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MicroRNA (miRNA) dysregulation is associated with the pathogenesis of oral squamous

cell carcinoma (OSCC), and its elucidation could potentially provide information on patient

outcome. A growing body of translational research on miRNA biology is focusing on

precision oncology, aiming to decode the miRNA regulatory network in the development

and progression of cancer. Tissue-specific expression and stable presence in all body

fluids are unique features of miRNAs, which could be potentially exploited in the clinical

setting. Recent understanding of miRNA properties has led them to be useful, attractive,

and potential tools either as biomarkers (distinct miRNA expression signature) for

diagnosis and prognostic outcomes or as targets for novel therapeutic entities, enabling

personalized treatment for OSCC. In this review, we discuss recent research on different

aspects of alterations in miRNA profiles along with their clinical significance and strive

to identify probable potential miRNA biomarkers for diagnosis and prognosis of OSCC.

We also discuss the current understanding and scope of development of miRNA-based

therapeutics against OSCC.

Keywords: dysregulatedmiRNA,miRNAbiomarker, non-invasive biomarker,miRNA-based therapy, oral squamous

cell carcinoma

INTRODUCTION

Oral squamous cell carcinoma (OSCC) is the second most common cancer reported in India.
According to recent Globacon-2018 data, ∼120,000 new cases of OSCC are detected every year
in India (1, 2). It is the leading cause of cancer-associated death in the Indian male population.
Annually, more than 72,000 deaths are attributed to this disease in this country (3). OSCC
originates in mucosal epithelial cells of the oral cavity (4, 5). Tobacco (smoking/smokeless) and
alcohol are the primary risk factors for OSCC. Chewing of areca nut, betel leaf, poor oral health
hygiene, and human papillomavirus (HPV) infection are also important risk factors for OSCC.
Treatment in the early stages of the disease offers the best chance of cure (4, 5). Surgery is the
first line of treatment, whereas radiotherapy and chemotherapy are used as adjuvant therapies
(6, 7). Treatment strategies mainly depend on the location of the primary tumor, identification
of high-risk features by histopathology, stage of tumor, and comorbidities. The 5-year survival rate
of patients with oral cancer is around 50%. Poor outcomes are attributed to disease recurrence
(both second primaries and locoregional recurrence) and distant metastasis. Despite availability of
risk information from histopathology, the pattern and timing of relapse and metastasis are difficult
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to predict. About 86% of the recurrence occurs within 24 months
after primary treatment (7). Prognostic information is mainly
derived from anatomic location; tumor stage; tumor thickness;
and histological characteristics like cellular heterogeneity,
degree of differentiation, depth of invasion, presence of nodal
metastases, margin status, neural invasion, and pattern of
invasion (6).

Biomarkers are quantifiable indicators associated with the
specific disease conditions that facilitate decision-making by
clinicians with respect to the most effective clinical interventions.
In conventional practice, extra nodal extension (ENE), perineural
invasion (PNI), and lymphovascular invasion (LVI) are
considered histopathological biomarkers associated with poor
disease prognosis (6, 7). Given that the genetics of OSCC is
highly heterogeneous and complex, so far, no known molecular
biomarker (except HPV positivity) has been used to subclassify
OSCC accurately. Currently, only one epidermal growth
factor receptor (EGFR)-specific targeted-immunotherapy with
cetuximab antibody is available for the management of this
cancer. Therefore, in the current scenario, early detection of the
disease with identification of distinct prognostic subgroups to
facilitate advanced treatment strategies is required for effective
management of OSCC. Genomic, epigenomic, proteomic, and
metabolomic high-throughput approaches have recently been
used to discover and validate tumor biomarkers individually
and/or in panels (8–13). Since microRNAs (miRNAs) are highly
stable in tissues as well as in circulation, they are considered
potential biomarkers for cancer detection and prognostication
(14–18). Here, we review potential candidate miRNAs for their
possible use as molecular biomarkers to improve the diagnosis
and prognostication of OSCC and to stratify such patients
into distinct prognostic subgroups. In this review, we have
voyaged through various dysregulated miRNAs reported to
be responsible for the pathogenesis, progression, and specific
outcomes of OSCC. Their functional associations with overall
therapeutic management, responsiveness, recurrence, and
metastasis of OSCC are also elaborated upon.

BASICS OF MicroRNAs: ALTERED miRNA

FUNCTION CAN FINE-TUNE CELL-FATE

DECISION VIA ALTERED GENE AND

PROTEIN EXPRESSION

Mature miRNAs are endogenous, single-stranded, evolutionarily
conserved, non-coding RNAs ∼19–26 nucleotides long;
discovered by Lee et al. (19). miRNAs preferentially interact with
complementary seed sequences in the 3′ untranslated regions
(UTRs) of their target mRNAs. miRNA binding sites may also be
present in the 5′ UTRs and coding sequences of target mRNAs
(20). miRNA-mediated gene silencing is a fundamental biological
process for cellular homeostasis, executed through translational
inhibition followed by mRNA deadenylation and decay (21–23).
Circulating cell-free miRNAs also play an important role in
intracellular/intercellular communication through miRNA-
mediated gene silencing (17, 24). As a result, miRNA expression
profiles in tissues and circulation are associated with several

pathophysiological conditions, including cancers (17, 25).
Dysregulation in miRNA expression profile was first reported in
leukemia (26). Therefore, a distinct miRNA expression signature
that distinguishes normal tissues from cancer tissues could be a
new “hallmark of cancer,” which regulates almost all other cancer
hallmarks defined earlier (18, 27, 28).

Functional dysregulation of mature miRNAs is associated
with various kinds of pathological conditions. Dysregulation of
miRNA expression and function may be due to one or more
of the following: (1) altered miRNA biogenesis process: (a)
epigenetic (methylation and histone modifications) alterations of
miRNA genes, (b) altered activities of transcription factors, and
(c) altered expression of miRNA-processing enzymes (Drosha,
Dicer, etc.); (2) chromosomal instability, genomic instability, and
presence of mutations in miRNA genes; (3) single-nucleotide
polymorphisms (SNPs), deletions, and duplications in miRNA
genes (pri-, pre-, and mature miRNA regions) as well as in the
binding sequences on target mRNAs; (4) loss of miRNA-binding
sites on targetmRNAs; and (5) redirecting of themiRNA-induced
silencing complex (miRISC) to multiple competitive miRNA-
binding sites present in competing endogenous RNAs (ceRNAs),
which act as miRNA sponges and inhibit their functions (17,
23, 28–30). All ceRNAs are naturally occurring, endogenous
regulatory molecules, like long non-coding RNAs (lncRNAs),
circular RNAs, pseudogenes, and some protein-coding mRNAs
(29, 30). Notably, in miRNA-mediated regulatory networks, one
miRNA can regulate many genes and a single gene can be
regulated by many miRNAs (23).

The above-described processes ultimately lead to activation
of some oncogenic genes/proteins and, at the same time,
deactivation of some tumor suppressor genes/proteins. They
also direct cellular signaling cascades toward making the cell
fate verdict (23, 28). Eventually, these distinct alterations in
miRNA expression profile drive a normal cell to transform into a
cancer cell and dictate its progression, metastasis, stemness, and
responsiveness to therapy (radiotherapy/chemotherapy) (17, 18).

DISTINCT MicroRNA SIGNATURES AS

HALLMARKS OF ORAL SQUAMOUS CELL

CARCINOMA

The utility of miRNAs as diagnostic and prognostic biomarkers
of OSCC has not been convincingly established. Previous studies
on miRNA expression profiling mainly focused on differential
expression of miRNAs in normal and tumor tissues and body
fluids (blood, saliva, serum, or plasma) from OSCC patients
(10, 12). These studies have yielded a plethora of dysregulated
(upregulated/downregulated) miRNAs in OSCC. Here, we used
the miRCancer database, PubMed, and Google to search for
relevant data and reevaluate miRNAs as potential biomarkers for
the diagnosis, prognosis, and therapeutics of OSCC. miRCancer
is an online, up-to-date database (last updated on August
27, 2019) that provides a comprehensive collection of miRNA
expression profiles in various human cancers extracted from
published literature available in PubMed (31).
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MicroRNA PROFILING IN ORAL

SQUAMOUS CELL CARCINOMA

Dysregulated miRNA Expression in Tumor

Tissues
Tran et al. (32) performed the first high-throughput miRNA
profiling in OSCC using nine OSCC cell lines. Subsequently,
several investigators have studied miRNA profiles as prognostic
biomarkers using primary tumor and paired control tissues from
patients with head and neck squamous cell carcinoma (HNSCC)
(33–35). The differential expression analysis revealed sets of
mature miRNAs that were either upregulated or downregulated
in the tumor tissues. Childs et al. (35) showed that miR-21,
miR-155, miR-191, and miR-221 were upregulated, whereas
miR-1, miR-133a, miR-205, and let-7d were downregulated in
primary tumors at diagnosis (35, 36). Another retrospective
study on 51 formalin-fixed HNSCC tumor samples revealed
consistent expression of mature miRNAs in malignant tissues;
miR-21, miR-155, let-7i, miR-142-3p, miR-423, miR-106b, miR-
20a, and miR-16 were overexpressed, whereas miR-125b, miR-
375, and miR-10a were underexpressed) (37). Lu et al. (38)
showed that miR-10b, miR-196a, miR-196b, miR-582-5p, miR-
15b, miR-301, miR-148b, and miR-128a were upregulated,
whereas miR-503 and miR-31 were downregulated in six oral
cancer cell lines compared with those in normal keratinocytes.
Specific miRNAs related to the clinicopathological features
of site-specific OSCC were investigated, which demonstrated
a significant difference in let-7a, miR-200c, miR-34a levels
between oropharyngeal and laryngeal cancers (39). In addition,
miR-21, miR-200c, and miR-34a were upregulated, and miR-
375 was downregulated in tumor tissues of all subsites when
compared with those in paired control tissues (39). Studies
also suggested that genes associated with the phosphoinositide
3-kinase (PI3K)/AKT and p53 signaling pathways, which are
involved in the OSCC carcinogenesis process, were regulated
through a set of dysregulated miRNAs, such as let-7a, let-7d,
let-7f, miR-16, miR-29b, miR-142-3p, miR-144, miR-203, and
miR-223 (40). Lamperska et al. (41) suggested that miR-21
and miR-205 could be used to analyze the clarity of surgical
margins, but they failed to find a correlation between miRNA
expression and clinical outcome and the course of illness.
Here, we considered only those studies that reported targeted
or genome-wide miRNA profiling either in cell lines or in
tumor samples.

These studies make it obvious that malignant OSCC tumors
have distinct miRNA expression profiles. Subsequently, the
regulatory network composed of these distinct miRNAs in the
malignant cell causes key downstream molecular alteration,
which ultimately leads to a distinct patient outcome (17, 28, 42).
It is evident from the above studies that the results are not always
consistent. The source of the problem could be found within
and among the studies. Variations are observed in study design,
end point objective, selection of cell lines, use of appropriate
controls (in most of the cases, adjacent normal tissues were used
which could harbor genomic alterations), methodology, protocol
or treatment strategies, and localized patient pools in these

studies. Further, purity and availability of tumor tissue, stromal
cell contamination, and small sample size may impact study
results. In most of the studies, intra/inter tumor heterogeneity,
variable etiopathogenesis, and heterogenous genetic constitution
of each patient are important factors that lead to variations in
results. Despite these limitations, the results of individual studies
demonstrate that miRNAs may be useful as potential biomarkers
to predict OSCC outcome. The present quantum of knowledge
lays the groundwork for logical implementation and execution of
large-scale studies with improved, standardized study protocols
in the future.

miRNA Expression Signatures Associated

With Risk Factors of OSCC
One miRNA profiling study comparing smoker and non-smoker
patients reported high miR-155 expression in 58% of OSCC cases
and 83% of dysplasia cases and subsequently suggested miR-155
as a driver of oral tumorigenesis in non-smokers (43).

The association of OSCC with betel quid was also analyzed
in OSCC specimens by another investigator who discovered
84 betel quid-associated mature miRNAs, of which 19 were
located on chromosome 14q32.2 (44). In this context, Hou et al.
(45) established that specific polymorphisms in miR-499a are
associated with OSCC progression. They discovered that the
T/C+C/C genotypes of miR-499a increased the risk of betel quid-
associated oral submucosal fibrosis (OSF) but decreased the risk
of OSCC. Further, miR-499a T>C (rs3746444) influences the
expression of miR-499-5p during OSCC carcinogenesis (45).

Several investigators have also conducted miRNA expression
profiling to compare HPV-positive and -negative OSCC tumors
and revealed that miR-127-3p, miR-363, miR-20a, miR-34a, let-
7c-5p, and miR-9 could effectively distinguish between the two
groups (39, 46–49). Different etiological factors causing distinct
patterns of miRNA expression have also been well-established by
several investigators. Most of the work has been done on HPV-
associated OSCC. The studies reveal little effect of tobacco and
betel quid on miRNA expression in OSCC compared with that in
HPV-associated OSCC.

Dysregulated miRNAs in Tumor Cells

Collected Through Non-invasive Brush

Biopsy
Recently, the more advanced brush biopsy or other related
scraper-based methods have offered non-invasive ways to
identify OSCC-specific miRNA biomarkers for diagnosis and
prognostication of the disease. Gissi et al., using brush biopsy
samples from OSCCs and from regenerative areas after surgical
resection and from their respective normal distant mucosa,
revealed that miR-146a and miR-191 were significantly altered
in the regenerative areas after OSCC resection (50). Studies also
claim that brush biopsy samples may be superior to surgically
dissected samples (51, 52). In brush biopsy, sampling sites
within lesions that are not ulcerated and are non-necrotic
and minimally friable make the samples homogeneous, with
viable epithelial cells. It must be noted, however, that in case
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of smaller tumors (T1, T2), there is a chance of normal
epithelial cell contamination in brush biopsy samples (51, 52).
For high-throughput technology (next-generation sequencing),
obtaining high quality and quantity of total RNA (or enriched
miRNA) from brush biopsy samples is the main challenge (51).
Quantitative real-time PCR (qRT-PCT) is a reliable method in
this case. miRNA profiles in individual brush biopsy OSCC
samples show∼50% overlap with miRNAs enriched in surgically
obtained tumor tissue profiles (51). The non-invasive rapid brush
biopsy methods are useful in obtaining homogeneous tumor
cells. Over the years, given all the limitations, the accuracy in
predicting OSCC-associated miRNA expression signature is still
to be improved for clinical applications.

CELL-FREE MicroRNA PROFILING:

POTENTIAL BIOMARKERS FOR LIQUID

BIOPSY

The most fascinating aspect of miRNA biology is the stable
presence of cell-free miRNAs in all biological fluids. Previous
studies have demonstrated that the stability of circulating cell-
free miRNA results from either internalization of miRNAs into
exosomes or other microvesicles or formation of complexes
between circulating miRNAs and specific proteins and lipids
(14–16, 53). These cell-free miRNAs are probably released by
cancer cells, necrotic cells, and/or apoptotic cells along with
their associated proteins or lipids, such as the RNA-binding
protein NPM1 (nucleophosmin), AGO proteins (argonaute 1/2),
and high-density lipoprotein (HDL), to avoid RNase degradation
in blood circulation (15, 16, 54). Further, the spectrum of
these cell-free miRNAs is altered by various pathophysiological
conditions, including cancer (42, 54–57). In OSCC, saliva is
one of the important sources to identify reliable biomarkers for
predicting diagnosis and prognosis. Blood (serum and plasma)
is another important sampling source. The sources of these
cell-free miRNAs are thought to be directly associated with
tumor pathogenesis and/or other related systemic physiological
(immune system/metabolic system) conditions (54–56).

Dysregulated Cell-Free miRNAs in

Biological Fluids of OSCC Patients
Saliva
Studies using human saliva samples have shown that salivary cell-
free miRNAs could be potential diagnostic biomarkers in OSCC
patients compared with those in healthy individuals (58–60).
Genome-wide expression patterns of miRNAs have revealed that
miRNA expression is significantly altered in the saliva of OSCC
patients compared with that in healthy controls. miR-125a, miR-
136, miR-147, miR-1250, miR-148a, miR-200a, miR-632, miR-
646, miR-668, miR-877, miR-503, miR-220a, and miR-323-5p
were downregulated, and miR-24 and miR-27b were found to be
upregulated. The studies revealed that miR-27b was significantly
upregulated in OSCC patients compared with that in healthy
controls, patients with OSCC in remission, and patients with oral
lichen planus and served as a biomarker to detect OSCC. Finally,

the studies concluded that miR-27b could be a valuable cell-free
biomarker in saliva for distinguishing OSCC patients (60).

Plasma
A study using plasma samples obtained at different time points
showed that plasma miR-146a levels were significantly higher
in OSCC patients (sensitivity: >0.72) than in healthy controls,
and these levels decreased drastically after tumor resection in
these patients (61). Similarly, higher plasma miR-187-3p level
was found to be another potential marker of OSCC diagnosis,
and the plasma levels of miR-187-3p were significantly reduced
after tumor resection in patients who had better prognosis (62).
Studies have also suggested that circulating miR-196a, miR-196b,
and miR-200b-3p levels in plasma might serve as a panel of
plasma biomarkers for the early detection of oral cancer (63–65).
In a separate study, three plasma miRNAs—miR-222-3p, miR-
150-5p, and miR-423-5p—were identified for early detection of
malignant OSCC (66). miR-222-3p and miR-423-5p negatively
correlated with T stage, lymph node metastasis status, and
clinical stage. A high diagnostic accuracy (area under curve =

0.88) was demonstrated for discriminating oral leukoplakia from
OSCC (66).

Serum
A miRNA microarray experiment using serum samples from
OSCC patients vs. healthy controls revealed 16 miRNAs
were significantly upregulated and 10 were significantly
downregulated in the patients. miR-483-5p expression was
significantly correlated (sensitivity = 0.853, specificity = 0.746)
with lymph node metastasis and shorter survival, suggesting
increased miR-483-5p expression in OSCC and suggesting its
potential as a novel diagnostic and prognostic biomarker for
OSCC (67). Further, low serum miR-9 level correlated with poor
prognosis of OSCC (68). Recently, another study compared the
circulating miRNA profile with the respective tumor-specific
dysregulated miRNA profile and suggested that hsa-miR-32-5p
in serum is a potential non-invasive biomarker for OSCC (69).

Whole Blood
Circulating miR-21 level and PTEN expression observed in
whole blood samples could be possible biomarkers for detection
of OSCC (70). Ries et al. (71–73) suggested that whole-
blood sample is more reliable than only one specific blood
component (serum/plasma/circulating cells) for identifying
miRNA biomarkers for OSCC using a minimally invasive
method. Microarray-based miRNA expression profiling was
performed on 20 whole-blood samples (in a PAXgene blood RNA
tube) fromOSCC patients and healthy volunteers, and the results
were validated through qRT-PCR using another 57 OSCC patient
samples and 33 healthy control samples. This study showed
that miR-186 was downregulated and miR-3651 and miR-494
were upregulated significantly in OSCC (71). In further studies,
the authors evaluated these circulating miRNA biomarkers
with diagnostic and prognostic significance in different patient
cohorts (72). They also showed that the circulating miRNA
expression signature (from whole-blood sample) was different
from the miRNA expression in OSCC tissues (73). This is
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probably because the changes inmiRNA expression in circulation
occur as a consequence of pathogenic reactions upon immune-
pathogenic interactions in response to cancer.

On the basis of all these studies, we can suggest that liquid
biopsy would be a reliable, consistent, rapid, easy, cheap, and
minimally invasive method to determine miRNA expression
signatures to predict OSCC diagnosis and prognosis (57, 74).
Evident challenges persist in terms of quality and quantity
(for high-throughput techniques) of RNA and usage of proper
endogenous controls for data normalization (75–77). To
overcome these issues, recently advanced instruments (Qubit,
concentrator, droplet digital PCR) and advanced modified assay
protocols (inclusion of exogenous spike-in-control and newly
identified endogenous cell-free control miRNA) have been
introduced to obtain reliable, potential predictive biomarkers
for OSCC (75, 77, 78). We prepared a list of dysregulated
miRNAs, in which each miRNA is representative of a particular
miRNA expression signature in tumor tissues/cell lines and/or
in circulation/other body fluids (Supplementary Table 1).
Individual studies on the effect of one/two miRNAs with clinical
significance were also included in this table. Each miRNA is
accountable either for sole or cumulative functions related to
OSCC pathogenesis, progression, differential tumor behavior,
aggressiveness, invasion, and metastasis, resulting in distinct
outcome for each patient with OSCC.

CLINICAL SIGNIFICANCE OF

DYSREGULATED MicroRNAs IN THE

DIAGNOSIS AND PROGNOSIS OF OSCC

miRNA Signature for Susceptibility to

OSCC
A major goal of precision medicine is to assess disease risk based
on the genetic makeup of an individual. SNPs in various miRNAs
have also been shown to be associated with different cancers.
Dysregulation due to distinct polymorphisms inmaturemiRNAs,
particularly miR-196a2 rs11614913 C>T, miR-146a rs2910164
G>C, miR-149 rs2292832 C>T, and miR-499 rs3746444 A>G,
are associated with the risk of OSCC (45, 63, 79). In addition,
polymorphisms in miR-146a [genotype: CC vs. GG + CG; odds
ratio (OR) = 0.874, p = 0.041] and miR-196a2 (genotype: TT vs.
TC + CC; OR < 1, p < 0.05) increase the risk of OSCC, whereas
the miR-499 polymorphisms (G allele and the GG genotype;
OR > 1, p < 0.05) exert protective effects against OSCC risk.
In this context, study results on miR-149 polymorphisms are
not significant. They are associated with both increased risk of
nodal metastasis and poor survival in OSCC, although another
research group disclosed that they appeared to have no significant
relationship with the risk of OSCC (80, 81).

miRNAs as Early Biomarkers for OSCC

Diagnosis
Early detection of OSCC allows clinicians to provide proper
administration of curative treatment long before it metastasizes
and progresses to the advanced stages. The identification of
biomarkers for early detection and prognostication of OSCC

through minimally invasive or non-invasive methods acquires
major emphasis in current investigative drives. A targeted
miRNA expression profiling study (using 22 oral leukoplakia
tissue samples with different grades of dysplasia, 17 OSCC
samples, and six normal oral mucosa samples) demonstrated
the prognostic values of miR-21, miR-181b, and miR-345 in oral
leukoplakia with severe dysplasia. Although dysplasia grading
is not a very reliable predictor, advanced aggressive dysplasia
progresses to OSCC (82). Other studies using tumor tissues
revealed that miR-137 and miR-29a/b/c could be potential
biomarkers for early diagnosis of OSCC. miR-29s (miR-
29a/b/c) were significantly downregulated in OSCC patients
(83). Consecutively, circulating miR-223 and miR-10b in plasma
were proposed to be potential biomarkers for early detection of
oral cancer (38, 84). Further, miR-146a, miR-187-3p, miR-196a,
miR-196b, miR-200b-3p, miR-222-3p, miR-223, miR-150-5p, and
miR-423-5p levels in plasma could also be potential diagnostic
markers for early detection of OSCC (61–66). A separate
study described serum miR-32-5p as a potential biomarker for
OSCC (69).

miRNAs as Biomarkers for OSCC

Prognostication
Lymph Node Invasion and Distant Metastasis in

OSCC
Epithelial–mesenchymal transition (EMT) of cancer cells is
directly associated with cellular migration/invasion leading to
cancer metastasis. In OSCC, ample dysregulated miRNAs have
been found to be involved in EMT, invasion, and metastasis,
which are primarily responsible for lymph node metastasis and
distant metastasis.

In preclinical OSCC cell lines, miR-130b, miR-134, miR-149,
miR-181d, miR-146b, miR-491, and miR-27a-3p are associated
with EMT and cellular migration through targeting BMI1,
MMP9, E-cadherin, and the YAP1-OCT4-Sox2 signaling axis (85,
86). High levels of miR-1275 and low levels of miR-222-3p and
miR-423-5p are correlated with induced regional lymph node
invasion in OSCC (40). Similarly, other studies have suggested
that upregulation of miR-187, miR-196b, miR-372, miR-373, and
miR-483 could be potential biomarkers for nodal metastasis in
HNSCC (38, 62, 67, 87–90). ZEB1, Twist, and Snail (EMT-
related transcription factors) are directly regulated by miR-
429 and miR-101 and inversely by let-7d and mediate tumor
growth and metastasis in OSCC (35, 91–93). Downregulation
of miR-300 is another requirement for EMT initiation and
maintenance, mediated through modulation of Twist expression
and the transforming growth factor (TGF)β signaling pathway
in OSCC (94). Bufalino et al. (95) demonstrated that lymph
node metastasis resulted from downregulation of the miR-
143/miR-145 cluster and consequent induction of activin-A,
which contributed to poor prognosis through induced EMT.
Similarly, RUNX2 is directly regulated by miR-376c-3p, which
was found to be downregulated and to promote lymph node
metastasis in OSCC (96). Other studies also demonstrated that
the miR-23b/27b cluster regulates the MET oncogene, whereas
miR-29a/b/c regulates the expression of MMP2, LAMC2, and
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ITGA6, responsible for disease invasion and metastasis in OSCC
(83, 97, 98). Further, miR-218 is directly correlated with increased
invasion and cellular migration mediated through LAMB3 and
RICTOR and the focal adhesion and mTOR-Akt signaling
pathways (99, 100). EGFR, c-MET, and KRAS are direct targets of
miR-1 and miR-206. Both these miRNAs, particularly miR-206,
are significantly associated with advanced tumor node metastasis
(node positivity in the Tumor Node Metastasis staging system)
and shorter overall survival in OSCC (101, 102). Moreover,
high expression of miR-196a and miR-149 polymorphisms is
associated with increased risk of nodal metastasis (63, 80).

Biomarkers for Locoregional Recurrence in OSCC
The evolution of second primary or locoregional recurrence
is unpredictable. In most cases, relapses are detected in
late stages, which significantly reduce survival and worsen
morbidity. Salvage surgery can cure recurrent tumors effectively
if detected early.

Low miR-422a expression in stage III–IV tumors promotes
local recurrence via targeting oncogenic CD73 when compared
with that in oropharynx stage III–IV tumors, without relapse
or with locoregional relapse within 2 years of posttreatment
(103). Other studies have shown that miR-196a, miR-205,
and miR-675 are significantly associated with locoregional
recurrence at diagnosis and treatment in OSCC (35, 80, 103,
104). miR-451 was found to be significantly overexpressed (4.7-
fold) in non-relapsed vs. relapsed patients (37). Furthermore,
locoregional recurrence in OSCC is also significantly affected
by polymorphisms in miR-196a (63). All these indicators could
be building blocks for developing meaningful biomarkers for
early disease prognostication, recurrence, and/or metastasis in
the clinical setting.

Dysregulated miRNAs Associated With Response to

Chemoradiation Therapy in OSCC
Until date, cetuximab is the only clinically applied targeted drug
used to treat patients with OSCC. However, the occurrence of
therapeutic resistance or non-responsiveness has been found
during chemotherapy/radiotherapy treatment in patients with
OSCC. Several studies identifiedmiRNAs as potential biomarkers
to predict the sensitivity/resistance of tumors to chemotherapy
or a particular drug used in chemotherapy and radiotherapy
for OSCC.

Henson et al. (105) showed that the amplification of
chromosomal band 11q13, loss of distal 11q, and downregulation
of miR-125b and miR-100 are associated with radioresistance
and disease progression (105, 106). In our previous study, we
identified six cisplatin resistance-specific signature miRNAs—
miR-130b, miR-134, miR-149, miR-181d, miR-146b, and miR-
491. These miRNAs function in OSCC mainly through
modulating the expression of proteins related to cancer stem
cells (augmentation of CD44, c-Myc, and Oct-4), drug resistance
(upregulation of P-gp and MRP1), and EMT (increase in BMI1
and MMP9 expression and loss of E-cadherin) (85). Low miR-
29a level is reported to be associated with induced drug resistance
and invasion (97). High miR-196a and miR-21 levels enhance
radioresistance through inhibiting annexin A1 and signal

transducer and activator of transcription 3 (STAT3), respectively
(107, 108). Moreover, low Dicer expression is associated
with resistance to 5-fluorouracil-based chemoradiotherapy and
shorter overall survival in patients with OSCC (109). In brief,
upregulation of the let-7 family, miR-203, miR-23a, miR-214,
miR-518c, and miR-608 and downregulation of miR-21 and miR-
342 have been shown to be connected with the manifestation
of chemosensitivity/chemoresistance in OSCC (91, 110, 111).
Moreover, therapeutic resistance is mediated through EGFR and
c-MET, which are further alleviated by low levels of miR-1 and
miR-206 in OSCC (102). However, determination of the exact
range (single/panel) of these miRNA biomarkers as well as the
spectrum of their expression level needs to be extremely accurate,
sensitive, and specific in order to predict optimum therapy
response in OSCC.

Biomarkers for Prediction of Patient Survival in OSCC
The relation between disease-free survival and overall survival of
OSCC patients and aberrant miRNA expression has been studied
by several investigators. Early detection and prompt treatment
using suitable multidisciplinary protocols could improve survival
in OSCC. Earlier evidence has shown that irrespective of tumor
size, poor patient survival is significantly correlated with lower
expression levels of miR-9, miR-149, miR-150-5p, miR-200b,
miR-205, miR-375, miR-483-5p, miR-542-3p, and let-7d (35, 62,
68, 103, 104, 112–118). Concurrently, it was also found that
overexpression of miR-1246 and miR-675 and downregulation of
miR-187 andmiR-134 in plasma are associated with better patient
survival in OSCC (35, 62, 67, 68, 103, 104, 112–118). Moreover,
other studies discovered that decreased levels of Dicer and miR-
206 correlate significantly with lower overall survival in OSCC
(101, 109).

ADVANCED THERAPEUTICS BASED ON

MicroRNA EXPRESSION IN ORAL

SQUAMOUS CELL CARCINOMA

As described above, a variety of tumor-specific dysregulated
miRNAs have been identified in OSCC, with either tumor
suppressor or oncogenic functions. However, the challenges
that remain for therapeutic application of miRNAs in OSCC
are as follows: (a) miRNA selection, (b) complex regulatory
mechanisms, (c) delivery, (d) pharmacokinetics, and (e) toxicity.
Nevertheless, being endogenous molecules, miRNAs exhibit
low toxicity in humans. Further, owing to their small size,
miRNAs can be introduced into the system through different
delivery methods.

In this context, so far, miRNA sponging, locked nucleic acid-
mediated suppression of oncogenic miRNAs, and replacement
of tumor-suppressive miRNAs using respective mimics/viral
vectors/small compounds have already been used for different
cancers (17, 119). To this end, the efficacy and accuracy of
the miRNA delivery system are very important. Two main
miRNA delivery approaches have been described: local (intra-
tumor) and systemic. Systemic approaches would be suitable for
metastatic or late-stage advanced cancers. The miRNA could
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be conjugated with a folate ligand, such as vitamin B9, for
selective delivery to treat the cancer (17, 119). In addition,
exosome/microvesicle/liposome-mediated delivery of miRNAs
could also be used as novel tools for miRNA-based cancer
therapy (53). Interestingly, therapeutic delivery of miRNA may
be possible just through oral intake of vegetables, since it has
been found that humans and animals can acquire plant miRNAs
in their sera or body fluids through food intake (120). The first
miRNA-based therapy specifically for cancer is MRX34, wherein
a synthetic miR-34amimic is loaded into liposomal nanoparticles
(121). Quantification of MRX34 in non-human primates has
established a satisfactory 7.7 h half-life in whole blood (122).
Currently, only two observational miRNA-based therapies, miR-
29b and miR-29, have progressed to clinical trials (Trial ref
No.: NCT02009852 and NCT01927354, respectively) for OSCC.
Further studies on miRNA-based diagnostics and therapies need
to be evaluated extensively for OSCC treatment.

CONCLUSION

This review highlighted the functional landscape of dysregulated
miRNAs in OSCC from a clinical perspective. We identified
17 miRNAs (let-7d, miR-1, miR-125b-5p, miR-138-5p, miR-
142, miR-145, miR-155, miR-16, miR-196a, miR-196b, miR-
200c, miR-20a-5p, miR-21-5p, miR-218, miR-31-5p, miR-34a,
and miR-375) commonly dysregulated in OSCC and that have
been found to have clinical significance in three ormore extensive
studies. We also found 22 miRNAs (let-7d, miR-125b-5p, miR-
145, miR-146a, miR-150, miR-16, miR-184, miR-191, miR-196a,
miR-196b, miR-21-5p, miR-223, miR-24, miR-26a, miR-27b,
miR-29a, miR-31-5p, miR-32-5p, miR-375, miR-451, miR-9 and
miR-99b-3p) to be significantly dysregulated in two or more
clinical sample types (tumor tissues/epithelial cells and one or
more circulating body fluid) collected from OSCC patients.
These miRNAs could have the potential for clinical application
for disease diagnosis, patient stratification, and therapy in
OSCC. Six miRNAs (miR-146a, miR-148a, miR-24, miR-438-
5p, miR-9, and miR-99b-3p) which are common to different
types of biological fluid samples (blood/plasma/serum/saliva)
from OSCC patients could be potential biomarkers through
minimally invasive or non-invasive methods to predict OSCC
more accurately. Logical selection, validation, and confirmation
of these potential miRNA biomarkers (single/panel) are very
important for augmenting their specific clinical applications
in OSCC.

The number of human miRNAs (>2,600) in miRbase
significantly increases in every successive version of the
database (recent is v22.1) due to continuous inclusion of
novel miRNAs (123). In most of the cases, the newer studies
came up with new sets of dysregulated miRNA signatures
for OSCC detection and prognostication. Therefore, large
differences are frequently found in the results of similar older
studies and current large-scale data sets. The ethnicity of the

recruited patient population is also an important issue in this
situation. In the current review, importantly, we summarized
the recent progress on elucidating the clinical significance
of miRNAs (tumor-associated or circulating), especially with
respect to possible ways to develop miRNA-based detection
and prognostication methods in conjunction with available
techniques. Recent evidence increasingly demonstrates that cell-
free miRNAs are evolving as consistent and reliable biomarkers
for early detection, disease monitoring, and patient stratification,
as well as guides to optimum treatment protocols for patients
with OSCC.

In conclusion, a wide variety of dysregulated miRNAs
contribute to the OSCC phenotype and differential patient
outcomes, including tumor progression, therapy response,
recurrence, metastasis, and survival. Moreover, miRNA-
mediated regulatory mechanisms are complex and tangled with
numerous interconnected physiological events. Here, one of
the biggest challenges is to identify the tailor-made potentially
relevant key miRNA candidates (single or in spectrum) along
with or without their key targets for detection of disease and
stratification of each patient with OSCC. Therefore, on the
basis of our previous knowledge, careful, logical selection, and
functional characterization of signature miRNAs (mentioned
above) are very important. Standardized validation studies
must be undertaken to ensure the sensitivity, specificity, and
robustness of the signature miRNAs for individual patient
conditions. Thus, well-designed, multicentered, prospective
trials with large patient cohorts would be necessary to mitigate
external variations in data sets. This will provide useful
information for molecular diagnostics and determination of
prognostic information for improved management of OSCC.
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