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Epithelial to mesenchymal transition (EMT) is the process whereby a polarized epithelial

cell ceases to maintain cell-cell contacts, loses expression of characteristic epithelial

cell markers, and acquires mesenchymal cell markers and properties such as motility,

contractile ability, and invasiveness. A complex process that occurs during development

and many disease states, EMT involves a plethora of transcription factors (TFs) and

signaling pathways. Whilst great advances have been made in both our understanding of

the progressive cell-fate changes during EMT and the gene regulatory networks that drive

this process, there are still gaps in our knowledge. Epigenetic modifications are dynamic,

chromatin modifying enzymes are vast and varied, transcription factors are pleiotropic,

and signaling pathways are multifaceted and rarely act alone. Therefore, it is of great

importance that we decipher and understand each intricate step of the process and

how these players at different levels crosstalk with each other to successfully orchestrate

EMT. A delicate balance and fine-tuned cooperation of gene regulatory mechanisms is

required for EMT to occur successfully, and until we resolve the unknowns in this network,

we cannot hope to develop effective therapies against diseases that involve aberrant EMT

such as cancer. In this review, we focus on data that challenge these unknown entities

underlying EMT, starting with EMT stimuli followed by intracellular signaling through to

epigenetic mechanisms and chromatin remodeling.
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INTRODUCTION

Epithelial to mesenchymal transition (EMT) is a dynamic reversible process and a fundamental
mechanism occurring during embryogenesis and organ development, wound healing and fibrosis,
and cancer (1–3). The reverse process (MET; mesenchymal-epithelial transition) is vital for
secondary tumor formation and also occurs during embryogenesis with multiple rounds of EMT
andMET required for correct formation of complex organs and specialized cellular structures (4, 5).
Therefore, understanding EMT is not only beneficial in terms of developing novel cancer therapies,
but enables us to fully elucidate the mechanisms behind wound healing and organ fibrosis—
processes implicated in diabetic complications (6, 7), heart disease (8), and immunocompromised
conditions like cystic fibrosis (9).

Gene regulation controls whether a gene is expressed or silenced, and encompasses transcription
factors, epigenetic modifications, chromatin remodeling, higher order chromatin structures
(such as looping), and non-coding RNAs e.g. microRNAs (miRNAs) and long non-coding
RNAs (lncRNAs). In EMT, transcription factors such as Snail, Zeb1/Zeb2, and Twist, bind to
specific promoter and enhancer DNA sequences and work in unison with epigenetic regulators
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(such as G9a and LSD1) and chromatin remodeling machinery
to drive transcription of pro-mesenchymal genes and prevent
epithelial gene transcription (3, 10). The chromatin remodelers
determine how accessible these DNA sequences are (11);
therefore, they determine gene expression during both
developmental and disease-related EMT. Like EMT, epigenetic
modifications—such as DNA or histone methylation, and
histone acetylation—are also reversible, and have been shown
to play a pivotal role in EMT regulation, which makes them
attractive targets for novel chemotherapeutics (12). Interactions
between key EMT transcription factors and enzymes that modify
DNA/histones have been reviewed in detail (3, 10, 13, 14).

Nucleosomes (histone octamers) are the basic packaging
unit of DNA—the “beads on a string”—which confer 5- to
10-fold compaction of the genome and form arrays that fold
hierarchically into higher-order (50-fold and higher) chromatin
structures (15). These structures, which include multiple
chromatin loops, can repress gene transcription in both stem
cells and adult cancer cells, for example the TF GATA4 (16).
In addition, PcG proteins and repressive chromatin methylation
marks work together to preserve these loops (16). The role of
chromatin looping in EMT however is unknown.

Abbreviations: AKT, Protein kinase B; ARID1, AT-rich interaction domain 1;
BMP, bone morphogenetic protein; BPTF, bromodomain PHD finger TF; BRD4,
bromodomain containing 4; BRG1, Brahma-related gene 1, a.k.a. SMARCA4,
SWI/SNF related, matrix associated, actin dependent regulator of chromatin,
subfamily a, member; BTG3, BTG anti-proliferation factor 3; CAF1, chromatin
assembly factor 1; CHD(1), chromodomain helicase DNA-binding (protein 1);
CRT, calreticulin; DCC, deleted in colorectal cancer; a netrin receptor; DEPTOR,
DEP domain containing mTOR interacting protein; DNA, deoxyribonucleic
acid; DNMT, DNA methyltransferase; ECM, extracellular matrix; EGF, epidermal
growth factor; EMT, epithelial to mesenchymal transition; EGFR, epidermal
growth factor receptor; EIF4E, eukaryotic initiation factor 4E; ER, endoplasmic
reticulum; ERK, extracellular signal-regulated kinase; ESR1, estrogen receptor
alpha; EZH2, enhancer of zeste 2, PRC2 subunit; FACT, facilitates chromatin
transcriptionFAK, focal adhesion kinase; FBXL5, F-box and leucine rich repeat
protein 5; FGF, fibroblast growth factor; FLNB, filamin B; FOX, Forkhead
box (A1, C1, D3, M1 denote individual proteins); GATA3/4, GATA binding
protein (3, 4 denote different proteins); GLI, glioma-associated oncogene; HAT(s),
histone acetyltransferase(s); hBRM, human paralog of Drosophila Brahma, a.k.a.
SMARCA2 SWI/SNF related, matrix associated, actin dependent regulator of
chromatin, subfamily a, member 2; HCC, hepatocellular carcinoma; HDAC(s),
histone deacetylase(s); HDGF, hepatoma-derived growth factor; HDM(s), histone
demethylase(s); HGF, hepatocyte growth factor; HH, hedgehog; HIF-1α, hypoxia
inducible factor 1α; HIF-2α, hypoxia inducible factor 2α; HOX, homeobox;
HMGA1, High Mobility Group AT-Hook 1; HMGB-1, high mobility group box
1; HMT(s), histone methyltransferase(s); HNF4α, hepatocyte nuclear factor 4α;
HSF1, heat shock factor 1; HSP5A, heat shock protein 5A; IGF, insulin-like
growth factor; IRE1, Inositol-requiring enzyme 1; INO80, INO80 complex ATPase
subunit; ISWI, Imitation SWItch; JAK, Janus kinase; JMJD2A, Jumonji-C (JmjC)
domain-containing protein 2A, a.k.a. KMD4A; JMJD5, Jumonji-C (JmjC) domain-
containing protein 5, a.k.a. KDM8; JNK, c-Jun N-terminal kinase; KDM4A,
lysine demethylase 4Aα; KDM6A, lysine demethylase 6A, a.k.a. UTX histone
demethylase; KDM8, lysine demethylase 8; KLF6, Krueppel-like factor 6; lncRNA,
long non-coding RNA; LOXL2, lysyl oxidase-like 2; MET, mesenchymal-epithelial
transition; miRNA(s), micro RNA(s); MNK1/2, mitogen-activated protein kinase-
interacting kinases 1 and 2; MTOR, mechanistic/mammalian target of rapamycin;
NC, neural crest; NEUROD1, neuronal differentiation 1; NEUROG1, neurogenin
1; NEUROG 2, neurogenin 2; NFκB, nuclear factor kappa-light-chain-enhancer
of activated B cells; NPM1, nucleophosmin 1; NRF2, nuclear factor erythroid-
derived 2-related factor 2; NuRD, nucleosome remodeling and deacetylase; NURF,
nucleosome remodeling factor; MYOSLID, myocardin-induced smooth muscle
lncRNA, inducer of differentiation; MAPK, mitogen activated protein kinase;

Non-coding RNAs represent another layer of epigenetic
regulation owing to the susceptibility of their promoters to
epigenetic modifications (10, 17). Much is known about the
role of non-coding RNAs, such as the miRNA-200s family
of microRNAs, in EMT (10, 18–20), with recently published
data also showing the involvement of microRNAs [miRNA-
151a (21)] and long non-coding RNAs [MYOSLID (22)] in
partial EMT. Conversely, the long non-coding RNA NKILA
which is upregulated by TGFβ, suppressed TGFβ-induced EMT
and tumor metastasis in vivo through negative regulation of
downstream TGFβ signaling (23). All of these elements add
another layer of complexity and culminate in highly intricate
gene regulation.

Unknowns in each area of gene regulation in EMT
compromise not only our fundamental understanding of
these mechanisms but interfere with our knowledge of EMT
pathogenesis. Without this information, we cannot develop
critically needed cancer therapeutics targeting EMT, as in
addition to driving tumorigenesis and metastasis, EMT confers
chemoresistance and helps tumor cells evade destruction
by the immune system (24). Advances in the field of
regenerative medicine (i.e., cellular reprogramming to restore
organ functionality) also rely on deciphering these unknowns.
Chemotherapeutics that inhibit DNA methylation (e.g., 5–aza-
2
′

-deoxycytidine, Guadeticabine), histone deacetylation (e.g.,
Vorinostat, Mocetinostat), and interfere with recognition of
acetylated lysine residues (e.g., BRD4 inhibitors such as
JQ1, MS417), are promising as they, respectively, restore
epithelial phenotypes/reactivate tumor suppressor proteins (10,
13, 25), reduce growth/antagonize Zeb1-mediated miRNA-203
repression (10, 26), and suppress the MYC TF, invasion, and
tumorigenicity (10, 25). While these targeted therapies may have
a synergistic effect with platinum-based chemotherapies and
may sensitize cancer cells to therapies that induce DNA damage
(26), these inhibitors are not perfect due to potentially adverse
activation of otherwise latent genes, and their somewhat limited
effect on solid tumors (10). Here, we discuss unknown epigenetic
entities in the gene regulatory network underlying EMT.

MMP, matrix metalloproteinase; MRNA, messenger ribonucleic acid; MTA1,
metastasis-associated antigen 1; MTA3, metastasis-associated antigen 3; PAF,
PCNA clamp associated factor; PCG, Polycomb group; PH, pleckstrin homology;
PI3K, phosphoinositide 3-kinase; PIK3CA, phosphatidylinositol-4,5-bisphosphate
3-kinase catalytic subunit alpha; PTEN, phosphatase and tensin homolog; PRC2,
polycomb repressive complex 2; RAGE, a.k.a. AGER, advanced glycosylation end-
product specific receptor; RNA, ribonucleic acid; SHH, sonic hedgehog; SIRT-
1, Sirtuin 1; SOX4, SRY-box transcription factor 4; SSRP1, structure specific
recognition protein 1; STAT3, signal transducer and activator of transcription 3;
SUPT6H, SPT6 homolog, histone chaperone and transcription elongation factor;
SUPT16H, SPT16 homolog, facilitates chromatin remodeling subunit; SWI/SNF,
SWItch/Sucrose Non-Fermentable; TAZ, transcriptional coactivator with PDZ
binding motif; TF(S), transcription factor(s); TGFβ, transforming growth factor
beta; TLR4, Toll-like receptor 4; TRIO, Rho guanine nucleotide exchange factor;
TRPV4, transient receptor potential vanilloid 4; UNC-40, un-coordinated 40, a
netrin receptor. C. elegans homolog of DCC; UPA, urokinase-type plasminogen
activator; UTRs, untranslated regions; VEGF(A), vascular endothelial growth
factor (A); WNT, fusion of the name of the Drosophila segment polarity gene
wingless and the name of the vertebrate homolog, integrated or int-1; XBP1, x-box–
binding protein 1; YAP, yes-associated protein; ZEB1, zinc finger E-box binding
homeobox 1; ZEB2, zinc finger E-box binding homeobox 2.
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FIGURE 1 | Thinking outside the cell in EMT. Established and novel extracellular stimuli bind to their particular receptors to initiate EMT. A generic transmembrane

receptor is shown here for illustrative purposes. Solid and dashed red boxes represent established and novel stimuli, respectively. Question marks represent unknown

stimuli. The yellow arrow indicates that the role of alternative splicing (sky blue spiked shape) remains to be investigated.

THINKING OUTSIDE THE CELL—NOVEL
EMT STIMULI

Extracellular stimuli are the initiating factors that drive signaling
and cellular effects and are often the first point of regulation
in disease; pharmacological antagonism of deleterious stimuli
or their receptors is often the first treatment option or the
only option if the mechanism through which the stimulus
mediates its effects are unknown. For example, administration
of anti-VEGF is routinely performed in diabetic retinopathy
and certain cancers including breast, colorectal, and cervical
(27–29). The role of TGFβ in EMT was first shown 25
years ago (30) and is still widely reported; a keyword search
for “TGFβ EMT” returns 19,585 results in PMC (27th Sept
2019). Other stimuli known to induce EMT (Figure 1) include
epidermal growth factor (EGF) (31, 32), fibroblast growth factor
(FGF) (33), hepatocyte growth factor (HGF) (34, 35), vascular
endothelial growth factor (VEGF) (36–38), insulin-like growth
factor (IGF) (39, 40), WNT (41), Sonic Hedgehog (SHH) (42,
43), BMPs [BMP-2 (44, 45); BMP-4 (46, 47)], TNF-α (48, 49),
and hypoxia (32) with the latter thought to promote EMT via
epigenetic regulation of DICER; the enzyme involved in miRNA
processing (50).

In recent years, researchers have begun to move away from
the idea that only growth factors can stimulate EMT. Novel
non-growth factor stimuli, which have been implicated in
EMT stimulation, include oxalate and Galectin-8. Oxalate—
a routine metabolic by-product—and calcium oxalate—whose
deposition (Microcalcification type I) is often seen in benign
non-malignant breast tissue (51, 52)—induced EMT both in
cultured renal cells and in vivo (53, 54). Similarly, oxalate-
treated mice presented with highly aggressive undifferentiated
mammary tumors and in vitro oxalate induced breast epithelial
cell proliferation and expression of the tumorigenic gene c-
fos (55). Calcium oxalate mediates its effect via activation of
p38/MAPK (56), and oxalate-induced EMT could be prevented
by activation of nuclear factor erythroid-derived 2-related factor
2 (NRF2) signaling (57). Galectin-8—a widely-expressed glycan

binding protein—stimulated partial EMT; tumors arising from
Galectin-8 overexpression bore a mesenchymal phenotype whilst
still expressing E-cadherin and maintaining cell polarity (58).
Mechanistically Galectin-8 activated FAK to transactivate the
EGFR and increased expression of matrix-degrading enzymes
(uPA, MMP-13) (58). Importantly the authors elude to the
potential involvement of other signaling pathways in facilitating
Galectin-8 EMT-inducing effects. It is possible that Galectin-8
may interact with calcium signaling to increase FAK—similar to
novel pro-EMT TRPV4 signaling (59) (discussed further in the
next section)—or it may require vimentin expression in order to
increase uPA (60), or perhaps it relies on integrin αVβ3 signaling
to activate FAK (61). Loss of the receptor Neogenin 1 (a member
of the DCC/Frazzled/UNC-40 family) also induced partial EMT
in intestinal epithelial cells, via PI3K and MAPK signaling, and
extracellular matrix (ECM)-receptor interactions (62).

Despite the novel EMT stimuli above, there are still
unanswered questions. It is possible that there are other
seemingly harmless metabolic by-products and binding proteins
that stimulate EMT. How oxalate promotes pro-cancerous
gene expression, and whether it interacts with HATs or other
histone modifying enzymes remain to be investigated. Knowing
that these stimuli can induce EMT is just the first step in
understanding how non-canonical signals can cause EMT.
In addition, deciphering the cellular markers and epigenetic
signatures associated with partial EMT is crucial. Despite the
similarities in the step wise process (the cadherin switch, for
example) and with the endpoint ultimately unchanged, it is
conceivable that for example, hypoxia-induced EMT may be
different from TGFβ-induced EMT in terms of the underlying
epigenetic signature and responsiveness to treatment; Cursons
et al. showed that where the primary EMT stimulus was
hypoxia, treatment directed cells to acquire a more aggressive
mesenchymal phenotype (32). Thus, if we were to develop
and evaluate therapeutics that selectively target different EMT
stimuli as opposed to common downstream targets, perhaps
this could enable us to minimize pathological conditions and/or
adverse effects which would translate to prognostic differences
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in patients. Having said this, pre-clinical research of EMT-
specific therapeutics is ongoing and yielding promising data.
Regorafenib—amulti-kinase inhibitor pre-approved as a second-
line treatment in metastatic CRC—displayed potent anti-EMT
effects on invasion and metastasis in vitro and in vivo by
inhibiting TGFβ-induced STAT3 phosphorylation (required for
Twist1 and Zeb1 activation) (63).

Antibody-mediated approaches are among the frontrunners
in anti-EMT therapy. For example, an anti-MMP9 antibody—
which targets an enzyme involved in EMT-mediated ECM
remodeling in cancer—increased survival and reducedmetastatic
burden and the EMT marker vimentin in an in vivo model of
pancreatic cancer (64). Similarly, in an in vivo breast cancer
model a monoclonal antibody that blocks active MMP9 inhibited
spontaneous and experimentally induced lung metastases (65).
Clinical trials using an anti-MMP9 antibody (Adecaliximab)
alone or in combination therapies are ongoing. It is hoped that
these agents will perform better than previously tested broad-
spectrum MMP9 inhibitors, which failed in clinical trials due to
dose-limiting side effects (64).

In prostate cancer a monoclonal antibody targeting N-
cadherin reduced invasion, metastasis, and proliferation of
cancer cells as well as Akt activity (66). However, as N-cadherin
is expressed in the heart, peripheral nerves, and liver, adverse
off-target effects are a huge concern (66).

It is assumed that upregulation of E-cadherin would be
beneficial in cancer, given its downregulation in many cancers.
In some instances, this is true; in RCC cell lines small activating
RNA stimulated E-cadherin expression and subsequently
inhibited cell migration and invasion, and downregulated vital
pro-EMT genes such as Zeb1 and vimentin (67). However, E-
cadherin was required for invasive ductal carcinoma cell survival
and metastasis in multiple in vivo models of breast cancer (68),
finally explaining why E-cadherin is often observed in patients
with breast cancer. These data also highlight the potential pitfalls
associated with assumed pro-/anti-EMT markers. In addition,
such therapeutics can be limited by poor tissue penetration and
short biological half-lives (69), and antibody therapeutics are
often very expensive to produce and may not be covered by an
individual’s health insurance.

Despite copious research papers that detail microRNAs that
promote or inhibit cancer development, the translation of these
data to tangible microRNA drugs is lacking. While no Phase 3
trials are ongoing in this area, new candidates (like RGLS5579
for glioblastoma) are entering the early phases of clinical trials
(70), and targeted inhibition of microRNA-155 and microRNA-
21 has successfully resensitized tumors to chemotherapy in lung
and breast cancers, respectively (71, 72).

EMT therapeutics that repurpose existing FDA-approved
drugs is most exciting, as it significantly reduces the translational
time of such therapeutics. A comprehensive bioinformatics
analysis of pre-approved drugs has proposed and validated
various drug combinations, like IKBK and SRC kinase
inhibition together with HDAC inhibition, to hamper
EMT (73). Often, scientists researching novel EMT drug
candidates focus on preventing an epithelial cells transition to

an invasive mesenchymal cell, or inducing MET to revert to
a normal epithelial state. However, MET may in fact enhance
metastatic outgrowth (74, 75). Recently, Ishay-Ronen and
colleagues demonstrated a novel method of preventing cancer
progression that exploits the plasticity of cancer cells (76). By
transdifferentiating post-EMT mesenchymal cancer cells into
functional post-mitotic adipocytes—using a combination of pre-
approved drugs (Rosiglitazone and a MEK inhibitor)—primary
tumor growth and metastasis was repressed (76). Importantly,
epithelial cells were immune to adipocyte transdifferentiation
(76), highlighting the specificity of this targeted therapeutic.
Other novel EMT therapeutics include Antrodia salmonea—a
fungus indigenous to Taiwan and known for its anti-cancer
properties (77). In vitro, Antrodia salmonea significantly
reduced invasion and reversed EMT by modulating NFκB
and WNT/β-catenin signaling, and in vivo treatment with
Antrodia salmonea reduced breast cancer cell-induced lung
metastasis (77).

IN TUNE WITH EMT INTRACELLULAR
SIGNALING

EMT is dependent on the concomitant activity of multiple
signaling pathways (Figure 2), which are constantly firing
and fluctuating, with turnover time for signaling molecules
sometimes infinitesimal [e.g., the half time of HIF-1α clearance
is 3–6min in normoxia (78)]. Positive and negative feedback
loops are also incorporated into intracellular signaling pathways,
which also rarely work independently and often regulate each
other; TGFβ can promote HIF-α expression independent of PI3K
by encouraging HIF-1α/HIF-2α translation (79). Downstream
TGFβ signaling is the predominant intracellular signaling
pathway in EMT. However, as detailed above different stimuli
utilize TGFβ signaling and other pathways such as NFκB,
YAP/TAZ (Hippo pathway), PI3K/Akt, ERK/JNK, Wnt, Notch,
and JAK/STAT3.

While there are copious research papers and reviews
detailing the separate roles of these pathways in EMT [see
(24, 80–85)], a systems biology approach—or simply data-
sharing between groups working on different pathways—
would facilitate further elucidation of the intricate nature
of signaling pathways and their molecules in EMT. For
example, Akt-mediated NFκB activation has been implicated
in EMT (86) and our lab performed comprehensive genome-
wide analysis of the active open—transcription facilitating—
chromatin mark H3K27ac and subsequent gene expression in
mammary epithelial cells undergoing EMT (87). We discovered
that ERK signaling was essential for epigenetic reprogramming
underlying characteristic EMT-related gene expression and
phenotypic changes; ERK inhibition prevented the loss and gain
of H3K27ac at epithelial and mesenchymal genes (i.e., repression
and expression, respectively) (87).

Unraveling inter-pathway regulation in EMT and deciphering
what signaling pathways are required for different stages/steps
of EMT (e.g., initiation, progression, maintenance, the cadherin
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FIGURE 2 | In tune with EMT intracellular signaling. Extracellular stimuli bind to their receptors (shown here as a generic ligand binding a generic transmembrane

receptor) and signal via canonical and non-canonical intracellular signaling pathways. Solid and dashed green ovals represent established and novel signaling

pathways, respectively. Two-headed black arrows indicate inter-pathway interaction and regulation. Question marks represent unknown pathways involved. The

yellow arrow indicates that the role of alternative splicing (sky blue spiked shape) remains to be investigated.

switch, loss of cell polarity and other phenotypic alterations) is
of vital importance. Recently, the DEPTOR (DEP domain
containing mTOR interacting) protein which normally
inhibits mTOR signaling, stimulated partial EMT in HCC
cells by activating TGFβ-Smad3/4-Snail signaling through
mTOR inhibition (88). Similarly, in vitro mimicking of ECM
organization showed that the way the ECM is arranged could
trigger partial or full EMT (89). This process was dependent
on YAP activation and subsequent YAP-mediated feedback;
Wilms Tumor-1-YAP mediated E-cadherin downregulation, and
YAP-TRIO-Merlin-mediated Rho GTPase regulation, which,
respectively, loosened cell-to-cell contacts and increased cell
migration, compromising epithelial sheet integrity, facilitating
EMT, and promoting invasion (89). The location of this
phenomenon, i.e., several cells away from the sheet edge, or at
the sheet edge itself, determined whether EMT was partial or
full, respectively (89). Conversely, single-cell RNA sequencing
of untreated epithelial cells vs. those treated with TGFβ showed
continuous waves of gene regulation in EMT as opposed
to discrete “partial” stages (90). The authors showed that
deleting/interrupting key signaling moieties or events can cause
cells to build-up at regulatory “checkpoints” that mimic “partial”
stages, and enrich a particular pattern of gene expression in
said cells which creates the impression of a stable intermediate
phenotype (90).

It is also essential that the roles of various signaling
pathways—like the aforementioned FAK signaling involved
downstream of Galectin-8 (58)—in mediating global
transcriptional changes through epigenetic regulation, which are
required for EMT, be clarified. That said there are publications
that are beginning to decipher these complex interactions. Of
note, our laboratory was among the first to report TGFβ and
JNK signaling in tandem in EMT; TGFβ signaling via canonical
Smads was required for EMT initiation whereas JNK signaling
was necessary for EMT to progress to fruition (91). Similarly,
an Australian group showed that non-canonical ERK1/2 was

needed for initiation but not progression of TGFβ-induced EMT
in the rodent eye (92).

The importance of calcium signaling in EMT has gained
considerable momentum in recent years, not only because of
the discovery of calcium oxalate as a novel EMT stimuli, but
because the Ca2+-binding protein calreticulin (CRT) was shown
to be increased by—and able to regulate—TGFβ-induced EMT
in vitro (93). Similarly, the TRPV4 ion channel was shown to
mediate calcium-dependent downregulation of E-cadherin in
breast cancer via activation of Akt signaling (59). Given the
fundamental importance of calcium signaling, there are obvious
caveats to widespread calcium chelation/calcium channel
blockade—similar to widespread DNA methyltransferase
(DNMT) inhibition. That said the development of highly specific
calcium chelators has the potential to not only reduce EMT
but to potentially do so with minimal adverse effects on the
patient. The unknown here is whether the beneficial effects on
EMT are (a) due to calcium blockade alone or off-target effects
on other signaling pathways, and (b) enough to outweigh any
pro-EMT effects that may arise from calcium blockade. For
example, in addition to reducing E-cadherin TRPV4 activation
also augmented FAK phosphorylation (similar to Galectin-8,
above), reduced β-catenin and fibronectin-1, and increased
expression of the cytoskeletal protein talin-1 (59), an essential
protein in maintaining the structural integrity of focal adhesions
(94). How TRPV4 induces EMT when it reduces β-catenin and
fibronectin, and the key EMT genes TRPV4 regulates to cause
EMT without β-catenin and fibronectin, are still elusive.

Non-canonical interactions and lesser-known signaling
pathways in EMT are an additional unknown. For example,
interactions between TGFβ and the cytoskeleton are emerging
(95, 96), with the histone demethylase (HDM) JMJD5 required
for cytoskeletal stabilization and inhibition of TGFβ-induced
migration in lung cancer cells (95). In terms of lesser-known
signaling pathways that are functional in EMT, MNK1/2-
eIF4E signaling (97), LOXL2-IRE1/XBP1 signaling (98), and
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miRNA-20a-FBXL5/BTG3 signaling (99) are examples of
seemingly isolated signaling pathways that have recently been
implicated in EMT, yet other remote pathwaysmight be involved.
Inhibition of MNK1/2-eIF4E signaling using a novel retinamide
yielded an impressive trifecta of anti-growth effects, inhibition
of EMT, and androgen receptor signaling (97). Overexpressed
LOXL2 (lysyl oxidase-like 2) accumulates in the endoplasmic
reticulum (ER) where it forces detachment of heat shock
protein 5A (HSP5A) from IRE1/XBP1 to activate the IRE1/XBP1
signaling pathway, which confers expression of notable EMT-TFs
such as Snail, Zeb2, and Slug in an XBP1-dependent manner
(98). However, given the fact that IRE1 inhibition can block
XBP1-mediated TF expression (98), more research is needed to
decipher this mechanism. FBXL5/BTG3 are direct miRNA-20a
targets that are silenced to enable miRNA-20a-mediated EMT
and invasion (99), however the precise role of FBXL5 signaling in
EMT requires further research; FBXL5 overexpression reduced
Snail protein levels (100), but also supported tumorigenesis
by negatively regulated PTEN while promoting PI3K/Akt and
mTOR phosphorylation and expression (101). The above data
on FBXL5 agrees with previous research in our lab, where we
discovered that FBXO32—another F-box protein—was pivotal
in upstream EMT regulation not only in tumor metastasis, but in
neuronal development also (102). FBXO32 directly ubiquitinated
CtBP1 causing its stabilization and nuclear retention, which
created a suitable microenvironment for EMT progression
by facilitating epigenetic remodeling and transcription of
CtBP1 target genes (102). In line with these findings, FBXO32
was amplified in metastatic cancers, and its depletion in vivo
inhibited tumor growth and metastasis (102). These data
highlight how important it is for scientists today to challenge
pathways that were believed to be futile in EMT as well as those
that are routine.

FACTORING IN TRANSCRIPTIONAL
REGULATION IN EMT

Transcription factors play important roles in cell-fate decisions,
and a hierarchy of TF signals may influence whether a cell is
epithelial, intermediate, or mesenchymal. Similarly, TFs may
operate in a dose-dependent manner, for example, Twist may
be required in nanomolar concentrations whereas Snail may be
required in micromolar concentrations; indeed, in an EMT time
course Twist was transiently detected whereas neither Snail nor
Slug were significantly detected (103). Similarly, SNAIL proteins
were shown to promote EMT with different potencies in human
mammary epithelial cells (104). This is a novel exciting area of
research; however, it is beyond the scope of this review. As the
intermediaries between cellular signaling and chromatin, these
DNA binding proteins guide the epigenetic machinery to their
target sites which facilitates chromatin landscape changes at
promoter and enhancer elements to drive downstream activation
and repression of mesenchymal and epithelial genes, respectively
(3, 10). Much is known about the core TFs involved in EMT
(Snail, Zeb1/2, and Twist) but a large number of TFs are required
for EMT.

A vast amount of EMT research has focused on TF
involvement in the latter stages of EMT, but until recently,
little was known about the transcriptional networks that trigger
EMT. Newly published data shows that EMT involves a temporal
hierarchy of collaborative transcriptional networks (105). This
predicted network operates between TFs and between TFs and
microRNAs and is composed of 46 (co)transcription factors and
13 miRNAs that were critically required for EMT in NMuMG
cells (105). We are also beginning to decipher the requirement of
different TFs for EMT initiation, maintenance, and progression
(Figure 3). For example, the TF NRF2 delays the transition of
a cell to a full mesenchymal phenotype; it maintains the hybrid
epithelial/mesenchymal (partial/intermediate EMT) state (106).
Similarly, research from our lab has shown that JNK-induced TFs
and subsequent signaling are not required for EMT initiation,
but was essential for progression of phenotypic hallmarks of
EMT (91). Our lab has identified novel JNK-induced TFs that
are required for EMT, are highly expressed in invasive cancer
cells, and induced during neuronal development (91). These data
are pivotal in the fight against EMT because the authors do not
examine these novel TFs individually in EMT; they also define
their role(s) in EMT that occurs in neuronal development.

An unknown in this area, is the existence of TFs that do more
than just control gene expression—perhaps TFs can perform
secondary functions, such as chromatin remodeling (Figure 3),
or mediate epigenetic regulation in EMT. In terms of TFs that
exhibit auxiliary properties, our lab identified NeuroD1 as a
pioneer factor; it recognizes and binds to its target sites and drives
transcription of neuronal/EMT-related genes (such as Hes6 and
Dll3, Snai2 and Twist1, respectively) regardless of the chromatin
state (open or closed) or cell type (e.g., ESCs and differentiated
fibroblasts) (107, 108). NeuroD1 is not alone in its pioneer TF
abilities; FOXA TFs (FOXA1, FOXA2, FOXA3) (109, 110) and
GATA3 (109) are also pioneer factors that determine cell fate.
Heat shock factor 1 (HSF1) which induces HSPs is another
pioneer factor with a secondary function in recruiting DNMT3A
to suppress miRNA-137 and promote carcinogenesis (111), and
perhaps HSF1 is also involved in HSP5A-mediated regulation
of LOXL2-IRE1/XBP1 signaling. Despite these advances, the
specific involvement of pioneer TFs in EMT in cancer remains
to be seen.

TF that mediate epigenetic alterations are coming to the
forefront of the field; Zeb2 employs DNA methylation to
repress RAB25—a small Rab GTPase with a potential role
in epithelial polarity—and E-cadherin, and increased SIRT-1-
mediated H3K9 deacetylation at both promoters to maintain this
suppression (112). FOXD3 both permits and prevents H3K27ac
of regulatory elements and acts as a pioneer factor during
neural crest (NC) development to prime NC factors (e.g., snai1b,
twist1b), acts upstream of pro-EMT factors, and during NC EMT
FOXD3 mediates a cadherin switch (decreased N-cadherin and
increased cadherin 7) to modulate cell adhesion (113, 114). BPTF
(bromodomain PHD finger TF), a TF which is also the largest
subunit of the NURF chromatin remodeling complex [a member
of the ISWI remodeling family (11, 115)], was increased in HCC
where it inferred poor survival and correlated with high vimentin
and low E-cadherin expression (116). These data show us that
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FIGURE 3 | Factoring in transcriptional regulation in EMT. The signal from intracellular signaling pathways is transduced to pioneer transcription factors (TFs) in the

nucleus (represented by the beige circle). We hypothesize that in EMT these pioneer TFs: (A) remodel the chromatin to increase accessibility at EMT initiating genes,

and (B) recruit a set of TFs needed for EMT initiation (TF 1–TF 6, dashed lines indicate potentially unknown TFs), and recruit sets of TFs involved in EMT progression

(TF 7–TF 12) and maintenance (TF 13–TF 18), respectively, to already accessible chromatin. Through subsequent interactions with epigenetic machinery (such as

histone methyltransferases [HMT, e.g., EZH2, enhancer of zeste 2; and enzymes involved in histone acetylation (p300) or deacetylation (histone deacetylase, HDAC)]

these TFs repress or promote epithelial and mesenchymal gene expression, respectively, to determine the cell phenotype. Red and green circles at these genes

denote repressive or active chromatin marks, respectively. Pro- or anti-EMT TFs may inhibit this. Solid and dashed orange boxes represent established and novel TFs,

respectively. Two-headed black arrows indicate inter-pathway interaction and regulation. Yellow arrows and black dashed lines indicate key questions that remain to

be investigated. The roles of alternative splicing (sky blue spiked shape) and post translational modifications (mint green wave-like shape) in EMT TF regulation are also

elusive. Potential TF-non-histone protein complexes are found in the light green dashed circle. lncRNA, long non-coding RNA; miRNA, micro RNA.

TFs are more than a “one trick pony”—they can influence the
epigenetic signature of a cell. It was accepted that all relevant
EMT-TFs had been identified but given the discovery of novel
EMT-TFs in recent years and the fact that we still can’t resolve

EMT, perhaps there are unknown EMT-TFs (capable of altering
a cells epigenetic state) and unknown ENT-TF targets that are yet
to be discovered. Sox4 was known to play a role in EMT (117), but
it was not until the following year that its direct transcriptional
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targets—like EZH2, fibronectin, N-cadherin—and role as a
master regulator of EMT were elucidated (118). EZH2 in turn
suppresses the tumor suppressor hepatocyte nuclear factor 1β
(HNF1B) which normally represses Slug (119). Similarly, Sox8-
mediated chemoresistance and stemness in tongue squamous cell
carcinoma was only recently shown to involve Frizzled-7/Wnt/β-
catenin signaling (120).

Perhaps alternative splice isoforms of existing TFs are yet to
be discovered. For example, splice variant 1 (SV1) is a truncated
isoform of KLF6 that has no zinc finger domains, yet it promotes
tumor migration, and is thought to stimulate EMT in HCC (121).
Hepatocyte nuclear factor 4α (HNF4α) has alternative isoforms
that both stimulate (HNF4α7, 8, 9) and repress (HNF4α1, 2,
3) cancer development (121–123). We also cannot rule out the
possibility of alternative TF splice isoforms in epithelial and
mesenchymal cells. Their existence and how they influence cell
signaling in EMT remain elusive. Indeed, extracellular ligands,
DNA/histone modifying enzymes, and chromatin remodeling
proteins may also be subjected to alternative splicing in EMT.
Non-TF proteins could also be subjected to alternative splicing,
to enable pro-EMT TFs. Recently, exon skipping in FLNB (an
actin-binding protein) was shown to induce EMT by releasing the
pro-EMT TF FOXC1 (124). This alternatively spliced isoform of
FLNB also correlated with EMT gene signatures in basal breast
cancer samples (124).

In addition, there may be TFs that we believe are fully
elucidated, and so are not examined in the context of EMT. For
example, GLI TFs are the primary mediators of developmental
Hedgehog-GLI signaling pathway, which is mostly inactive in
adults (except for in stem cells) (125), but GLI inhibition was
found to block EMT in pancreatic cancer stem cells through
reversion of the typical EMT cadherin switch and blockade
of EMT-TFs (126). Together these data make the HH-GLI
pathway an attractive—previously unthought-of—target in EMT
therapy and add to the rationale for examining TFs in other
developmental pathways, but it has taken over a decade for such
pathways to become a focus of therapeutics—which is perplexing
given that TFs necessary for development are often implicated
in EMT.

We also cannot rule out the possibility of TFs forming fixed
complexes with epigenetic proteins or non-histone proteins in
EMT. For example, the non-histone chromatin protein HMGA1
forms a complex with the TF FOXM1 which stabilizes FOXM1 in
the nucleus and increases expression of shared target genes like
VEGFA to promote angiogenesis, inferring a negative prognosis
(127). This is not the only HMG protein implicated in EMT; the
pro-EMT role of HMBG-1 is discussed below. Perhaps TFs are
epigenetically altered in EMT to silence or amplify their effect.
Take MYC-GATA3/ESR1 TFs for instance; MYC overexpression
increased MYC enrichment and reduced active histone marks
(H3K27ac, H3K4me1/3) at regulatory elements for GATA3 and
ESR1, resulting in cellular dedifferentiation i.e., a stem cell-
like state (128). These data were validated in breast cancer
patients where there was an inverse relationship between MYC
overexpression and GATA3/ESR1 gene levels (128). It is plausible
that there are other TFs that interact like this in EMT.

EPIGENETIC MECHANISMS INVOLVED IN
EMT—ROOM TO EXPLORE

Histones are the primary component of chromatin. Positioning
DNA around histone octamers—nucleosomes—to form
chromatin is essential to maintain the integrity of the genome;
chromatin prevents DNA strand entanglement, but also
dynamically regulates DNA replication and gene expression
(129, 130). Extracellular stimuli, intracellular pathways, and
transcription factors are subject to variation between patients
and between cancers, and chromosomal instability promotes
cancer (131), but the DNA is the same in all cells of the
organism (132) and mechanisms and regulators of chromatin
condensation are well-known (133). This makes chromatin the
ultimate platform for action. Epigenetic—“above genetic”—
modifications alter the genetic read-out of a cell, and include
DNA methylation, histone modifications, and chromatin higher
order structures (such as looping), which in collaboration with
chromatin remodelers determine chromatin accessibility.

Establishing the epigenetic state involves epigenetic readers,
writers, and erasers which recognise, create, or remove epigenetic
modifications respectively (134). A patient’s epigenetic state is
therefore both dynamic and stable, and is involved not only
in disease pathogenesis but in their response to treatment
and their rates of disease-free survival and recurrence (135–
138). Therefore, epigenetic regulators are prime therapeutic
targets, and understanding epigenetic mechanisms of regulation
would pave the way for novel therapeutics and personalized
cancer medicine. We know that EMT-TFs guide the epigenetic
machinery to target promoters/enhancers, but we do not know
the mechanism behind this; i.e., how cells decide which loci are
targeted during EMT initiation, progression, and maintenance.

Single-cell analysis has shown that during development
progenitor cells display epigenetic heterogeneity (139).
Specifically, the pre-EMT and delaminating crest (undergoing
EMT) generate migrating progenitor cells whose heterogeneity
is associated with transcriptional properties of early genes
from competing downstream cell fates, which are activated
when NC cells undergo EMT (139). The authors also note
that mesenchymal potential may be established as early as
delamination; lone overexpression of Twist1 was able to drive
trunk NC toward a mesenchymal fate rather than the traditional
neuronal fate (139). These data provide us with a better
understanding of developmental NC EMT which in turn aids
our understanding of NC-derived cancers such as melanoma
and glioma, and perhaps such heterogeneity is present in other
cancers (139, 140).

Epigenetic regulation of EMT (Figure 4) has mainly
focused on histone methylation/acetylation, with additional
studies detailing the roles of other histone modifications
such as phosphorylation (141–143), ubiquitination (144–146),
citrullination (85, 147–149), SUMOylation (150–152), and
biotinylation (153) in EMT. Histone modifying enzymes
are dynamic and diverse. Established enzymes [reviewed in
(3, 10)] are involved in DNA methylation (DNMTs), histone
(de)methylation (HMTs, HDMs), histone (de)acetylation
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FIGURE 4 | Epigenetic mechanisms involved in EMT. The signal from intracellular signaling pathways is transduced to pioneer transcription factors (TFs) in the nucleus

(represented by the beige circle). These pioneer TFs remodel the chromatin and recruit EMT TFs to accessible chromatin, which subsequently recruit and interact with

epigenetic machinery (solid pink circle), such as DNA methyltransferases (DNMT), histone methyltransferases (HMT, e.g., EZH2, enhancer of zeste 2; ubiquitinating

enzymes, Ub ligase; CtBP, C-terminal binding protein; complex, and enzymes involved in histone acetylation (p300) or deacetylation (histone deacetylase, HDAC) to

target loci. Together, TFs and epigenetic machinery repress or promote epithelial and mesenchymal gene expression, respectively, to determine the cell phenotype.

Red and green circles at these genes denote repressive or active chromatin marks, respectively. Solid and dashed pink circles represent established and novel

epigenetic machinery, respectively. Black dashed lines indicate key questions that remain to be investigated. The roles of alternative splicing (sky blue spiked shape)

and post translational modifications (mint green wave-like shape) in EMT epigenetic machinery are also elusive. FBXO32 is an ubiquitin ligase. Question marks

represent unknown epigenetic machinery. Potential TF-epigenetic machinery complexes are contained within the pink dashed circle.

(HATs, HDACs), and ubiquitination (E3 ubiquitin ligases).
Despite the wealth of knowledge regarding these enzymes,
we have much to learn. For example, class I HDAC enzymes
generally promote tumorigenesis, and class IIA may promote
or impede cancer development; however it was only recently
discovered that HDAC5 induced anti-proliferative or pro-
EMT effects depending on the cell line in which it was
overexpressed (154).

Unsurprisingly a number of these enzymes contain methyl-
lysine binding motifs, which curiously differ between enzymes;
DNMT3A contains a PWWP domain to read H3K36me3 (155),
ankyrin repeats in the histone methyltransferase (HMT) G9a
enable H3K9me1/2 binding (156), and a double Tudor domain
exists in the HDM JMJD2A for H3K4me3 and H4K20me3

binding (157). Even though these binding motifs are crucial for
correct chromatin recognition—needed for enzymatic effects on
chromatin methylation state—the importance of these different
domains in EMT remains unknown; we do not know why there
are three distinct methyl-lysine binding motifs among histone
modifying enzymes, or whether they play a causal role in EMT
development or not.

PWWP domains are distinct from the catalytic domain
in DNMT3A (155). Missense mutations in the PWWP
domain (W330R) abolish H3K36me2/3 binding and cause
DNA hypermethylation at Polycomb-regulated regions in
patients and in vivo (158). This is associated with reduced
H3K27me3 and H3K4me3 bivalent marks, and modified
chromatin accessibility at key developmental regulators (e.g.,
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SOX and HOX family members, FOXA1, NEUROG1/2) (158).
The implications for such mutations in EMT are still unknown.
Perhaps mutations in the PWWP domain of DNMT3A confer
increased methylase activity and allow the mutant to methylate
polycomb regions, thus preventing PRC2 binding and EZH2-
mediated H3K27me3 at epithelial genes as suggested by Heyn
et al. (158). Alternatively, maybe methylase or other DNA
recognition/binding motif activity is decreased upon PWWP
mutation, allowing mesenchymal gene expression. The PWWP
domain might even interact with non-histone proteins in EMT;
however whether this is strengthened or weakened in mutant
DNMT3 remains to be investigated. Whether mutant DNMT3A
has enhanced or diminished recruitment by the aforementioned
pioneer factor HSF1 also remains to be seen. Studies that
examine human cancers for the presence of these and other
PWWP mutations would be worthwhile, as the PWWP binding
motif is highly conserved in human hepatoma-derived growth
factor (HDGF) which is overexpressed in a number of human
cancers and is involved in PI3K signaling (159). We cannot rule
out a causative—or at the very least a contributing—role for
PWWP domain mutations in EMT development in cancer, thus
deciphering the unknowns that still surround the PWWPdomain
is of great importance.

The methyl-lysine binding motif in the HMT G9a contains
ankyrin repeats; the rationale behind ankyrin repeats over
a PWWP domain is unknown. Perhaps each motif bestows
different effects on epigenetic regulation of EMT. In EMT G9a
interacts with Snail which recruits it to the CDH1 promoter
(160). Enhanced in hypoxia, G9a activity is beneficial to cancer
cell survival and G9a can methylate non-histone proteins (161),
like the ATPases Pontin and Reptin (162). The functional
importance of the ankyrin repeats was only recently discovered.
Levels of H3K9 mono/di/tri-methylation were analogous in
ESCs expressing either wild-type G9a, G9a bearing a mutation
in ankyrin repeats, or G9a lacking ankyrin repeats (163).
However, the HMT activity of G9a/GLP is dependent on the
ankyrin repeats (164). These data illustrate that these enzymes
are more than just their catalytic activity. In terms of G9a-
Snail interactions in EMT, the role of the ankyrin repeats in
facilitating non-histone protein (e.g., E-cadherin) methylation
required elucidation. It is plausible that there are G9a variants—
like the variant that skips exon 10 (165)—that are alternatively
spliced in exons pertaining to the ankyrin repeats, which may
be present and causal in EMT. In line with this, a novel
splice isoform of the arginine methyltransferase PRMT1 which
lacks exons 8/9 (that encode for the dimerization arm, essential
for enzymatic activity) was increased in cancer cell lines and
induced by Snail (166). Similarly, PRMT9 elicited pro-invasive
and metastatic effects via Snail and the PI3K/Akt pathway,
which was validated in clinical HCC samples (167). Given the
high stability of histone modifications in bodily fluids (168),
methylated arginine residues could be developed as a novel
prognostic biomarkers/therapeutic targets.

The role of Tudor domains (found in the HDM JMJD2A)
in epigenetic regulation of EMT is yet another unknown. In
addition to recognizing and binding H3K4me3 and H4K20me3,
the two tandem Tudor domains in JMJD2A bind H3K9me3 and

H4K20me2 which confer roles for JMJD2A in initiating and
preventing transcription (169). As there are two Tudor domains,
these conflicting functions might be localized to a specific
domain, or the two Tudor domains might have opposing effects
on EMT. Further work is required to determine whether JMJD2A
has a pro- or anti-EMT effect given its ability to silence and
active genes. Given the aforementioned involvement of fellow
Jumonji family member JMJD5 in inhibition of TGFβ-induced
migration in lung cancer cells (95), it is plausible that JMJD2A has
a similar anti-EMT effect, however this claim warrants further
research. In addition, to stabilize chromatin binding and mediate
its epigenetic effects—and oncogenic effects—JMJD2A must be
SUMOylated at K471 (170). We know that lysine residues can
accept different epigenetic modifications, but there is no hard
and fast rule that the enzymes that perform these histone/DNA
modifications are exempt from modification themselves; For
example, phosphorylation of G9a on Ser569 is crucial for its
recruitment to damaged DNA (171).

REMODELING OUR UNDERSTANDING OF
CHROMATIN MACHINERY IN EMT

Chromatin remodeling can involve nucleosome repositioning,
swapping, displacement or even translocation to a fragment on
a neighboring strand of DNA, as well as histone replacement
(11, 172). In addition to roles in nucleosome positioning
and DNA dependent biological processes such as repair
and replication (173), remodelers are crucial determinants of
chromatin accessibility and subsequent gene expression (11).
Four major chromatin remodeling families are characterized;
SWI/SNF, ISWI, CHD, and INO80 (11). Genes encoding
components of SWI/SNF (e.g., BRG1) are among the most
common targets of mutation in cancer; ∼20% of human tumors
were shown to contain mutations in at least one member of
this complex (11). Despite this alarming statistic, mechanisms
of epigenetic regulation by chromatin remodeling proteins and
histone chaperones—in particular, how such regulation may
be detrimental to our health, as is the case in EMT-related
tumorigenesis—are largely overlooked.

Known chromatin remodelers with functional roles in EMT
(Figure 5) have been reviewed see (174) and include the NuRD
subunits MTA1 and MTA3 within the CHD family, the BPTF
subunit of the ISWI family member NURF (116), and the
BAF250/ARID1, BRG1, and hBRM subunits of the mammalian
SWI/SNF complex (174, 175). Interestingly, the combined loss
of BAF250A/ARID1A and gain of expressed mutated PI3K
subunit PIK3CAH1047R results in partial EMT in the endometrial
epithelium (176). Resistance to ER antagonists in breast cancer
was recently attributed to loss of ARID1A, which reduced
HDAC1 activity and increased H4K acetylation—sensitizing the
cancer cells to BRD4 inhibition (177). Nucleophosmin 1 (NPM1)
is another well-studied histone chaperone [reviewed by (178)]
with a role in EMT/invasion (179–181).

In terms of nucleosome structure, the FACT (FAcilitates
Chromatin Transcription) histone chaperone complex is a
heterodimer consisting of SSRP1 and SUPT16H that has
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FIGURE 5 | Chromatin remodeling machinery in EMT. The signal from intracellular signaling pathways is transduced to pioneer transcription factors (TFs) in the

nucleus (represented by the beige circle). These pioneer TFs remodel the chromatin and recruit EMT TFs to accessible chromatin, which subsequently recruit and

interact with epigenetic machinery such as DNA methyltransferases, DNMT; histone methyltransferases, HMT; e.g., EZH2, enhancer of zeste 2; ubiquitinating

enzymes, Ub ligase; CtBP, C-terminal binding protein; complex, and enzymes involved in histone acetylation (p300) or deacetylation (histone deacetylase, HDAC).

Together, TFs and epigenetic machinery repress or promote epithelial and mesenchymal gene expression, respectively, to determine the cell phenotype. Red and

green circles at these genes denote repressive or active chromatin marks, respectively. The function of higher order chromatin structures in EMT phenotype

determination remains elusive. Chromatin remodeling machinery (CRM) within the blue circle control chromatin accessibility and gene expression. Solid and dashed

black boxes represent established and novel CRM, respectively. FACT, facilitates chromatin transcription; composed of SSRP1, structure specific recognition protein

1; and SUPT16H (SPT16 homolog, facilitates chromatin remodeling subunit); HMGB-1, high mobility group box 1. Question marks represent unknown CRM. The

solid blue box around SUPT16H signifies that this CRM has PH domains, whose role in EMT is unknown. The roles of alternative splicing (sky blue spiked shape) and

post translational modifications (mint green wave-like shape) in EMT CRM are also elusive.

established roles not only in nucleosome destabilization and
formation, but in the replacement of histones with histone
variants, and FACT also prevents unwanted histone movement
during transcription (182). FACT subunits were shown to be
overexpressed in breast cancer and pharmacological entrapment
of FACT within chromatin—which reduced FACT activity—
had positive (dose-dependent) effects on murine survival,
prevented tumor onset and delayed progression in vivo (183).
Given these data, our understanding of the EMT-promoting
effects of the chromatin remodeling machinery is lacking.
In human intestinal cell lines the FACT subunit SUPT16H
positively correlated with epithelial markers such as E-cadherin

and showed an inverse relationship with the expression of
classical mesenchymal markers like Zeb1 (3). Crystallographic
examination of the FACT subunit Spt16 [isolated from yeast,
the middle domain (-M) in particular] showed that a double
pleckstrin homology (PH) domain exists in Spt16-M (184).
Although analogous studies with SUPT16H are required, these
data suggest that like its homolog, SUPT16H may contain
PH domain(s) to bind to proteins other than histones or to
facilitate intracellular signaling. Elucidating the role of PH
domains in chromatin remodeling proteins could uncover
previously unknown functions of histone chaperone proteins
in EMT—their role in regulating chromatin accessibility may
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be just one avenue through which they promote EMT. Spt16-
M could bind to H3-H4 (184), and therefore may influence
the methylation/acetylation state of key lysine residues on H3-
H4, possibly through interacts with DNMT3A, G9a, JMJD2A,
or other epigenetic modifying enzymes, which may increase
chromatin accessibility at epithelial gene promoters/regulatory
elements and vice versa for mesenchymal genes. The second
FACT subunit SSRP1-M was initially thought to lack histone
binding (185), however it was later shown to bind H3-H4 as
well as H2A-H2B (186). In vivo the SSRP1 subunit enhanced
xenograft tumor growth/proliferation and SSRP1 overexpression
in vitro promoted EMT (187). Mechanistically, miRNA-28-5p
was implicated in upstream negative regulation of SSRP1 (187),
however given the discovery of PH domains within Spt16 and
SUPT16H-H3/H4 binding, it is reasonable to suggest that SSRP1
promotes EMT via epigenetic regulation of key genes, albeit
further research is required.

The histone chaperone SUPT6H was found to be
indispensable in estrogen-dependent breast cancer cells in
terms of maintaining chromatin structure, facilitating estrogen-
mediated transcription, and suppressing H3K27me3 on
lineage-specific genes (188). However, in vitro murine Spt6
was shown to offset H3K27me3 by facilitating the H3K27
demethylase KDM6A (a.k.a. UTX, another Jumonji family
member) (189). Consequently, Spt6 promoted differentiation
and muscle gene expression in skeletal muscle cells (189). UTX
was later shown to epigenetically repress the EMT-TFs Snail and
Zeb1/2—independent of H3K27 demethylation—via decreased
H3K4me2 and H3 acetylation at their promoters (190), with
these anti-EMT effects in agreement with previously described
data on JMJD5. In contrast, KDM5B overexpression increased
cell proliferation, positively correlated with EMT markers, and
promoted aggressive tumors in lung cancer (191). These data
highlight just one facet of the intricate relationship between
chromatin remodeling machinery and epigenetic regulation
and illustrate the need for further research into how chromatin
remodeling proteins may contribute to EMT.

HMGB-1 (high-mobility group box 1); a well-studied
chromatin-binding nuclear protein that acts as a chromosome
guardian/DNA chaperone and has immune/inflammatory
functions [all of which have been extensively reviewed by
(192)], was shown to promote EMT by upregulating MMPs
(-1/-3/-10) via RAGE/NFκB pathway (193), and activating
the TLR4/p38/NRF2 pathway to facilitate HMGB-1-mediated
downstream EMT signaling (194). However, the epigenetics
regarding HMGB-1 are unknown. Perhaps HMGB-1 itself
epigenetically regulated, given the fact that its promoter
coincides with a CpG island (195). Maybe HMGB-1 influences
the epigenetic regulation of EMT target genes (epithelial
or mesenchymal), or its DNA chaperone activity could
promote/prohibit potential epigenetic regulation of target
genes by competing with other chromatin proteins for the
same chromosomal DNA sites as suggested by Spada et al.
(196). Its EMT-promoting effects are somewhat localized to
targeted interaction with its 3′ untranslated region (197, 198)—
whether the crucial roles of 3′ UTRs in translation efficiency,
mRNA stability and subcellular localization (199) play a role

in HMGB-1-induced EMT remains to be studied. Given its
ubiquitous expression it is possible that HMGB-1 is merely
a ticking time bomb which can silently instigate EMT via a
multitude of signaling pathways under the guise of other stimuli;
HMGB-1 can signal via numerous receptors including but not
limited to TLRs, RAGE, and integrins (192), so perhaps the
EMT-inducing effects of HMGB-1 can be mirrored by other
stimuli that activate these receptors and/or these downstream
signaling cascades.

Chromatin Assembly Factor 1 (CAF1) consists of three
proteins—p150, p60, and p48—and is necessary for preserving
chromatin structure in our cells (200, 201). A novel role
for CAF1 in EMT was recently uncovered, where CAF1
was implicated in cellular invasion and motility, and siRNA-
mediated CAF1 depletion (specifically the p150 subunit)
promoted the development of a Slug and/or claudin-guided
EMT-like phenotype (202). Given its primary role as a histone
chaperone, CAF1may facilitate EMT via alterations in chromatin
remodeling at key EMT genes, i.e., its depletion may enhance
accessibility at mesenchymal genes. While these data implicate
CAF1 depletion in cancer development, in a protein complex
each subunit needs to be studied separately first and then as a
whole. The p150 subunit was highly expressed in HCC tissue and
epithelial ovarian cancer where it was associated a poor prognosis
(203, 204). Similar data were obtained regarding the p60 subunit
in prostate and lung cancers (205, 206), however virtually no
information is available on p48, as it has not yet been identified
in humans. As informative as these data may be, they do not
address the gaping hole of how and why these CAF1 subunits are
involved. Surely, there are epigenetic mechanisms involved, but
as of right now these are unknown.

CONCLUSION

EMT is a dynamic multifaceted process occurring during
development, tissue/organ repair, and disease, involving a vast
network of signaling molecules working in unison and/or against
one another (Figure 6). Just because there are different sub-
types of EMT, does not necessarily mean that the stimuli,
intracellular signaling pathways, TFs, epigenetic mechanisms,
and chromatin remodeling machinery underlying developmental
EMT, wound healing/fibrotic EMT, and cancer-related EMT are
dissimilar. There must be some common ground between the
sub-types and between partial and full EMT. Moreover, the
partial/intermediate phenotype is of particular interest given
recent single-cell sequencing data depicting continuous waves of
gene regulation in EMT as opposed to discrete “partial” stages.

Novel stimuli and intracellular pathways, undiscovered TFs
and DNA/histone modifying enzymes, and the role of chromatin
remodelers in EMT are huge unknowns in EMT. Auxiliary TF
functions and the role of different sets of TFs involved in EMT
(initiation versus progression etc.) warrant further investigation,
and inter- and intra-tumor epigenetic heterogeneity and the
impact of a cancer patient’s epigenetic state are other compelling
areas of research. To date, the majority of EMT research
has focused on individual sub-types; data examining them
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FIGURE 6 | Complexity surrounding the gene regulatory network in Epithelial Mesenchymal Transition (EMT). Established (solid red boxes) and novel (dashed red

boxes) extracellular stimuli bind to their particular receptors to initiate EMT. A generic transmembrane receptor is shown here for illustrative purposes. Extracellular

stimuli subsequently signal via canonical and non-canonical intracellular signaling pathways. Solid and dashed green ovals represent established and novel signaling

pathways, respectively. Two-headed black arrows indicate inter-pathway interaction and regulation. The signal from these signaling pathways is transduced to pioneer

transcription factors (TFs) in the nucleus (represented by the beige circle). We hypothesize that in EMT these pioneer TFs: (A) remodel the chromatin to increase

accessibility at EMT initiating genes, and (B) recruit a set of TFs needed for EMT initiation (TF 1–TF 6, dashed lines indicate potentially unknown TFs), and recruit sets

(Continued)
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FIGURE 6 | of TFs involved in EMT progression (TF 7–TF 12) and maintenance (TF 13–TF 18), respectively, to already accessible chromatin. Solid and dashed orange

boxes represent established and novel TFs, respectively. Through subsequent interactions with epigenetic machinery such as histone methyltransferases, HMT; e.g.,

EZH2, enhancer of zeste 2; and enzymes involved in histone acetylation (p300) or deacetylation (histone deacetylase, HDAC) at target loci, these TFs repress or

promote epithelial and mesenchymal gene expression, respectively, to determine the cell phenotype (epithelial, intermediate, or mesenchymal). Red and green circles

at these genes denote repressive or active chromatin marks, respectively. Pro- or anti-EMT TFs may inhibit this. Potential TF-non-histone protein complexes are found

in the light green dashed circle. lncRNA, long non-coding RNA; miRNA, micro RNA. Solid and dashed pink circles represent established and novel epigenetic

machinery, respectively. Black dashed lines indicate key questions that remain to be investigated. FBXO32 is a ubiquitin ligase. Potential TF-epigenetic machinery

complexes are contained within the pink dashed circle. The function of higher order chromatin structures in EMT phenotype determination remains elusive. Chromatin

remodeling machinery (CRM) within the blue circle control chromatin accessibility and gene expression. Solid and dashed black boxes represent established and novel

CRM, respectively. FACT, facilitates chromatin transcription, composed of SSRP1 (structure specific recognition protein 1) and SUPT16H (SPT16 homolog, facilitates

chromatin remodeling subunit); HMGB-1, high mobility group box 1. The solid blue box around SUPT16H signifies that this CRM has PH domains, whose role in EMT

is unknown. The roles of alternative splicing (sky blue spiked shape) and post translational modifications (mint green wave-like shape) at the indicated

steps/components remains to be investigated Question marks represent unknowns at each stage of EMT regulation. Yellow arrows and black dashed lines indicate

key questions that remain to be investigated (see main text for more information).

as one process that occurs at three distinct “time points”
is lacking. The challenge for future research therefore lies
in (a) examining EMT concomitantly in disease and non-
disease states, (b) looking at the interplay between canonical
and non-canonical stimuli, TFs, and pathways involved in
EMT, and (c) elucidating the roles the chromatin remodeling
machinery and alternative splicing in phenotype determination
during EMT, all with the aim of unraveling the complexity
of the gene regulatory network underlying EMT. The data

highlighted in these sections illustrate that researchers have
begun to challenge these unknowns, but more work is needed
to expand our knowledge and ultimately advance our ability to
cure cancer.
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