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Tumor hypoxia is a common feature of the microenvironment in solid tumors, primarily

due to an inadequate, and heterogeneous vascular network. It is associated with

resistance to radiotherapy and results in a poorer clinical outcome. The presence of

hypoxia in tumors can be identified by various invasive and non-invasive techniques,

and there are a number of approaches by which hypoxia can be modified to improve

outcome. However, despite these factors and the ongoing extensive pre-clinical studies,

the clinical focus on hypoxia is still to a large extent lacking. Hypoxia is a major cellular

stress factor and affects a wide range of molecular pathways, and further understanding

of the molecular processes involved may lead to greater clinical applicability of

hypoxic modifiers. This review is a discussion of the characteristics of tumor hypoxia,

hypoxia-related molecular pathways, and the role of hypoxia in treatment resistance.

Understanding the molecular aspects of hypoxia will improve our ability to clinically

monitor hypoxia and to predict and modify the therapeutic response.
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CHARACTERISTICS OF TUMOR HYPOXIA

Normal tissues require a regular supply of oxygen and nutrients to maintain viability, and a means
for eliminating the waste products of metabolism (1, 2). These processes are achieved through a
functional blood supply. Most solid tumors have the same metabolic requirements and to achieve
this tumors initially utilize the blood supply of the host organ in which the tumor arises. Eventually
that supply becomes inadequate in meeting the demands of the growing tumor mass (1, 2). To
compensate, tumors develop their own functional vascular supply from the normal host vascular
network by the process of angiogenesis (3, 4). However, despite the significance of this tumor neo-
vasculature, the system formed is chaotic and primitive, suffering from numerous structural, and
functional abnormalities (1, 2) (Figure 1). Consequently, it is actually unable to meet the metabolic
demands of the developing tumor. Micro-regional areas are thus formed within the tumor that are
characterized by glucose and energy deprivation, high lactate levels and extracellular acidity, and
oxygen deficiency (1, 2).

The most extensively studied micro-environmental parameter is hypoxia. Hypoxia is a
characteristic feature of most solid tumors and is generally defined as a state of reduced oxygenation
that influences biological function (5). As such, it is usually considered as a single entity, which
it most definitely is not. From histological data from patients with carcinoma of the bronchus,
Thomlinson & Gray suggested that hypoxia could be present in tumors due to a diffusion
limit of oxygen (6). Such hypoxia would be chronic in nature (Figure 1). Later it was proposed
(7) and demonstrated (8) that a form of acute/transient hypoxia could occur, resulting from
periodic fluctuations in blood flow (9) (Figure 1). This acute hypoxia can result from a complete
shut-down in tumor blood flow thus causing ischemic hypoxia, or from a partial shut-down
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sufficient to induce hypoxia by preventing red blood cell flow
yet allowing plasma flow to continue to supply nutrients. The
cause of chronic hypoxia can also be multi-factorial. Although
the result of a diffusion limitation, the actual distance from the
blood vessel can be highly variable due to several factors. These
include the oxygen carrying capacity of the blood, which can be
“normal” or reduced as in anemic patients or smokers and the
ability of hemoglobin to release oxygen (10). It also involves the
intravascular oxygen partial pressure gradient (from the arterial
to the venous end of the micro-vessels), and the level of oxygen
consumption by the tumor cells and the tumor growth fraction,
both of which can vary within and between tumors (10). One
also has to consider the degree of oxygenation, which can vary
from reasonably well-oxygenated through intermediate levels of
hypoxia to severely hypoxic (11).

HYPOXIA AND THE HYPOXIA-INDUCIBLE
FACTOR (HIF) REGULATORY PATHWAY

Hypoxia is a major cellular stress factor and in response to this
condition, cells undergo a wide range of molecular changes. A
number of cellular pathways are affected, including increased
glycolysis, decrease of cell proliferation, and enhancement
processes involved in angiogenesis and erythropoiesis (Figure 2).
The hypoxia-mediated intracellular signaling pathways are pre-
dominantly orchestrated by intracellular signaling, mainly under
control by a family of transcription factors, the hypoxia inducible
factors (HIFs) (12, 13). HIF upregulates target gene expression
through binding at the hypoxia responsive elements (HREs) in
the enhancer and promotor regions of the target genes (14). HIF
binds to the DNA as a heterodimer consisting of a alpha (α)
subunit (HIF-1α, HIF-2α, or HIF-3α) and a HIF-1β subunit (15).
HIF-1β is constitutively expressed, while regulation of HIFα is
controlled by tissue oxygenation status, through hydroxylation
of two proline residues by prolyl hydroxylase domain proteins
(PHD) 1-3 (16, 17) (Figure 2). Hydroxylation, occurring only
in the presence of oxygen, promotes interaction with the
von Hippel-Lindau tumor suppressor protein (pVHL), which
targets HIFα for ubiquitination and subsequent proteasomal
degradation (18, 19). At oxygen concentrations around 2% O2

and below this hydroxylation is suppressed leading HIFα to
not be degraded (20, 21), and form the active transcription
complex with HIF-1β, which induce transcriptional upregulation
of a broad range of target genes (22–24). The regulation of
HIF-α is not only affected by PHD1-3, since a large plethora
of kinases are also involved in the regulation, either directly,
or indirectly (15). The major HIF complexes are comprised of
HIF-1β, and one of either HIF-1α or HIF-2α, which constitutes
the transcription factors referred to as HIF1 and HIF2 (25).
HIF1 and HIF2 have structural similarities and identical DNA
recognition motifs, but binds to different cell-specific sites across
the genome (26, 27). HIF-3α has a structural difference, in
that it lacks the C-terminal TAD, and as such is not able
to induce the expression of hypoxia-inducible target genes to
the same extent as HIF-1α and HIF-2α. HIF-3α competes
with HIF-1α or HIF-2α to bind HIF-1β, and can thereby act

as a suppressor of HIF-dependent gene expression (25, 28).
The HIFs have been shown to influence a large range of
cellular functions (Figure 2), such as angiogenesis, invasion and
metastasis, apoptosis and autophagy, metabolism, intracellular
acidosis, and tumor immunity.

HYPOXIA AND CELLULAR STRESS
RESPONSES

Cancer cells adapt to hypoxia by a number of stress responses,
mediated by the intracellular signaling aimed at facilitating
the cells ability to cope with the microenvironment, and to
alter the energy requirements as necessary. One of the stress
responses is the unfolded protein response (UPR) activated
in response to ER stress, endoplasmic reticulum stress, and
leads to a downstream activation of adaptive mechanisms.
ER stress is the result of an accumulation of unfolded or
misfolded proteins, as oxygen depletion can interfere with
protein folding (29, 30) Unlike HIF, which is activated at
oxygen concentrations below 2%, UPR is activated at exposure
to more severe hypoxia (<0.02% O2) (31). The UPR is a
complex of intracellular signaling pathways which are mediated
by three independent ER transmembrane proteins: PKR-like
ER kinase (PERK), Activating Transcription Factor 6 (ATF6)
and inositol-requiring enzyme 1(IRE-1) (32). Exposure to severe
hypoxia leads to a reduction in mRNA translation initiation and
overall protein synthesis, through a activation of PERK which
subsequently phosphorylates eIF2α (33) (Figure 2). Activated
ATF6 and IRE-11 directly modulates transcriptional induction
of UPR target genes. Activation of IRE-1 leads to expression
of a panel of genes maintaining metabolic homeostasis and
ER through activation of a transcription factor, spliced XBP1
(XBP1s) (34–36). ATF6 is cleaved in the Golgi apparatus,
where after the active transcriptional form, ATF6f, translocate
to the nucleus and induce transcription of the UPR target
genes (29, 37, 38).

Translation of the majority of genes is inhibited under
these conditions, but due to regulatory sequences in the 5′

untranslated regions, some gene transcripts are able to escape
this inhibition, resulting in an alteration in differential protein
expression during hypoxia due to the change in translational
efficiency (33, 39).

UPR has been suggested to induce autophagy, an intracellular
self-degradation process which can both induce or protect from
cell death, through the PERK and BNIP3 pathways (40, 41). The
impact of hypoxia on autophagy pathways in malignant cells,
and the balance of autophagy in survival and death pathways
under hypoxia has shown to be complex. It is susceptible to
the genetic background of the cells, as well as the severity of
the oxygen deprivation and of other tumor microenvironmental
factors (40, 41).

The cellular response to hypoxia also affects the DNADamage
Response (DDR) at very low oxygen concentrations, which
includes DNA replication arrest and rapid accumulation of
replication stress (Figure 2). This is thought to be due to the
enzyme responsible for nucleotide production, ribonucleotide
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FIGURE 1 | Schematic illustration of the vascular networks in tumors and associated normal tissues. Compared to the well-organized blood supply of normal tissues,

in tumors the system is primitive and chaotic. The tumor vascular supply shows abnormal vascular density, contour irregularities, enlarged vessels, vessels with blind

ends, and transiently blocked vessels. In addition, there is a loss of hierarchy, a lack of regulatory control mechanisms, and the vessel walls can be structurally

defective causing increased vascular permeability. These factors result in the development of diffusion limited chronic hypoxia and perfusion limited acute hypoxia.

reductase, being dependent on cellular oxygen for its function
and, therefore, compromised in hypoxic conditions (32, 42).
The DDR involves a complex collaboration between signaling
pathways activated due to different types of DNA damaging
stresses, and the hypoxia induced effects includes both ATR-
and ATM-mediated signaling, despite the absence of detectable
DNA damage. This results in cellular protection of the
replication forks, minimizing the risk of further genomic
instability (42–44). Activation of p53 is a consequence of the
hypoxia induced DDR, by phosphorylation at a number of
residues (45, 46).

The tumor microenvironment is characterized by factors
other than tumor hypoxia, such as low pH. Lactic acid
accumulation can cause acidosis in solid tumors. In order
to compensate for reduced mitochondrial ATP, low oxygen
concentrations leads to anaerobic energy production and the
formation of lactic acid production, referred to as the Pasteur
effect (47). Significant disparities in the temporal and spatial
distribution of areas in tumors with low oxygenation level and
high level of acidosis results from tumor cells maintaining a
high rate of glycolysis even in the presence of oxygen, a which
is referred to as aerobic glycolysis or the Warburg effect (48–
50). The cellular response in terms of DNA repair and gene

transcription and translation succeeding combination of low
oxygen concentration and low extracellular pH in combination
has shown to be very different compared to the response to
either hypoxia or acidosis alone (51, 52). While both hypoxia
and acidosis greatly effects the cellular response, simultaneous
hypoxia and acidosis in vitro suppresses metabolic rate and
protein synthesis to a greater extent than each of the factors on
their own (53).

IMMUNE INFLAMMATORY PATHWAYS

Cancer immunotherapy has resulted in unprecedented
improvements in outcome in patients with a spectrum
of solid tumors, and has established itself as the fourth
modality in cancer treatment. This is primarily the result
of development of vaccines and agents targeting immune
regulatory checkpoints, namely the cytotoxic T-lymphocyte-
associated protein 4 (CTLA-4), or programmed death 1 (PD-1)
and programmed death 1 ligand (PD-L1) (54). Despite positive
results, many patients show little or no response to vaccines and
checkpoint inhibitors (55). The immune response to tumors
is a complex balance between antitumor mechanisms, where
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FIGURE 2 | Schematic illustration of cellular pathways affected by hypoxia. Hypoxia affects regulation of hypoxia-inducible factors and induction of HIF target. HIF is a

heterodimer consisting of an alpha (α) subunit (HIF-1α, HIF-2α or HIF-3α) and a HIF-1β subunit. Under normoxic conditions, HIF-α is rapidly degraded due to

hydroxylation by prolyl hydroxylase domain (PHD) protein. The proline-hydroxylated HIF-α interacts with the von Hippel-Lindau protein (VHL), which targets HIF-α for

ubiquitination and degradation via the proteasome. Under hypoxia, HIF-α is stable, and forms the active transcription complex with HIF-1β. After translocation to the

nucleus the HIF heterodimer binds at the hypoxia response element (HRE) of target genes thereby initiating the transcription of the HIF target genes. At severe

hypoxia, the cellular response also affects the DNA Damage Response (DDR), which leads to DNA replication arrest. Exposure to very low oxygen concentrations also

leads to an reduction in mRNA translation initiation and overall protein synthesis, through an activation of the Untranslated Protein Response (UPR).

infiltrating lymphocytes recognize tumor specific antigens
on the surface of cancer cells and eliminate the cancer cells
thereby decrease tumor growth, and the protumor inflammatory
response, which increases immune tolerance, cell survival,
and proliferation (56–58). There is evidence that radiation
alone can induce an innate immune response, and recent
studies have shown that the combination of radiotherapy with
immunotherapy has the potential to be an effective treatment
modality (59–61).

Hypoxia seems to play a significant role in influencing
anti-cancer immune responses (62, 63). It promotes an
immunosuppressive microenvironment by regulating the
recruitment of T-cells, myeloid-derived suppressor cells
(MDSCs), macrophages, and neutrophils (64, 65). In addition,
hypoxia can have a negative effect on immunogenicity by
altering the function of immune cells and/or increasing
resistance of tumor cells to the cytolytic activity of immune
effectors (66, 67). There is also evidence that hypoxia can

influence immune checkpoints. A rapid and selective up-
regulation of PD-L1 is induced by hypoxia on MDSCs, and
significant increased expression of PD-L1 on macrophages,
dendritic cells and tumor cells, all due to HIF1 binding
directly to the HRE in the PD-L1 proximal promoter (68).
Hypoxia has also been shown to regulate the CTLA-4 receptor,
again potentially via HIF1 (69). Apart from direct immune
suppressive effects, hypoxia can also indirectly affect immune
response since it causes an increased accumulation of adenosine,
drives the expression of vascular endothelial growth factor,
and is associated with higher levels of lactate, all of which
can inhibit anti-tumor immunity (62, 70). Interestingly,
one pre-clinical study using a variety of tumor models
showed that by allowing tumor-bearing mice to breathe
high oxygen content gas (60% oxygen) rather than the
normal 21% oxygen, resulted in an inhibition of tumor
progression, a decrease in metastatic disease, and prolonged
animal survival (67). This hyperoxia decreased tumor
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hypoxia, increased pro-inflammatory cytokines, decreased
the levels of immunosuppressive molecules, and weakened
immunosuppression by regulatory T-cells.

Clearly, there is a need to investigate role of hypoxia
on immune response and understand how modifiers of
hypoxia influence that response. Non-invasive imaging may
be helpful in this context. Substantial pre-clinical and clinical
effort has been made in finding clinically relevant approaches
that can non-invasively identify hypoxia in tumors (71).
The techniques include positron emission tomography (PET),
magnetic resonance imaging, and computed tomography. Using
these techniques, especially the PET-based approaches, one not
only identifies tumor hypoxia, but also shows its relationship to
patient outcome following radiotherapy (71). More recently, a
PET based approach has also been developed for non-invasively
imaging immunotherapy. It involves radiolabeling various
monoclonal antibodies with 89-Zirconium (89Zr). Pre-clinically,
these conjugates have included CD4 and CD8 antibodies (72),
or an anti-PD-L1 antibody (73). Both approaches allowed for
whole body visualization and evaluation of tumor response.
Such approaches have even undergone clinical evaluation using
89Zr-labeled atezolizumab, an antibody against PD-L1, and the
images obtained in cancer patients was able to assess response
to PD-L1 blockade (74). Combining PET-hypoxia markers
with immunotherapy based PET markers should allow us to
investigate the interaction between both parameters and how that
influences patient outcome.

SIGNIFICANCE OF HYPOXIA FOR
RADIATION RESPONSE

Estimates of tumor hypoxia obtained using electrodes, exogenous
marker expression, or the upregulation of endogenous hypoxia-
associated molecules, have not only demonstrated hypoxia to
be a common feature of animal solid tumors, human tumor
xenografts and human cancers (49, 75), but also a major negative
factor influencing tumor radiation response. Pre-clinical studies
in the early 1950s demonstrated that when the partial pressure
of oxygen was reduced below about 20 mmHg at the time of
irradiation cells became resistant to the radiation damage (76).
When radiation is absorbed in biological material, highly reactive
free radicals are produced either directly or indirectly in the
target. These radicals are unstable and will react with oxygen
to change the chemical composition of the target, ultimately
causing damage. However, under hypoxic conditions the target
can be chemically restored to its original form. Typically, under
hypoxia one requires 2.5–3.0 fold higher radiation doses to
induce the same level of damage as seen under normoxic
conditions (77). The type of hypoxia (i.e., chronic or acute)
is irrelevant for the initial radioprotection. However, while
chronically hypoxic cells are generally also nutrient deprived,
acutely hypoxic cells are hypoxic for only a short period (78)
and as such are less likely to be nutrient deprived, and this
could play a role in influencing the cells ability to repair
the radiation damage, thus making acute hypoxia a more
resistant factor.

Regardless of whether one type of hypoxia is more of a
negative factor, there is good clinical evidence that hypoxia
significantly impacts patient outcome following radiation therapy
(71). Consequently, substantial effort has beenmade in the last 50
years to identify approaches that can overcome hypoxia-induced
radiation resistance (1, 71). These have involved using agents
that either increase oxygen delivery, radiosensitize the hypoxic
cells, or preferentially kill them. Attempts have also been made to
use dose painting, whereby the hypoxic areas are identified and
the radiation dose to these areas is increased, or the use of high
LET (linear energy transfer) radiation where hypoxia is less of
an issue (79). However, despite the pre-clinical and even clinical
demonstrations of the benefit of several of these approaches, only
one approach has become established in routine clinical practice
and that is the hypoxic cell radiosensitizer nimorazole, and only
in head & neck squamous cell carcinoma and only in Denmark
(80) and Norway (81).

VASCULAR TARGETING AGENTS AND
HYPOXIA

A principal factor controlling the tumor microenvironment, and
thus the degree of hypoxia, is its vascular supply. As a result,
any treatment that modifies this tumor vascular supply can
consequently change the level of hypoxia. One such group are
the so-called vascular targeting agents (VTAs). These include
angiogenesis inhibitors (AIs) that inhibit the development of the
tumor neo-vasculature, and vascular disrupting agents (VDAs)
that damage the already establish tumor vascular supply (82,
83).

With VDAs, the vascular damage induced causes a
reduction in tumor blood flow and this increases the adverse
microenvironmental conditions within tumors leading to
substantial cell killing and subsequent increase in necrosis
(82, 84, 85). The overall result is a reduction in tumor volume.
AIs also inhibit tumor growth, but their effects on the tumor
vascular supply and microenvironment are more complex
and somewhat controversial. Some years ago it was suggested
that rather than AIs simply stopping the angiogenesis process
and thus decreasing vessel density they could also actually
reduce or abolish the vascular abnormalities of the remaining
vessels, causing vessel stabilization resulting in a more efficient
vasculature similar to that seen in normal tissues. This
stabilization process was termed “normalization” (86) and the
more stable, organized vasculature that resulted would likely lead
to a better delivery of oxygen and nutrients to the tumor, thus
reducing the degree of tumor hypoxia. Numerous studies have
since reported that treatment with a range of AIs can indeed
give rise to an apparent decrease in tumor hypoxia (82, 84). The
first study that demonstrated an improvement in oxygenation
status that was associated with vessel normalization was that
of Winkler and colleagues (87), using the anti-VEGF (vascular
endothelial growth factor) monoclonal antibody DC101. Using
a human glioblastoma xenograft grown orthotopically in the
mouse brain they found that during treatment with DC101
there was a significant decrease in the level of binding of
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the hypoxic marker, pimonidazole, and a similar increase in
radiation sensitivity, an affect that was clearly associated with
pericyte recruitment. They also found that when pericyte
coverage was maximal there was an upregulation of human
angiopoietin-1 (Ang-1) and Ephrin B2. Ang-1 is associated
with pericyte recruitment and additional studies showed that
an increased synthesis of Ang-1 mRNA resulted in an increased
Ang-1 protein deposition close to its receptor Tie2 on the
endothelial cells (87). Furthermore, when using a Tie2-blocking
antibody or peptide to block Ang-1/Tie2 signaling, DC101
was unable to increase pericyte coverage of vessels. However,
the reported improvements in oxygenation by AIs are not
all due to vessel normalization. Using SU5416, an antagonist
of the VEGF receptor, the increase in tumor oxygenation
resulted from an inhibition of mitochondrial respiration,
thereby decreasing hypoxia by increasing the oxygen diffusion
distance (88).

Regardless of the mechanisms for these decreases in tumor
hypoxia, the improved oxygenation in both these studies
was somewhat transient and only lasted for a period of a
few days despite the AI treatment being continued. This
“narrow window” of improved oxygenation has also been
seen with thalidomide (89, 90), a nucleolin antagonist (91),
and bevacizumab (92–95), regardless of the technique used
to monitor the changes in oxygenation/hypoxia. The transient
nature of this effect would suggest that the timing of hypoxia
measurement is critical. In fact, two studies reported both
a decrease and increase in hypoxia depending on the time
of measurement after treatment with either DC101 (96) or
bevacizumab (95).

Although at least one clinical study suggested an apparent
improvement in oxygenation with AI therapy (97), several pre-
clinical studies reported no change in tumor oxygenation status
despite the AIs causing a decrease in vascular density and blood
perfusion (1, 98). More significantly, in the majority of reported
pre-clinical studies these AI-induced anti-vascular effects actually
led to an increase in hypoxia, in line with what one would expect
(1, 82). It could be argued that these different effects on tumor
oxygenation status could be the result of using different drugs,
doses, scheduling, or the time of hypoxia assessment. However,
it seems more likely that the effects are a tumor dependent
phenomena. This is probably best illustrated using DC101, where
one study showed that 2 days after treating animals with DC101
(3× 40mg/kg), U87 gliomas were significantly better oxygenated
whenmeasured using a hypoxic specific marker (87). Yet another
study using the same drug, almost identical dose schedule (3
× 45 mg/kg), and similar hypoxic specific marker, found that 2
days after treatment, MCa4/MCa35 mammary carcinomas were
significantly more hypoxic (99). This same controversy was seen
in the limited clinical studies in which both a decrease (100) and
an increase (101, 102) in tumor hypoxia have been reported. Such
findings clearly argue against making sweeping statements about
the effects of AIs on tumor hypoxia and that either measurements
of the oxygenation status need to be routinely made when AIs are
administered or that they be given in such a way as to avoid any
negative influence on the conventional treatment with which they
are combined.

MOLECULAR HYPOXIA BIOMARKERS

To take advantage of the cellular response to hypoxia, the use
of expression levels of hypoxia induced genes as biomarkers
for tumor hypoxia has been widely investigated. Initially, single
genes such as HIF-1, Ca9, and Glut1 measured either at
the protein level, with for example immunohistochemistry,
or on the mRNA level with for instance qPCR, was used
in a range of studies (103–106). The use of single gene
expression markers for tumor hypoxia has often led to
conflicting reports, due to the genes being influenced by
factors other than hypoxia, such as extracellular pH or
glucose concentrations (107, 108). Ca9 expression was one
such factor proposed as a hypoxia marker in a number of
studies, however other experimental studies clearly demonstrated
that hypoxia and Ca9 expression did not exclusively correlate
(109). Certain microRNAs (miRNAs) have also demonstrated
to be inducible by hypoxia (110, 111), as for example hsa-
mir-210 which has shown to be hypoxia related and to
have prognostic significance in several tumor types, e.g., in
cervical cancer (112), in breast cancer (113), and in bladder
cancer (114).

Progresses in gene expression profiling have let to a
higher level of understanding of the biology of hypoxia, and
development of hypoxic signatures based on a number of genes
rather than on single genes as biomarkers for tumor hypoxia
(115–122). These have typically been developed by determining
global gene expression levels by gene expression arrays, and
identifying genes preferentially upregulated by hypoxia based
on either in vitro or clinically derived gene expression data
sets. There is no consensus to the optimal way to develop gene
expression signatures, and the currently published hypoxia gene
expression signatures are at different stages in respect to clinical
usability and validation (123).

The Toustrup 15-gene-classifier was developed from a panel of
genes, identified in an in vitro study in a panel of Head and Neck
Squamous Cell Carcinoma (HNSCC) cell lines as upregulated by
low oxygen concentration, independent of pH. It was developed
in a training cohort of 58 HNSCC patients with the oxygenation
status measured using an oxygen electrode. The classifier was
validated in the DAHANCA 5 cohort, which is a Danish study
where patients were randomized to receive either the previous
mentioned hypoxic cell radiosensitizer nimorazole, or placebo,
with radiotherapy. The classifier was in this cohort demonstrated
to be both prognostic and have predictive impact for hypoxic
modification (124). The 26-gene classifier by Eustace et al. (121),
is another hypoxia signature in HNSCC. This signature is based
on a metagene signature developed for patients with breast, lung
and head and neck cancers. In the Dutch ARCON trial, which
compared treatment with radiotherapy combined with carbogen
and nicotinamide, two hypoxia modifying agents, compared to
radiotherapy alone in patients with laryngeal cancer, the patients
classified as “more hypoxic” according to the 26-gene classifier
showed a significantly improved locoregional control in when
treated with the modifying agents (123, 125).

Several studies have aimed at comparing the published
gene signatures (126–129), but with the constraint that
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common analyzing methods have been used, such as the
two-class k-means clustering, and not the validated analysis
method, which for some of the gene signatures include
cutoff values.

To utilize the biological knowledge, studies have been
focused on combining gene signatures for hypoxia with
other factors known to affect cellular factors influencing the
response to radiotherapy, such as markers for cancer stem
cells (129), and for proliferation and DNA repair (119).
Currently, for all signatures there is a need for a continued
validation, both at the technical and clinical level (130,
131), especially to be able to advance from retrospective to
prospective classification of the hypoxic status of patients and
subsequently the assignment to hypoxia-modifying therapies in
the clinic.

Tumor hypoxia mediates intercellular signaling through
the regulation of many cytokines and angiogenic factors
(CAF), and serum or plasma levels of hypoxia associated
proteins have also been suggested as markers for hypoxia
(132–134). One of the proteins which have been intensively
studied is osteopontin (OPN). OPN has both in vitro and
in vivo shown to be upregulated by hypoxia (108, 135),
and clinical studies have found a high level of OPN to
be associated with a poor prognosis, both in HNSCC (136,
137) and small cell lung cancer (138). The findings of a
correlation of OPN levels and hypoxia is not consistent

across studies (139), and it has been demonstrated that
the measured level of OPN is sensitive to the choice
of analysis platform (140). Nonetheless, hypoxia associated
circulating proteins could add prognostic information on
patient outcome.

CONCLUSION

In the age of targeted therapies, hypoxia has to be considered the
ultimate target. Hypoxia exists in virtually all solid tumor types,
it influences patient response to radio-, chemo-, and immune-
therapy, and plays a major role in malignant progression. Its
presence in tumors can be identified by various invasive and
non-invasive techniques, and there are a number of approaches
by which hypoxia can be modified to improve outcome.
However, despite these factors and the ongoing extensive pre-
clinical studies, the clinical focus on hypoxia is still to a
large extent lacking. Molecular pathways are the fundamental
background for the cellular response to hypoxia, and further
understanding of the molecular processes involved may help
overcome this limitation.
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