniques for the first time. Intra-tumor heterogeneity at
baseline is compared across OMI variables and tumor types, and
intra-organoid heterogeneity at baseline is compared between
organoid morphology types and tumor types. OMI of organoids
has been validated as an accurate predictor of in vivo drug
response in mouse models of pancreatic cancer (PC) (1),
xenografts generated from human breast cancer (BC) cell lines
(35), and a colorectal cancer patient (38), but has not yet been
evaluated for primary human pancreatic and breast tumors.
Currently, oncologists must weigh drug treatment options for
individual PC patients based solely on potential side effects
and have no a priori indication of whether a PC patient will
respond to standard therapies. Clinicians select treatments for BC
patients based on pathological analysis of hormone receptors and
human epidermal growth factor receptor 2 (HER2). Response
to treatment in both PC and BC is defined by tracking tumor
size with imaging, but evidence of treatment failure can require
months of observation. Tailoring treatment based on genomic
analysis alone has proven insufficient due to poor understanding
of the connections between tumor driver mutations and drug
response (39). Recurrences in both BC and PC could be
minimized with technologies to quickly and accurately determine
an optimal treatment plan. This study is the first to demonstrate
that OMI of cellular metabolic heterogeneity in pancreatic and
breast tumor organoids could provide an early measure of long-
term in vivo drug response for individual patients.

MATERIALS AND METHODS

PC Tissue Processing and Organoid
Culture
Human tissue was collected with informed consent from all
patients, and all studies were approved by the Institutional
Review Boards at the University of Wisconsin-Madison and
the Medical College of Wisconsin (IRB# 2018-1104). Surgically
resected tissue was placed in cold chelation buffer on ice for
1 h. Tissues were washed with phosphate buffered saline (PBS)
and digested at 37◦C in Dulbecco’s Modified Eagle’s Medium:
Nutrient Mixture F-12 (DMEM/F-12) medium (Invitrogen)
containing 1 mg/mL collagenase (Sigma), 0.125 mg/mL dispase
(Invitrogen), 10% fetal bovine serum (FBS) (Gibco), and 1% pen-
strep (Gibco) for 2–3 h with intermittent shaking. The resulting
cell macro-suspension was rinsed in cold PBS, re-suspended in
a 1:1 mixture of DMEM/F-12 media and Matrigel extracellular
matrix (Corning), plated in 50 µl droplets, and allowed to
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solidify at 37◦C, 5% CO2 in a cell incubator. Once solidified,
droplets were overlaid with DMEM/F-12 supplemented with 7%
FBS, 20µM Y-27632 (Sigma), 50 ng/ml epidermal growth factor
(EGF) (Invitrogen), R-Spondin (RSPO)-conditioned medium
(homemade) and 1% penicillin-streptomycin (Gibco). FBS, Y-
27632, and RSPO-conditioned medium were removed from
cultures if fibroblasts were out-growing tumor cells.

BC Tissue Processing and Organoid
Culture
Human tissue was collected with informed consent from all
patients in accordance with HIPAA regulation, and all studies
were approved by the Institutional Review Board at the
University of Wisconsin-Madison (IRB# UW14035). Patients
with very high risk of having breast cancer were identified as
those with breast imaging reporting and data system (BI-RADS)
scores of 4C, 5, or 6 that had not received prior treatment. For
these patients, an additional tumor sample was obtained during
a diagnostic biopsy and immediately placed in sterile PBS. Tissue
was enzymatically digested in BC organoid media (9) containing
1.5 mg/mL collagenase for 45–90min at 37◦C, with intermittent
shaking. The resulting cell suspension was rinsed in cold PBS and
resuspended in cold BC organoid media. All cellular solutions
were mixed at a 1:1 ratio with Matrigel and deposited as 50 µl
droplets into 35mm glass-bottom dishes. Gels were allowed to
solidify at 37◦C, 5% CO2 in a cell incubator for 15–30min, and
BC organoid media (9) was added.

Drug Screening
Twenty-four hours prior to imaging, media was replaced with
fresh media containing drugs, including 85µM gemcitabine
(40–42), 10µM 5-FU (38, 43), 200 nM TAK-228 (44, 45),
250 nM ABT-263 (46, 47), 5µM oxaliplatin (38, 48), 10µM
nab-paclitaxel (41), 50 nM SN-38 (49), 500 nM paclitaxel (41),
2µM docetaxel (50), 1.5µM 4-OOH cyclophosphamide (51),
5µM doxorubicin (52), 10µg/mL trastuzumab (53), 25µg/mL
pertuzumab (54), or combinations of each. Doses were selected
to replicate clinically relevant peak plasma concentrations.
FOLFIRINOX treatment was comprised of 5-FU, oxaliplatin,
and SN-38. Not all drugs were tested on every patient’s cells
for the full time-course. Drug choices were made based on the
availability of viable organoids and the clinical treatment plans
(or lack thereof) for individual patients. All organoids were
initially treated with a standard panel because gemcitabine and
5-FU combination therapy was most likely to be prescribed
after surgery (excluding Patient PC6; it was known in advance
that they would receive oxaliplatin rather than gemcitabine).
When additional drugs were prescribed for a patient such
as nab-paclitaxel or the FOLFIRINOX regimen, their panels
were expanded to incorporate those treatments. After the first
imaging time point (24 h), gemcitabine, nab-paclitaxel, SN-38,
and oxaliplatin were removed from cultures to simulate the
delivery of one dose, while exposure of all other drugs was
maintained throughout the experiment to simulate daily delivery.
Chemotherapy drugs were obtained from the University of
Wisconsin Carbone Cancer Center Pharmacy. TAK-228 was
obtained from LC Laboratories, ABT-263 was obtained from

Apex Bio, and 4-OOH cyclophosphamide was obtained from
Santa Cruz Biotech.

Multiphoton Imaging
Fluorescence imaging was performed using a custom
multiphoton fluorescence lifetime system (Bruker Fluorescence
Microscopy). A 40x water immersion objective [Nikon, 1.15
numerical aperture (NA)] was used with an inverted microscope
(Nikon, TiE). A titanium:sapphire laser (Spectra-Physics InSight
DS+) was used for excitation, while gallium arsenide phosphide
(GaAsP) photomultiplier tubes (H7422P-40, Hamamatsu)
detected emission light. 750 and 890 nm light were used for
two-photon excitation of NAD(P)H and FAD, respectively. A
440/80 nm filter was used to collect NAD(P)H fluorescence
emission, and a 550/100 nm filter was used to collect FAD
fluorescence emission. Images were acquired over 60 s, with
a pixel dwell time of 4.8 µs for 256 × 256 pixel images.
Fluorescence lifetime data with 256 time bins was acquired using
time-correlated single photon counting electronics (SPC-150,
Becker & Hickl). A Fluoresbrite Yellow Green microsphere
(Polysciences) was imaged daily as a fluorescence lifetime
standard, which had a stable lifetime (2.07 ± 0.05 ns, n = 86),
consistent with previously published values (22, 29, 31).

Organoid Imaging
Imaging of organoids was performed in 35mm glass-bottom
dishes (#P35G-1.5-14-C, MatTek). At least five representative
organoids were imaged near the center of the organoid in each
treatment group at each time point. At least two additional
images of the fibroblast monolayer on the coverslip were taken,
if present. Images were acquired 1, 2, and 3 days after initial
treatment, and at day 5 and day 7 in some cases. For two
patients, drug treatment experiments were not performed due to
low organoid count, and only baseline heterogeneity was imaged
(BC21+ BC22).

Image Analysis
NAD(P)H and FAD fluorescence lifetime images were analyzed
using SPCImage software (Becker & Hickl) (55). Briefly, a
histogram of photon counts per temporal bin, or decay curve,
is generated for each pixel by binning the photon counts of all
8 surrounding pixels. This decay curve is deconvolved with the
instrument response function, and then fit to a two-component
exponential decay (Equation 1).

I (t) = α1exp
−t/τ1 + α2exp

−t/τ2 + C (1)

Here, I(t) represents the fluorescence intensity measured at
time t, α1, and α2 represent the fractional contributions
of the short and long lifetime components to the overall
signal, respectively, τ1 and τ2 are the short and long lifetime
components, respectively, and C represents background light.
The two lifetime components are used to distinguish between the
free and bound forms of NAD(P)H and FAD (56, 57). The mean
lifetime (τm) is a weighted average of the free and bound lifetimes,
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and is calculated for both NAD(P)H and FAD in each pixel using
Equation 2.

τm = α1 ∗ τ1 + α2 ∗ τ2 (2)

The decay curves for NAD(P)H and FAD were integrated for
each pixel to obtain intensity values. The optical redox ratio was
calculated for each pixel by dividing the intensity of NAD(P)H
by the intensity of FAD. A customized CellProfiler routine
was written to automatically identify individual cell cytoplasms
and extract average NAD(P)H and FAD intensities and lifetime
components for each (58, 59). All reported redox ratios are
normalized to average control values of the same patient and
time point.

OMI Index Calculation
The OMI index, in this study, is a linear combination of three
independent OMI endpoints [redox ratio, NAD(P)H τm, and
FAD τm], each centered around the average value measured in
control cells within each patient at the same experimental time
point. This differs from previous descriptions (1, 35) where the
end points are mean-centered across all cells in all treatment
groups. This modification allows drug responses to be compared
between patients in this study. As before, the redox ratio,
NAD(P)H τm, and FAD τm are given coefficients of (1,1,−1).
A decrease in OMI index relative to control correlates with
drug response, while an increase or lack of change indicates
drug resistance.

Organoid Heterogeneity Analysis
A Gaussian mixture distribution model was used to assess
heterogeneity of cellular metabolism (1, 35, 37, 60, 61). OMI
values for all cells within a treatment group and time point are
inputted into this model described by Equation (3).

f
(

y;8g

)

=

g
∑

i=1

πiφ(y;µi,Vi) (3)

Here, g represents the number of subpopulations in the model,
φ

(

y;µi,Vi

)

is a normal probability density function where µi

represents the mean and Vi represents variance, and πi is the
mixing proportion. Models containing 1, 2, and 3 subpopulations
are fit to the data, and the goodness of fit for each model is
assessed using the Akaike information criterion (AIC) (62). The
best fit of the three models, equivalent to the lowest AIC, is
used to evaluate heterogeneity. For comparison, distributions
are normalized such that all have an area of 1 under the curve.
We previously defined and validated the weighted heterogeneity
index (wH-index, Equation 4) to predict in vivo treatment
response with OMI in mouse models of breast cancer (61). The
wH-index is based on the Gaussian distributionmodels described
by Equation (3), and is a modified form of the Shannon diversity
index used to quantify the degree of heterogeneity in a population
(36, 63).

wH − index =
∑

(1− piln(pi + 1)) ∗ (σi + di) (4)

Here, i represents each subpopulation in the Gaussian
distribution model, d represents the distance between the
median of each subpopulation and the median of the entire
distribution, p represents the proportion of all cells belonging to
that subpopulation, and σ is the standard deviation. Quadratic
entropy (QE), Kolmogorov-Smirnov distance (KS), and outlier
percentage (OL) were calculated for each treatment group’s
cellular distribution as described previously (64).

Patient Tumor Heterogeneity Analysis
Standard hematoxylin and eosin-stained sections from breast
tissue collected in parallel with the harvested tissue were assessed
histologically for cytologic variability based on nuclear size and
chromatin appearance by a board-certified pathologist with sub-
specialty training in breast pathology (SMM). Cases in which all
nuclei appeared similar were regarded as having low cytologic
variability and cases that had marked variation in nuclear
appearance from lowmagnification were regarded as having high
variability; cases with variation that could only be appreciated at
higher magnification were classified as moderate.

For pancreatic cancer analysis, hematoxylin and eosin-
stained sections from samples acquired at the time of
resection and submitted for research use were reviewed.
In addition, hematoxylin, and eosin-stained sections from
the original diagnostic resection specimen were reviewed by
a board-certified pathologist with sub-specialty training in
gastrointestinal and pancreaticobiliary pathology (KAM). All
slides were assessed histologically for tumor heterogeneity based
on tumor differentiation, which incorporates growth pattern
and presence/absence of gland formation. Cases with abundant
gland formation were regarded as well-differentiated tumors,
while those with minimal gland formation, contained single
infiltrating cells, or a solid growth pattern were regarded as
poorly differentiated. Tumors with similar histologic findings
across the sampled tumor were consistent with low tumor
heterogeneity/variability, while cases with differences in tumor
growth pattern and morphology were regarded as having more
tumor heterogeneity/variability.

Cyanide Experiment
Four previously untreated organoids from Patient PC1
underwent OMI immediately before and after the addition
of media containing NaCN (Sigma), for a final concentration of
6mM. OMI endpoints were quantified at the single-cell level, at
least 60 cells per group. Redox ratio values were normalized to
the pre-treatment average.

Organoid Immunofluorescence
Organoids were rinsed in PBS and fixed for 20min in 4%
paraformaldehyde (VWR). Fixed organoids were rinsed and
stored in PBS at 4◦C until stained. Organoids were blocked
for 1 h in PBS with 10% goat serum and 0.3% Triton-X
100 (Sigma) at room temperature followed by co-incubation
with Ki67 antibody conjugated to AlexaFluor 488 (1:50, Cell
Signaling #11882S) and CC3 antibody conjugated to AlexaFluor
555 (1:50, Cell Signaling #9604S) for 48 h at 4◦C. Organoids
were then washed in PBS and mounted to a slide using
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ProLongTM Diamond Antifade Mountant with DAPI (Molecular
Probes). DAPI was imaged on the multiphoton microscope at
40x magnification using 750 nm for excitation and 440/80 nm
bandpass filter for emission. AlexaFluor 488 was imaged using
965 nm for excitation and 550/100 nm filter for emission.
AlexaFluor 555 was imaged using 1,050 nm excitation and
a 585/65 nm filter. Six or more organoids per treatment
group were imaged and the percentage of Ki67-positive cells
and cleaved caspase-3 (CC3) positive cells in each organoid
were quantified.

PC Patient-Derived Xenografts
Animal research was approved by the UW-Madison Institutional
Animal Care and Use Committee. Organoids from Patient
PC13 were pelleted, re-suspended in media, and mixed 1:1
with Matrigel. This mixture was subsequently injected (100
µl) subcutaneously into bilateral flanks of female NOD scid
gamma mice at 6 weeks old (NOD.Cg-Prkdcscid Il2rgtm1Wj1/SzJ,
The Jackson Laboratory) for initial patient-derived xenograft
(PDX) establishment. For treatment experiments, extracted
tumors were mechanically minced to form a cell suspension,
which was then mixed with Matrigel for injection into
experimentally naïve female athymic nude mice at 6 weeks
old (Hsd:Athymic nude-Foxn1nu/nu, Envigo). Tumor volume
was measured with calipers using the formula 0.5 ∗ length ∗

width2. When average tumor volume reached ∼150 mm3, mice
were randomized into two groups. Twenty mice received 100
mg/kg gemcitabine and 100 mg/kg nab-paclitaxel weekly via
intraperitoneal injection while 23 control mice received only PBS
weekly. Tumor volume was measured twice weekly. Mice were
euthanized and tumors were collected when humane endpoints
were reached.

High-Depth Targeted Gene Sequencing
Patient PC13 organoids were sequenced using the Qiagen
Comprehensive Cancer Panel andmolecular barcode technology,
with >500x median coverage.

Statistics
Differences in OMI index, redox ratio, NAD(P)H τm, FAD τm,
CC3+%, Ki67+%, standard deviation, coefficient of variation
(CV), QE, and KS between groups were tested using a
Wilcoxon rank-sum test. This test was chosen because these
data distributions were not assumed to be parametric in nature.
Normalized tumor volumes were compared using a student t-
test and a D’agostino-Pearson normality test. Treatment effect
size was calculated with Glass’s 1 (65) because comparisons of
very large sample sizes of individual cells always pass traditional
significance tests unless the population effect size is truly zero.
Linear regression modeling was performed using ordinary least
squares fitting, and the adjusted coefficient of determination was
used to report the percentage of the variance in the dependent
variable that can be explained by the variance of the independent
variables in all linear models.

RESULTS

Patient-Derived Tumor Organoid
Generation and Optical Metabolic Imaging
Pancreatic organoids were generated from fresh patient
tissue samples acquired during distal pancreatectomy or
pancreaticoduodenectomy (Whipple resection) surgeries.
The overall rate of successful organoid formation was 64%
(14 of 22 patients) (Figure 1A), including mostly pancreatic
tumors (pancreatic ductal adenocarcinomas (PDAC) and
anaplastic carcinoma of the pancreas), along with two pancreatic
intraepithelial neoplasia (PanIN) lesions and one ampullary
adenocarcinoma (Supplementary Table S1). Fifty-seven
percent of the successfully cultured patient samples underwent
neoadjuvant treatment prior to resection, including one patient
that was downgraded from PDAC to PanIN following a
complete pathologic response to chemotherapy (Patient PC5).
Neoadjuvant treatment did not impede organoid formation
(67 and 60% success rates for pretreated and non-pretreated
samples, respectively). Representative images demonstrate
that multiphoton microscopy measures OMI endpoints with
high resolution (Figures 1B–D). This allows endpoints to be
quantified in individual cells by masking each cell nucleus and
cytoplasm using NAD(P)H fluorescence intensity (Figure 1E).
Tumor cells grew as both 3-dimensional hollow spheres
(Figure 1F) as well as solid spheres. The length of the organoid
establishment period varied by PC patient between 4 and 33
days (Supplementary Table S1), and ended when organoids
were clearly visible and proliferating with rounded edges. Only
two organoid lines required more than 12 days of establishment
time. Differences in size and cellular quality of patient tumor
samples likely contributed to the variance in time to maturation
for organoid lines.

BC organoids were generated from core needle biopsies of
suspected tumors, acquired at the time of initial diagnosis.
Organoids were successfully generated in 54% of cases (13 of 24),
including patients with a variety of receptor statuses (Figure 1G,
Supplementary Table S2). Again, OMI endpoints were acquired
with high resolution (Figures 1H–J), and NAD(P)H fluorescence
intensity images were used to mask each cell cytoplasm
(Figure 1K). Similar to pancreas organoids, both hollow and
solid (Figure 1L) morphologies were noted in BC organoids.

Sources of Baseline Metabolic Variability in
Patient-Derived Organoid Cells
Single-cell data from untreated organoids was used to
characterize baseline cellular metabolic heterogeneity and
its origin. The percentage of variation between individual cells in
untreated organoids that are due to differences at the organoid
level were quantified using linear modeling for each patient
and OMI variable (Figures 2A,B). Higher percentages suggest
that a larger portion of overall cellular metabolic heterogeneity
within a patient is due to inter-organoid variability, while
lower percentages suggest that a larger portion is due to intra-
organoid variability. This percentage estimates the likelihood
of accurately predicting the metabolic properties of a single
cell based solely on the properties of its individual organoid

Frontiers in Oncology | www.frontiersin.org 5 May 2020 | Volume 10 | Article 553

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Sharick et al. Imaging Metabolic Heterogeneity in Organoids

FIGURE 1 | Patient-derived tumor organoid generation and optical metabolic imaging. (A) Pie charts depicting the success rate for generating viable organoids from

patient pancreatic lesions (left), the distribution of PDAC, PanIN, anaplastic cancer, and ampullary cancer among successfully generated organoids (center), and the

distribution of previously treated vs. untreated tumors among successfully generated organoids (right). Representative redox ratio (B), NAD(P)H τm (C), and FAD τm

(D) images of an untreated pancreatic organoid taken 6 days after surgical resection (Patient PC14). Scale bar is 50µm (E). Masks of individual cell cytoplasms

overlaid onto NAD(P)H intensity image (F). Representative brightfield image of pancreatic organoids (Patient PC14). Scale bar is 200µm. (G) Pie charts depicting the

success rate for generating viable organoids from patient breast tumor biopsies (left), and the distribution of receptor subtypes among successfully generated

organoids (right). Representative redox ratio (H), NAD(P)H τm (I), and FAD τm (J) images of an untreated breast cancer organoid taken 30 days after biopsy (Patient

BC9). Scale bar is 50µm. (K) Masks of individual cell cytoplasms overlaid onto NAD(P)H intensity image. (L) Representative brightfield image of breast cancer

organoids (Patient BC9). Scale bar is 200µm.

of origin. When averaged across all patients of a cancer type,
averages for each of the 10 variables ranged between 16 and
36%. Next, the fraction of overall cellular metabolic variation
that was due to differences at the patient level were quantified
for each variable (Figures 2C,D), ranging from 39 to 78%. In
all cases, the proportion of cellular variation due to patient-
to-patient variation (Figures 2C,D) was higher than the mean
proportion of cellular variation due to organoid-to-organoid
variation (Figures 2A,B). Additional established indices for
quantifying cellular heterogeneity, including wH-index (uses
Gaussian fitting to identify subpopulations) (61), KS (a measure
of distribution normality) (64), QE (a quantitative measure of
the number of species in a population) (64), and OL (cells that
are distinct from the majority) (64) were applied at the patient
level to all baseline organoids. Bivariate correlations between all
heterogeneity and mean fluorescence lifetime measurements,
as well as patient age at the time of tissue acquisition, were
performed (Supplementary Figure S1). Many measurements
exhibit few or zero correlations with any others, suggesting
that they provide unique information about the metabolism
or metabolic heterogeneity of the patient’s organoid cells. An

orthogonal measurement of intra-tumor heterogeneity defined
by a pathologist (SMM), cytologic variability, was compared
to corresponding OMI measurements of baseline patient
heterogeneity in organoids (Supplementary Figure S2). Redox
ratio KS and FAD τm QE were significantly higher in BC patients
with medium/high cytologic variability compared to patients
with low cytologic variability. Cytologic variability categories in
PC (defined by a pathologist, KAM) did not have significantly
different baseline OMI heterogeneity for any variable (p > 0.05).

Disparities in Metabolism and
Intra-Organoid Heterogeneity by
Morphology and Cancer Type
Next, organoid morphology was evaluated as a potential
factor in intra-organoid metabolic heterogeneity. All untreated
organoids at initial imaging time points were classified as either
morphologically hollow (Figures 3A,B) or solid (Figures 3C,D)
based on images of NAD(P)H intensity. In PC, hollow organoids
exhibited significantly less metabolic heterogeneity than solid
organoids in terms of OMI index SD (Figure 3E) and redox ratio
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FIGURE 2 | Sources of baseline metabolic variability in patient-derived organoid cells. (A) The percentage of total metabolic variation among each breast cancer

patient’s cells which can be explained by variation at the organoid level for each variable. (B) The percentage of total metabolic variation among each pancreatic

patient’s cells which can be explained by variation at the organoid level for each variable. (C) The percentage of total metabolic variation among cells from all breast

cancer patients which can be explained by variation between patients for each variable. (D) The percentage of total metabolic variation among cells from all pancreatic

patients which can be explained by variation between patients for each variable. Untreated organoid cells from the first measurement time point were included in this

analysis.

CV (Figure 3F). In BC, hollow organoids exhibited significantly
more metabolic heterogeneity than solid organoids in terms
of FAD τm CV (Figure 3G), and significantly shorter mean
NAD(P)H τm values (Figure 3H). Other comparisons were
not significantly different between hollow and solid organoids
(Supplementary Figure S3).

OMI of PC Organoids Resolves Differential
Sensitivities to Relevant Drug Treatments
OMI was then used to track changes in metabolic heterogeneity
in response to standard and experimental therapies in PC.
After an establishment period, PC organoids were treated with
a panel of standard and experimental therapies and imaged
over a time course (Figure 4A). This drug panel included 5-FU
and gemcitabine chemotherapy, along with an experimental
combination of TAK-228 (mTORC1/2 inhibitor) and ABT-263
(Bcl-2 and Bcl-xL inhibitor). Additional standard drugs were
tested on organoids from Patients PC6, PC13, and PC18 at
later time points after patient treatment plans were obtained.
A wide variety of OMI index responses were elicited across
treatment conditions and patient samples. A heatmap of OMI
index treatment effect size, calculated using Glass’s 1 at 72 h

post-treatment, shows significant inter-patient heterogeneity
for drug response in organoids (Figure 4B; additional variables
and time points in Supplementary Figure S4). In a subset
of patient samples, a population of fibroblasts (co-cultured
with organoids) migrated from the 3D matrix and adhered
to the 2D glass coverslip. Heterogeneity in these fibroblasts
has been shown in organoid models of murine PC (1, 66).
A heatmap of OMI index treatment effect size, calculated
using Glass’s 1 at 72 h post-treatment, also shows inter-
patient drug response heterogeneity in co-cultured fibroblasts
(Figure 4C; Supplementary Figure S5). Repeatedmeasurements
of responses to drugs over 7 days demonstrate how OMI can
track single-cell drug responses over time within organoids
(Supplementary Figure S6) and co-cultured fibroblasts
(Supplementary Figure S7). For example, response data
show generally increased responses to TAK-228 and ABT-263
combination targeted therapy over time, while 5-FU remained
ineffective for most patients. Viability and OMI were validated
for human organoids by quantifying metabolic inhibition by
cyanide, a known inhibitor of the electron transport chain
(Supplementary Figure S8). The effects of cyanide on OMI
endpoints agreed with previous reports (23).
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FIGURE 3 | Disparities in metabolism and intra-organoid heterogeneity by morphology and cancer type. (A) Representative brightfield images of hollow breast cancer

organoids. Scale bar = 100µm. (B) Representative NAD(P)H intensity images of hollow breast and pancreatic cancer organoids. Scale bar = 100µm. (C)

Representative brightfield images of solid breast cancer organoids. Scale bar = 250µm. (D) Representative NAD(P)H intensity images of solid breast and pancreatic

cancer organoids. Scale bar = 100µm. (E–H) The intra-organoid standard deviation of the OMI index (E), coefficient of variation of the redox ratio (F), coefficient of

variation of mean fluorescence lifetime of FAD (G), and the mean fluorescence lifetime of NAD(P)H (H) for cells within hollow vs. solid organoids. *p < 0.05. Each dot

represents one organoid (mean ± SEM).

OMI Captures Non-Genetic Cellular
Heterogeneity in Pancreatic Organoids
Additional analysis was performed on Patient PC13 organoids
to evaluate the utility of OMI. The combination of gemcitabine
and nab-paclitaxel was used in addition to the standard
treatment panel on Patient PC13’s organoids to mimic the
treatment received prior to sample collection. Population
density modeling was used to determine whether cellular
subpopulations of metabolic response were present in
organoids for each treatment condition at 72 h (Figure 4D;
additional drugs in Supplementary Figure S9). Metabolic
subpopulations were observed in controls and organoids treated
with gemcitabine and nab-paclitaxel (G+P) combination. The
patient responded poorly to this treatment prior to surgery and
organoid generation.

High-depth targeted gene sequencing was performed on

untreated Patient PC13 organoids to determine whether

subclonal populations could be resolved to explain the metabolic

heterogeneity (Figure 4E). A mutation in the TP53 tumor-
suppressor gene (stop-gain Gln165∗) and a mutation in the

KRAS oncogene (G12V) were found with allele frequencies of

100 and 52%, respectively, indicating a single population of

cells with homogeneous driver mutations. Mutations with allele

frequencies between 10 and 30% are indicative of potential

subclonal populations (67). Only 4 alterations were found

to occur within this range, with 3 of the 4 at frequencies

just below the top of this range. None of the alterations

identified are pathogenic or known to alter tumor biology,
indicating that the sample was genetically homogenous with
subpopulations likely related to metabolic changes and not
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FIGURE 4 | OMI captures non-genetic cellular heterogeneity in pancreatic organoids. (A) Representative images of the redox ratio, NAD(P)H τm, and FAD τm, in

organoids generated from Patient PC13 (anaplastic carcinoma of the pancreas), treated with standard chemotherapies and experimental targeted therapies for 72 h.

Scale bar is 50µm. (B,C) Heatmap representation of the OMI index treatment effect size (Glass’s 1) for all patients at 72 h in organoids (B) and fibroblasts cultured

with organoids. (C) “∧” indicates the patient lesion was diagnosed as PanIN. “∼” indicates the patient lesion was diagnosed as ampullary cancer. *Glass’s 1 ≥ 0.75.

(D) Normalized density distributions of the OMI index of individual cells contain subpopulations with G+P treatment, but not ABT-263 + T treatment after 72 h in PC13

organoids. Bracketed number indicates number of subpopulations. (E) High-depth targeted cancer gene sequencing of PC13 organoids. Allele frequencies of ∼50%

for KRAS and 100% for TP53 were found (black bars). Alterations with allele frequencies of 10–30% were detected (gray bars), but none of these alterations were

pathogenic. (F) Cleaved caspase-3 staining of PC13 organoids shows differences in apoptosis between treatment conditions after 72 h of treatment. (G) Ki67 staining

of PC13 organoids shows differences in proliferation between treatment conditions after 72 h. Each dot represents one organoid (mean ± SEM), and red indicates

significant response to treatment. *p < 0.05 vs. control.

differing mutation profiles. A subset of organoids was fixed
72 h post-treatment and stained using immunofluorescence
for CC3 and Ki67 to quantify apoptosis and proliferation
rates, respectively (Figures 4F,G, Supplementary Figure S10).
Proliferation rates correlated with the changes in cell metabolism
measured by OMI index (p < 0.001), but apoptosis rates did
not (Supplementary Figure S11A). To determine if in vivo
treatment response correlates with that seen in organoids, a
patient-derived xenograft line was generated and athymic nude
mice were treated with a combination therapy of gemcitabine and
nab-paclitaxel (Supplementary Figure S12). Tumor growth was
tracked by direct caliper measurement and an early reduction
was observed over the first 7 days (p < 0.05); however, the

effect was not sustained. This lack of response in the patient-
derived xenograft is consistent with the heterogeneity in cell-
level response observed with OMI for the same treatment of
gemcitabine and nab-paclitaxel in the patient-derived organoid
(Figure 4D).

Heterogeneity of Drug Response in PC
Organoids Agrees With Later Patient
Recurrence During Adjuvant Therapy
Next, OMI of metabolic heterogeneity was assessed in PC
patient-derived tumor organoids and compared to patient
recurrence during adjuvant therapy. Clinical drug treatment
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efficacy was tracked and compared to the OMI prediction
of drug response at 72 h post-treatment in patient-matched
organoids (Figure 5). Four patients whose organoids exhibited a
homogeneous response to the patient’s prescribed therapy were
classified as “predicted responders” (Figures 5A–L). Glass’s 1

was calculated for each treatment’s OMI index value in addition
to statistical significance, and was found to be consistently>0.75.
Cellular population density modeling of organoids from Patients
PC1, PC2, PC6, and PC14 did not reveal distinct metabolic
subpopulations of response (Figures 5I–L). In each case, only
a single homogeneous population was observed. Fibroblasts
co-cultured with organoids from Patients PC2 and PC14 also
showed homogeneous response to the patient’s prescribed
therapy (Supplementary Figure S13).

Three patients (PC3, PC8, and PC18) whose organoids
exhibited treatment response heterogeneity were classified as
“predicted non-responders” (Figures 5M–U). On average, cells
from Patient PC3 and PC8 organoids did not respond to the
patient’s prescribed treatment (p < 0.05 increase in OMI index
and no significant change, respectively, Figures 5P,Q). Unlike
PC3 and PC8, the OMI index of Patient PC18’s organoid cells
significantly decreased with treatment (p < 0.0001, Figure 5R);
however, the response was heterogeneous (Figure 5U) which
also predicts a poor outcome for the patient. The treatment
effect size was small (Glass’s 1 < 0.3) in organoids for all three
patients, and all exhibited multiple subpopulations of tumor
cells post-treatment, some of which overlapped completely with
control distributions or contained OMI index values above
control (Figures 5S–U). Fibroblasts co-cultured with organoids
from Patient PC3 also showed a lack of response to gemcitabine
and 5-FU, along with treatment-induced metabolic heterogeneity
(Supplementary Figure S13).

The time between surgical resection and the first evidence
of recurrence, or recurrence-free survival (RFS) time, was
plotted for these seven patients (Figure 6A). Patients PC3, PC8,
and PC18, classified as predicted non-responders, experienced
recurrences within 1 year. Patients PC1, PC2, PC6, and PC14,
classified as predicted responders, each survived at least 1 year
after surgery without recurrence. Patients with a RFS >12
months had a higher OMI index Glass’s 1 in organoids at
72 h post-treatment than patients with a RFS <12 months
(Figure 6B). The degree of heterogeneity, quantified by the wH-
index, decreased in treated vs. control organoids in patients with
a RFS>12months, and increased in treated vs. control organoids
in patients with a RFS <12 months (Figure 6C).

OMI of BC Organoids Resolves Differential
Sensitivities to Relevant Drug Treatments
Next, treatment response in BC patient-derived organoids was
assessed with OMI. A subset of 11 viable patient-derived BC
organoid lines were treated with either the patient’s prescribed
neoadjuvant treatment, or a selection of standard chemotherapy
drugs and imaged with OMI. For example, organoids derived
from Patient BC8 were treated prior to OMI with the standard
combination of paclitaxel, 4-OOH cyclophosphamide (the key
active metabolite of cyclophosphamide) (51), and doxorubicin

(A+C+T) tomimic the patient’s prescribed neoadjuvant regimen
(Figure 7A). As in pancreas organoids, treatment effect sizes
were calculated using Glass’s 1 on all OMI measurements
in order to determine their magnitude (Figure 7B; additional
variables and time points in Supplementary Figure S14). As
in PC, OMI can also track single-cell drug response over
time (Supplementary Figure S15). For example, Patient BC8
organoids exhibit an initial significant response to paclitaxel on
days 1 and 2 (p < 0.05 vs. control), but the response is no longer
present by day 3 (Supplementary Figure S15A). These organoids
were also evaluated with traditional immunofluorescence cell
markers (Figures 7C–F, Supplementary Figure S16). All three
treatments caused both a significant increase in apoptosis
(p < 0.05 vs. control, Figure 7E) and a significant decrease
in proliferation (p < 0.05 vs. control, Figure 7F). Apoptosis
correlated with changes in cellular metabolism measured by
the OMI index (p < 0.05), but proliferation rates did not
(Supplementary Figure S11B).

For three BC patients (BC8, BC17, BC20), viable organoids
were grown and treated with A+C+T for 72 h to mirror the
patient’s neoadjuvant treatment regimen. The change in the
degree of heterogeneity in the patient organoids after 72 h of
A+C+T was quantified using the wH-index (Figure 7G). A
breast pathologist (SMM) assigned Patient BC8 into residual
cancer burden category I (RCB-I) following neoadjuvant
treatment with A+C+T, indicating minimal residual disease
(68). Patient BC17 was assigned to RCB-II, indicating moderate
residual disease, while Patient BC20 was assigned to RCB-III,
indicating extensive residual disease (68). On average, the OMI
index of cells from all three patients decreased with A+C+T
treatment with large effect sizes (p < 0.0001, Glass’s 1 > 1.9,
Figures 7H–J), but OMI index heterogeneity was altered to
varying degrees (Figures 7K–M).

Treatment Response Heterogeneity
Complements Glass’s 1

Finally, changes in heterogeneity measurements and mean FLIM
measurements with treatment in both cancer types were analyzed
to determine the relationship between these variables and a given
treatment’s Glass’s 1. A map of bivariate correlations indicates
that a vast majority of treatment-response measurements
correlate (R2 > 0.5) with, at most, one other measurement
(Supplementary Figure S17). This suggests that the
measurements in this set could each capture unique information
about the effect of a particular drug treatment. Multivariate
regression was performed with OMI index Glass’s 1 or change
in wH-index as the dependent variable, and heterogeneity
variables or mean FLIM variables as the set of independent
variables (Supplementary Table S3, heterogeneity and mean
FLIM variables defined in Supplementary Figure S17). OMI
index Glass’s 1 is better captured by the mean FLIM treatment
response variables, while the change in wH-index with treatment
better captured the heterogeneity treatment response variables.
Of note, the mean FLIM variables alone only explain 4% of the
variance in the change in wH-index across all treatments and
both cancer types (adjusted R2 = 0.04). Additionally, changes
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FIGURE 5 | Organoid-based predictions of pancreatic cancer patient response to therapy. (A–D) Representative redox ratio, NAD(P)H τm, and FAD τm images of

pancreatic organoids from Patients PC1 (A), PC2 (B), PC6 (C), and PC14 (D), who are classified as predicted responders. Left columns indicate control organoids,

and right columns indicate organoids treated with the same drugs as the patient adjuvant treatment. Scale bar is 50µm. (E–H) The effect of the same drugs on the

OMI index averaged across all cells in organoids derived from Patient PC1 (E), PC2 (F), PC6 (G), and PC14 (H). Error bars indicate mean ± SEM. *p < 0.0001. (I–L)

Single-cell OMI index subpopulation analysis of treatment response in organoids from Patient PCI (I), PC2 (J), PC6 (K), and PC14 (L). (M–O) Representative redox

ratio, NAD(P)H τm, and FAD τm images of pancreatic organoids from Patients PC3 (M), PC8 (N), and PC18 (O), who are classified as predicted non-responders. Left

columns indicate control organoids, and right columns indicate organoids treated with the same drugs as the patient adjuvant treatment. (P–R) The effect of the same

drugs on the OMI index averaged across all cells in organoids derived from Patient PC3 (P), PC8 (Q), and PC18 (R). (S–U) Single-cell OMI index subpopulation

analysis of treatment response in organoids from Patient PC3 (S), PC8 (T), and PC18 (U).
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FIGURE 6 | Pancreatic cancer patient clinical outcomes while on adjuvant therapy. (A) Swimmer plot indicating the number of months without recurrence following

surgical resection of the tumor and adjuvant treatment. Patients are classified as predicted responders and non-responders based on organoid response profiles.

Arrows indicate that the patient continues to survive without recurrence at the time of publication. “∼” Indicates the patient’s lesion was diagnosed as ampullary

cancer. (B) Patients with RFS > 12 months had higher OMI index effect sizes at 72 h (Glass’s 1) than patients with RFS <12 months (mean± SEM). Dotted line

represents proposed cutoff of 1 = 0.75. (C) Patients with RFS > 12 months show a decrease in wH-index with treatment compared to control organoids. Patients

with RFS < 12 months show an increase in wH-index with treatment compared here to control organoids. Error bars not visible. N = 1,000 fits/group.

in heterogeneity variables with treatment explain more variance
in OMI index Glass’s 1 in BC (adjusted R2 = 0.76) than in PC
(adjusted R2 = 0.34).

DISCUSSION

Organoids can be used for drug screens directly on patient cells,
which could enable rational treatment planning for individual
patients (1–3). Organoids also provide a platform to discover
new drugs and drug combinations to treat PC patients, who
currently suffer from a severe lack of effective treatment options.
Existing methods to evaluate drug response in organoids ignore
cellular heterogeneity, which can lead to patient relapse. Thus,
our group developed OMI as a single-cell analysis tool to detect
minority subpopulations of drug-resistant cells existing within
living organoids that would otherwise appear responsive. We
have previously shown that OMI detects subpopulations of drug
response in murine PC organoids, patient-derived colorectal
cancer organoids, and patient-derived BC organoids (1, 35, 38).
Here, we analyze and characterize baseline heterogeneity in
organoids derived from individual PC and BC patients, and
investigate for the first time whether OMI measurements of
early drug response heterogeneity in organoids can capture
meaningful treatment responses.

Three independent OMI endpoints [redox ratio, NAD(P)H
τm, and FAD τm] were quantified at the single-cell level to

assess the metabolic heterogeneity present in each patient’s
organoids at baseline. Each OMI endpoint captures unique
metabolic information (23), and quantitatively combining these
independent measurements into one OMI index provides a
technique to evaluate the overall metabolic state of each cell. We
first analyzed the sources of cellular metabolic variability across
all samples to determine whether single-cell approaches that look
within organoids are necessary to capture intra-tumor metabolic
heterogeneity. It was first determined using linear regression that
only a fraction of cellular heterogeneity could be explained by
differences between organoids within a patient-derived line (16–
36%, Figure 2). This suggests that techniques measuring intra-
patient heterogeneity at the organoid level fail to capture the full
extent of heterogeneity present in a sample, and that single-cell
techniques such as OMI are required. Our results also indicate
that single-cell techniques may be especially important in BC.
A large portion of the overall cellular variation between all cells
was explained by variation between patients (39–78%, Figure 2),
highlighting the need for personalized medicine tools such as
OMI that account for the unique metabolic profiles of individual
patients. Finally, comparison with cytologic variability in BC
tissue sample histology provided evidence that OMI of patient-
derived organoids can accurately capture the heterogeneity
present in the original tumor in vivo (Supplementary Figure S2).

The relationship between baseline intra-organoid
heterogeneity, metabolism, and organoid morphology was
also investigated (Figure 3). Organoids from murine PC models
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FIGURE 7 | OMI of single-cell treatment response in patient-derived breast tumor organoids. (A) Representative images of the optical redox ratio, NAD(P)H τm, and

FAD τm organoids generated from Patient BC8 after 72 h of treatment. Scale bar = 100µm. (B) Heatmap representation of the OMI index treatment effect size

(Glass’s 1) at 72 h in organoids from each breast cancer patient. *Glass’s 1 ≥ 0.75. 4-OOH cyclophosphamide (active metabolite) was used in place of

cyclophosphamide. (C,D) Representative images of control (C) and A+C+T treated (D) BC8 organoids stained for Ki67 (green, proliferation), cleaved caspase-3 (red,

apoptosis), and DAPI (blue, nuclei) after 72 h of treatment. Scale bar 100µm. (E) Cleaved caspase-3 staining of organoids shows differences in apoptosis between

treatment conditions after 72 h of treatment in BC8. (F) Ki67 staining of organoids shows differences in proliferation between treatment conditions after 72 h in BC8.

Each dot represents one organoid (mean ± SEM). *p < 0.05 vs. control. (G) The effect of A+C+T treatment at 72 h on OMI index heterogeneity quantified by the

wH-index in Patient BC8, BC17, and BC20 organoids. (H–J) The effect of 72 h A+C+T treatment on the OMI index averaged across all cells in organoids derived

from Patient BC8 (H), BC17 (I), and BC20 (J). Error bars indicate mean ± SEM. *p < 0.0001. Single cell OMI index subpopulation analysis of 72 h of A+C+T

treatment response in organoids from Patient BC8 (K), BC17 (L), and BC20 (M).

have been shown to deviate into two morphological types with
unique metabolic characteristics measured by OMI (1), but this
has not been studied in patient-derived organoids or in terms
of intra-organoid heterogeneity measurements. In this study,
patient-derived organoids were observed to either form a thin

spherical layer of cells surrounding a hollow lumen, or remain
in a solid morphology of cells throughout and no lumen. The
former was expected, as epithelial structures such as mammary
glands and pancreatic ducts are made up of monolayers of
cells enclosing a central lumen (69). Differences in metabolism

Frontiers in Oncology | www.frontiersin.org 13 May 2020 | Volume 10 | Article 553

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Sharick et al. Imaging Metabolic Heterogeneity in Organoids

and heterogeneity between hollow and solid organoids were
also expected, as heterogeneity-driving gradients of oxygen
and nutrients are known to form within solid tumor spheroids
(70). While solid PC organoids were more heterogeneous
than hollow PC organoids in terms of OMI index standard
deviation and redox ratio CV, other variables did not show
this trend, suggesting that factors beyond diffusion gradients
may influence intra-organoid heterogeneity. PC organoids
also formed hollow lumens more often than BC organoids.
Relationships between organoid morphology and metabolism
may be specific to the microenvironment, 3D architecture, and
signaling properties of the epithelial organ of origin. Future
studies to track the development of both heterogeneity and
morphology within individual organoids could further elucidate
these relationships. Resistance to apoptotic drugs correlates with
3D tissue organization and lumen formation (71), suggesting
that a greater understanding of the structural forces influencing
tumor heterogeneity could lead to improved treatment planning
and new treatment strategies.

Early metabolic changes were quantified in response to
panels of standard drugs and experimental targeted therapies
in PC organoids (Figure 4). There is an unmet need for this
technology, which would allow oncologists to quickly determine
if a patient would benefit from experimental targeted therapies
over standard chemotherapies, rather than waiting for standard
chemotherapy to fail while exposing the patient to unnecessary
toxicities. Drug response was also evaluated using OMI in
patient-derived fibroblasts, which grew along with organoids
for most PC patients. The dense fibrotic extracellular matrix
surrounding pancreatic tumors can hinder drug delivery by
reducing blood flow and raising interstitial fluid pressure (72, 73).
Thus, it may be vital to evaluate whether drugs can target both
the tumor and its stromal microenvironment to enhance delivery
(11, 12). For example, Patient PC18’s organoids showed response
to the combination of TAK-228 and ABT-263 (Glass’s 1 ≥ 0.75)
at 72 h while co-cultured Patient 18 fibroblasts did not, suggesting
that this drug regimen could successfully kill tumor cells but
the drugs may not be able to penetrate the fibroblast-rich tumor
microenvironment. This highlights a need for technologies such
as OMI that can assess multiple cell types in 3D organoids to
discover new treatment strategies that target both a tumor and
its stroma.

Our group has shown that OMI non-invasively distinguishes
unique groups of cells by their metabolic properties in human
BC (35, 37), human head and neck cancer (36), human colorectal
cancer (38), and murine PC (1). Here, we examined Patient
PC13 organoid cells using OMI to evaluate whether OMI could
distinguish cells with distinct drug responses in human PC
(Figure 4, Supplementary Figure S9). Our results suggest that a
drug-resistant cell subpopulation that persisted throughout the
patient’s neoadjuvant treatment was captured in the organoids.
Accordingly, pathology of the patient’s resected tumor indicated
a poor response to gemcitabine with nab-paclitaxel. Conversely,
the experimental combination of TAK-228 and ABT-263 induced
a homogenous response in Patient PC13 organoids. This suggests
that this therapymay have been a beneficial alternative for Patient
PC13. One month after surgery, metastasis in the liver was
detected by ultrasound, and the patient died <2 weeks later,

emphasizing the need for technology that can rapidly evaluate
drug sensitivity in patient cells.

The combination of gemcitabine and nab-paclitaxel was
evaluated in vivo in a PDX line established from Patient PC13
organoids. A small but transient response in average tumor
growth was detected (Supplementary Figure S12). This poor
response is in agreement with the heterogeneous effect found in
organoids using OMI. While the PDX model accurately captured
the presence of drug resistance in Patient PC13’s cells, it required
months to first establish the PDX line, expand it, and then
assess a time course of treatment. While PDX models are an
important tool, our studies show that drug screens on organoids
can provide more detailed response information with increased
cost effectiveness in a clinically meaningful time frame.

OMI of organoids generated from tissues collected at surgery
agreed with treatment outcomes for PC patients on adjuvant
therapy (Figures 5, 6). Treatment response in organoids was
evaluated with metabolic heterogeneity and the Glass’s 1 of
the OMI index. For Patients PC1, PC2, PC3, PC6, PC8, PC14,
and PC18, OMI of organoid heterogeneity predicted whether
the patient survived 1 year post-surgery without recurrence.
Based on data from this initial patient cohort, a proposed
decrease in OMI index (effect size cutoff of 0.75) along with a
treatment-induced decrease in wH-index could classify patients
as predicted responders vs. non-responders. Overall, our results
suggest that early metabolic responses in pancreatic organoids
can successfully capture the response of tumor cells in vivo
that are not removed during surgery. In all cases, sufficient
organoids were generated to assess the patient’s prescribed drug
treatment in addition to multiple alternative drug options. This
indicates that OMI of organoids could support drug discovery
and development within diverse patient populations. While
many other factors beyond tumor cell treatment response affect
PC survival in the adjuvant setting (i.e., surgical margins, stage,
grade, etc.), OMI of organoids could identify drug resistance and
eliminate objectively poor drug options.

OMI successfully tracked single-cell drug response in a
subset of 11 BC patient-derived organoids (Figure 7). A+C+T
treatment resulted in a large Glass’s 1 on the average OMI
index across organoid cells in all patients tested, supporting
the presently widespread use of this treatment in BC patients.
For a subset of three patients that were given neoadjuvant
treatment (BC8, BC17, BC20), we evaluated the potential of
OMI to measure cellular heterogeneity in organoids derived
from diagnostic core needle biopsies in response to the patient’s
prescribed treatment. BC20 had the smallest OMI index effect
size and greatest heterogeneity pre-treatment, resulting in the
worst response to neoadjuvant treatment (RBC-III). Although
the sample size for these BC response studies is small, this
indicates BC patient response to neoadjuvant treatment is related
to both treatment effect and heterogeneity in organoids.

We next used our data set of organoid treatment groups
from all patients and time points to determine whether
treatment-induced metabolic heterogeneity adds complimentary
information to the average metabolic change with treatment (N
= 401, Supplementary Table S3, Supplementary Figure S17). A
variety of methods for quantifying cellular heterogeneity were
incorporated in this analysis, including the effects of treatment on
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wH-index, QE, KS, OL, and the percentage of cellular variation
explained by organoid variation. Results indicate that OMI index
Glass’s 1 and the wH-index capture independent dynamics of
response and provide complementary information. Therefore,
single-cell drug response measurement techniques such as OMI
could improve cancer treatment planning and drug development
compared to drug response averaged across all cells.

Organoids offer a compelling platform for the interrogation
of a variety of drugs ex vivo. OMI has many benefits over existing
methods to assess drug response in organoids because it is non-
destructive, label-free, and it measures unique features of cell
metabolism. NAD(P)H and FAD are involved in hundreds of
metabolic reactions, so OMI provides a holistic picture of cell
metabolism by quantifying the redox state and enzyme binding
activity of these ubiquitous co-enzymes. Currentmethods require
exogenous labels, involve fixation of cells, and/or require sample
dissociation. Additionally, OMI can measure response on the
single-cell level to assess heterogeneity as quickly as 24 h post-
treatment and can track dynamic responses over time. Existing
methods for screening drugs and measuring their efficacy in
organoids generally report the amalgamated effects of individual
cells, ignoring heterogeneity. This can lead to the inadvisable
selection of drugs for which a subpopulation of resistant cells
may continue to thrive in the tumor. In this study, we used
these optical imaging tools to show that organoid drug screens
can assess heterogeneous drug responses in multiple cancer types
and subtypes within a clinically meaningful time frame. Taken
together, OMI of organoids is a sensitive, high-throughput tool
to assess single-cell metabolic response, which could improve
patient outcomes and enable new drug discovery.
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