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Metal ions, such as selenium, copper, zinc, and iron are naturally present in the

environment (air, drinking water, and food) and are vital for cellular functions at chemical,

molecular, and biological levels. These trace elements are involved in various biochemical

reactions by acting as cofactors for many enzymes and control important biological

processes by binding to the receptors and transcription factors. Moreover, they are

essential for the stabilization of the cellular structures and for the maintenance of genome

stability. A body of preclinical and clinical evidence indicates that dysregulation of metal

homeostasis, both at intracellular and tissue level, contributes to the pathogenesis of

many different types of cancer. These trace minerals play a crucial role in preventing

or accelerating neoplastic cell transformation and in modulating the inflammatory and

pro-tumorigenic response in immune cells, such as macrophages, by controlling a

plethora of metabolic reactions. In this context, macrophages and cancer cells interact in

different manners and some of these interactions are modulated by availability of metals.

The current review discusses the new findings and focuses on the involvement of these

micronutrients in metabolic and cellular signalingmechanisms that influencemacrophage

functions, onset of cancer and its progression. An improved understanding of “metallic”

cross-talk between macrophages and cancer cells may pave the way for innovative

pharmaceutical or dietary interventions in order to restore the balance of these trace

elements and also strengthen the chemotherapeutic treatment.
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INTRODUCTION

Tumors occur as a result of the complex interaction between malignant, stromal, immune
cells, and vascular system, as these different components communicate with each other
via cell–cell contact-dependent mechanisms, soluble messengers and metabolites (1, 2). It
is firmly established that the immune system can be reprogrammed by tumor cells to
become ineffective, inactivated, or even acquire a tumor promoting phenotype (3). In this
special tumor microenvironment the macrophages are particularly abundant and play an
important role in tumor development by modulating inflammation, immune suppression,
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and angiogenesis (2). Many kinds of molecules including growth
factors, inflammatory cytokines, chemokines, reactive oxygen,
and nitrogen species (ROS and RNS, respectively) from tumor-
associated macrophages (TAMs) are involved in the maintenance
of a pro-tumorigenic microenvironment and in facilitating
metastatic dissemination (3). Recent evidences have highlighted
the metabolic signals as important mediators of macrophage
function in the crosstalk between cancer and the immune
system (4–6). In this metabolic context, cancer patients are
characterized by a variety of perturbations in homeostasis of
metal ions such as zinc, iron, selenium, and copper both at
intratumoral and systemic level (7, 8). A large body of preclinical
and clinical studies related to dietary deficiencies, indicates
that this metal dysregulation triggers neoplastic transformation
of cells and/or reduces anti-tumorigenic functions of immune
cells by controlling a plethora of chemical and biological
reactions (9). Selenium, copper, zinc, and iron are chemical
elements of particular interest given their natural presence in the
environment (air, drinking water, and food) and their capacity
to stabilize cellular structures, to protect the genome stability,
to control metabolic enzymes, receptors, transcription factors at
very small concentrations (8, 10). The purpose of this review
is to consider the contribution of these trace elements during
neoplastic transformation and their involvement in tumor-
induced immune evasion (7). Here, we will focus on how
metal ions modulate TAMs functions in sustaining immune-
suppressive environment that protects tumor cell growth or
conversely, how the activity of cancer cells influences TAMs via
metallic interplay. New pharmaceutical or dietary intervention
strategies with the aim of restoring metal homeostasis, may in
the future arise from an improved understanding of “metallic”
crosstalk between macrophages and cancer cells.

MAIN

Zinc
Zinc is a vital mineral in many homeostatic mechanisms of
the body (11). It activates metabolic enzymes, it is involved in
carbonic acid and alcohol formation, it acts as a cofactor for some
antioxidant enzymes, such as superoxide dismutase (SOD) and it
is essential for the activity of transcription factors and/or proteins
regulating gene transcription (9, 10, 12). It is also involved in
the signaling pathways of proliferation, differentiation, apoptosis,
and cell cycle regulation. Zinc is also crucial for the immune
system, since its dyshomeostasis has an effect on proliferation,
activation, and apoptosis of immune cells such as monocytes,
natural killer-, T-, and B-cells (12, 13). Due to its ubiquitous
presence, the immune-modulating properties and the potential
ability to alter the function of various important proteins, zinc
plays both a direct and an indirect role in the initiation and
progression of cancer (14, 15). Moreover, zinc might enhance
or decrease the signaling between immune cells and neoplastic
cells, by altering membrane structure and receptor expressions
(9). The role of zinc homeostasis in regulation of immune
system and tumor progression is very complex, depending on
its concentration, distribution as well as its temporal pattern
(16, 17). Indeed, Zn appears to be protective in some conditions,

whereas it is harmful in cases of environmental overexposure (8).
Intake of dietary zinc is associated with a reduced risk of gastric,
breast, esophageal, prostatic, and colorectal cancer (16), but at
plasma concentrations not exceeding 30µM, in order to avoid
immune-suppressive effects (9).

Role in Cancer Cells
Many studies support the involvement of two families of metal
transporters, namely ZnTs and ZIPs, in different types of cancers
(17, 18). The ZnT (SLC30) family reduces cytoplasmic zinc
concentrations whereas the ZIP (SLC39) family does the opposite
function (19–21). Zn transporters are regulated by the status
of zinc itself, hormones, growth factors, as well as cellular
redox status (22). Their altered levels of expression or abnormal
activities contribute to Zn dyshomeostasis in prostate, pancreatic,
breast, and esophageal cancers (16, 17). Ambiguous changes
in the expression levels of the zinc efflux transporters (ZnTs)
have also been observed during tumorigenesis (21). On one
hand, ZnT1 and ZnT2 expression increases in highly aggressive
and metastatic basal breast cancer compared to low-invasive
luminal, making the cells resistant to Zn toxicity (19, 23, 24).
On the other hand, in different cases of more advanced prostatic
cancer, ZnT1 and ZnT4 expression (in cytoplasmic vesicles, Golgi
apparatus, and plasma membrane) decreases (23–25). Notably,
ZnT transporters levels are very low also in pancreatic cancer
compared to normal tissues (16, 25), while ZnT7 gene expression
is up-regulated in esophageal cancer (17).

Compared to ZnT transporters, many more data are available
regarding the association between zinc influx transporters (ZIP)
and cancers (11, 19, 24, 25). ZIP1–4 is down-regulated in
prostate cancer tissues resulting in low Zn levels in prostate
gland (18). Zinc deficiency in prostatic cancer cells is responsible
for an increased activity of mitochondrial aconitase and
cytochrome c reductase, with consequent high citrate oxidation
and respiration, as well as high rate of proliferation and
invasiveness (26). In pancreatic cancer tissues all ZIP proteins
with the exception of ZIP4 are downregulated, leading to low
intracellular Zn concentrations, and increased resistance of the
malignant cells to Zn cytotoxic effects (11, 13). In different breast
cancer subtypes, zinc distribution, and zinc influx transporter
levels show distinct profiles (16, 25). The luminal breast cancer,
compared to the basal one, displays the upregulation of several
ZIP proteins (ZIP 3, 5, 6, 10, 14) suggesting an increased
need of cellular Zn uptake to meet the metabolic demand (25).
Intracellular Zn homeostasis is tightly controlled not only by the
regulation of the flux across the membranes, but also by buffering
of free Zinc by metallothionein and its storage in subcellular
organelles, such as vesicles (17, 24). Metallothioneins are small,
cysteine-rich, metal-binding proteins which are responsible for
maintaining metal homeostasis by acting as metallochaperones,
metal donors, and acceptors for enzymes and transcription
factors (22). In advanced prostate cancer the expression of
metallothioneins, particularly MT1 and MT2, is lower compared
to normal tissue and this is associated with increased risk of
cancer relapse (21, 24). Conversely, the aggressive basal-like
breast cancer exhibits higher levels of metallothioneins than
luminal (ER+) and HER2 overexpressing tumors, in order to
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buffer cytoplasmic Zn and protect the malignant cells from Zn
toxicity (21, 25). The behaviors of malignant cancer cells that
might appear contradictory in terms of Zn management, within
the same type of tumor, must be contextualized to the molecular
phenotype of cancer, degree of invasiveness, metastatic potential,
and response to therapy. For example, the high invasive basal-
like breast cancer tends to throw out and chelate zinc (21, 25),
probably with the aim to preserve mitochondrial aconitase and
cytochrome c reductase activities and to sustain high oxidative
metabolism. Whereas the luminal-like is more inclined to zinc
uptake (17), probably in order to avoid an uncontrolled oxidative
damage through superoxide dismutase (SOD) activity. The
complex interplay between zinc transporters/metallochaperones
and zinc signaling is just beginning to be deciphered and requires
further investigation. Despite accumulating evidences, whether
the accumulation of intracellular zinc pools or the Zn secretion is
a “driver” for carcinogenesis is still unclear.

Role in Macrophages
The regulation of zinc homeostasis is particularly complex
also in immune cells, in particular macrophages. Multiple
ZnT/ZIP members are expressed in macrophages, indicating that
these transporters have a very important role in physiological
conditions (13, 27). Various functions, such as phagocytosis
or the secretion of immune-mediating factors can be impaired
by deregulation of zinc homeostasis, which ultimately leads
to induction or exacerbation of various inflammatory and/or
disease processes (22, 28, 29). The relationship between zinc
and macrophage functions is very controversial and difficult
to figure out. For example, while intracellular zinc levels
are induced during early stage of macrophage differentiation
whereby they enhance the adhesion process, zinc deficiency
inhibits many functions including intracellular killing, cytokine
production, and phagocytosis (30, 31). On the one hand, Zn
depletion increases monocytes maturation into macrophages
(12, 29, 32), on the other hand, it induces apoptosis in
macrophages by p53-dependent mechanisms (31, 33). The
relationship between zinc and oxidative burst after bacterial
infection is also a matter of debate (22, 34). Indeed macrophages
utilize two opposite strategies to kill phagocytosed pathogens,
(i) by reducing the phagosome zinc content or (ii) by
intoxicating them with excess amounts of this metal (12).
The relationship between zinc and inflammatory signaling in
monocytes/macrophages is still unclear. Chronic zinc deficiency
activates the NLRP3 inflammasome and induces the secretion
of IL-1β in macrophages, while a short term deficiency inhibits
inflammatory activation (29). In addition, LPS treatment of
human macrophages in zinc supplemented media increases ZIP8
expression and zinc uptake with consequent C/EBPβ inhibition
and the subsequent increase in the pro-inflammatory cytokine
response (35).

Zn homeostasis in pro- and anti-inflammatory conditions is
also controlled by metallothioneins (MTs). These metal-binding
proteins play a fundamental role in macrophage function and
in cytokine signaling modulation (12, 22). In response to the
pro-inflammatory or M1 cytokines, the macrophages increase
Zn uptake by ZIP2 and Zn sequestration by MT1 and MT2,

in order to yield a Zn-deficient environment and “steal” this
essential element to the pathogen (34, 36). In M2 macrophages
polarized with IL-4 or IL-13, MT3 is elevated and suppresses
macrophage defenses (22, 36). MT3 renders Zn-pool labile and
readily accessible to the pathogen, instead of sequestering it
(34, 36). Overall, a lot is yet to be unveiled about the involvement
of the metallothionein-Zn axis in immune processes. Indeed,
the literature concerning the role of TAMs in maintaining of
zinc homeostasis into tumor microenvironment is presently
very limited. Ge et al. have highlighted that ZIP8 mediates Zn
uptake and that different metallothioneins are induced in TAMs
obtained from monocytes treated with melanoma-conditioned
medium (30). They concluded that metallothioneins in TAMs
sustain high levels of intracellular zinc protecting the cells from
stress-induced apoptosis. Overall, the mechanism of how MTs
and Zn transporters control TAMs functions in the tumor is
limited and further investigation is required.

The “Metallic” Cross-Talk Between Macrophages and

Cancer Cells
Our understanding of the significance of ZnT, ZIP, and MTs
expression within cancer cells and macrophages is still primitive.
ZnT, ZIP, and MTs gene expression varies not only in different
tumors but also within the tumor. Elevated zinc levels in tumor
are characteristic of patients displaying breast, esophageal, lung,
and gastrointestinal cancer (16, 17). Zn accumulation in these
tumors is in agreement with increased expression of cellular
Zn importing proteins compared to normal tissues, suggesting
that this mechanism allows them to survive (17). Additionally,
liver, kidney, and lung metastasis display higher zinc content in
peritumoral tissue than the corresponding normal one or the
tumor itself (13).

Zinc levels can be directly affected also by the tumor
microenvironment. For example, pro-inflammatory mast cells
release into cancer microenvironment granules of zinc affecting
the cellular response and worsening the prognosis of most cancer
patients (13). In this context, one could speculate that M2-like
macrophages in the tumor microenvironment render Zn-pool
labile and readily accessible to the cancer cells by MT3 and
ZnT efflux transporters (Figure 1). Unlike other cancer types,
prostate, and skin tumors display lower zinc levels compared to
normal tissues (13). Malignant prostate cells are deprived of the
ability to accumulate zinc, due to the loss of ZIP1 expression
and this is correlated with a metabolic transformation (26). In
agreement with Zn “phobic” phenotype of skin tumor, TAMs
obtained from monocytes treated with melanoma-conditioned
medium, import zinc, and sustain high intracellular levels by
upregulating ZIP8 and metallothioneins (30), thus contributing
to protection of cancer cells (Figure 1).

Although it is not applicable to any tumor type, it is possible
to hypothesize that higher or lower Zn addiction might represent
one of the mechanisms by which cancer cells apply a metabolic
pressure on the TAMs, leading to immunosuppression, or
conversely confer metabolic support to cancer cells.

Evidence of zinc crosstalk between cancer cells and
macrophages could unveil a totally new scenario in which
novel cellular targets for therapeutic intervention may emerge.
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FIGURE 1 | Zinc accumulates in cancer cells or macrophages depending on the type of tumor. Zn accumulation is characteristic of breast, esophageal, lung, and

digestive cancer, and correlates with increased expression of cellular Zn importing proteins (ZIP), suggesting that this mechanism allows them to survive. In this

context, the M2-like macrophages in the tumor microenvironment could render Zn-pool labile and readily accessible to cancer cells by metallothionein MT3 and ZnT

efflux transporters. Unlike other cancer types, prostate and skin tumors have zinc levels lower than normal tissues. Malignant prostate cells lose zinc importer protein

ZIP1 and the ability to accumulate zinc, this in turn is associated with a metabolic rewiring, an increased activity of mitochondrial aconitase (ACO) and consequent

high citrate oxidation and respiration. In skin tumor, TAMs import zinc and sustain high intracellular levels by upregulation of ZIP8 and metallothioneins, so contributing

to protection of cancer cells from Zn toxicity. Higher Zn abduction might be inferred as one of the mechanisms through which TAMs sustain high oxidative metabolism

of cancer cells. In parts the figures are based on speculations and have been prepared by assembling in-house built cellular metabolic pathway outlines with a

modified and adapted version of BioRender images.

Opportunities for Improvement of Cancer Therapy
Several studies suggest the correlation between zinc deficiency
and cancer, and some of them support the necessity of
zinc supplementation in preventing or treating tumors (9,
37). Yu and co-workers have demonstrated in a murine
model of pancreatic cancer that its supplementation via zinc
metallochaperones (ZMCs) is able to reactivate quickly and
effectively zinc deficient mutants p53 and to recover their wild
type transcriptional activities and pro-apoptotic mechanisms
(38, 39). These pre-clinical studies might be translated to
patients once p53 status of their tumors and zinc-deficient
mutations are determined (38). Another way to replenish zinc
is by the administration of zinc oxide (ZnO) nanoparticles
or sulfate/gluconate formulations. Zn gluconate, used as an
adjuvant therapy, has demonstrated its efficacy in stimulating the
immune system and in improving the effects of chemotherapy
against acute lymphocytic leukemia (Table 1) (44). Zinc sulfate,
although at concentrations which exceed those observed in
plasma, has revealed cytotoxic effects in colon cancer cells

and tumorigenic esophageal epithelial cells (Table 1) (40, 41).
Moreover, as well as zinc oxide (ZnO) nanoparticles, zinc
sulfate induces a proinflammatory phenotype in a macrophage
cell line and in peritoneal macrophages (Table 1) (31, 35),
and this may pave the way for innovative TAM-specific
agents able to switch the M2-like phenotype toward a tumor-
inhibiting M1-like phenotype. On the other hand, excessive
zinc supplementation can generate side effects, such as high
blood pressure (45). Before starting zinc-based therapy, it
would be essential to profile zinc levels in patients and to
contextualize them to the molecular phenotype of cancer,
histological grading, metastatic potential etc. In luminal-like
breast cancer context characterized by zinc requirement, a
zinc-based therapy would be counterproductive since it would
increase the aggressiveness of the tumor, whereas it would
be useful a therapy with strong zinc-chelators. Hashemi and
co-workers have demonstrated the cytotoxic power of the
cell membrane permeable zinc chelator, N,N,N’,N’-tetrakis(2-
pyridylmethyl)ethylenediamine (TPEN) and the membrane
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TABLE 1 | Effects of Zinc on cancer cells and macrophages at different concentrations.

Zn sulfate Effects on cancer cells References

25µM The proliferation curve of cancer cells does not change. No apoptotic neither necrotic effects. (40)

50µM The proliferation curve changes in some cancer cells. Zinc inhibits store-operated calcium

entry and intracellular Ca2+ level. No apoptotic neither necrotic effects.

(40)

75µM Zn significantly affects the growth of cancer cells. No apoptotic neither necrotic effects. (40)

>75µM Zn induces significant growth inhibition a.Many round-shaped and floating dead cells suggest

zinc cytotoxicity at these concentrationsb.

a(41)
b(40)

50µM Zn promotes M1 polarization and decreases M2 polarization. (32)

5, 45, 68, 147 µg/dL Zinc in co-administration with LPS (100 ng/mL) decreases IL-10 and increases TNFα, IL-8,

and IL-6 expression in dose dependent way.

(35)

ZnO (NPs) Effects on macrophages References

From 10−7 to 10−3 µg/mL NPs induce the polarization of M0 macrophages into M1-like phenotype. (42)

Zn gluconate Effects in patients References

3.18 mg/kg body

weight/day

As adjuvant therapy Zn stimulates the immune system and improves the effects of

chemotherapy against acute lymphocytic leukemia.

(43)

impermeable zinc chelator, diethylenetriaminepentacetic acid,
(DTPA) against breast cancer cells (46).

Iron
Iron (Fe) is an essential metal for mammalian cells, since
Fe-S clusters are the basis of the catalytic activity of many
enzymes necessary for heterochromatin stabilization, epigenetic
modulations, mitochondrial respiration, TCA cycle etc (47). Iron
exhibits a dual effect: on one hand it promotes cell proliferation
and growth, on the other hand can induce oxidative damage to
DNA, proteins, lipid membranes (i.e., ferroptosis) by production
of free oxygen species (ROS) through Fe2+-O2 reactions and
Fenton chemistry (48). Due to iron ability to cause severe
DNA strand breaks and modulate epigenome, its dyshomeostasis
could be responsible for neoplastic transformation and aggressive
tumor cell behavior (48, 49).

Role in Cancer Cells
Iron homeostasis and cancer biology are tightly inter-connected,
indeed the iron pool is necessary not only for early steps of tumor
development, enhanced survival, and proliferation of neoplastic
cells, but also for the promotion of metastatic cascade (47, 50).
Here, iron is involved in remodeling the extracellular matrix and
in the motility of cancer cells (50). Therefore, not surprisingly,
elevated levels of Fe have been identified as a risk factor in cancer
development and progression (47, 51). In this regard, the role of
iron in cancer has been also highlighted by several in vivomodels
(47, 52). In particular, a low-iron diet has been shown to be
effective in delaying tumor growth and increasing the survival of
mice (53). Malignant tumors display the overexpression of many
iron-related genes, and for this reason they compete with liver
and spleen for Fe storage, leading to inadequate erythropoiesis
and eventually anemia (54). The expression in cancer cells of
genes, such as the transferrin receptor (TfR1), ferritin light chain
(FTL), and the iron regulatory protein (IRP)-2, is associated
with poor prognosis, a higher grade of tumor, and increased
resistance to chemotherapy (55, 56). Tumor cells increase iron
uptake through the upregulation of divalent metal transporter-1

(DMT1), transferrin/transferrin-receptor (Tf/TfR), and lipocalin-
2/lipocalin-2receptor (Lcn-2/Lcn-2R) systems, and its storage by
ferritin (FT) heavy chain (FTH) and FTL overexpression (48,
57). The increased iron level in cytosolic compartment supports
cellular proliferation and survival functions via cyclinD1/CDK4
overexpression—p21 down regulation and via perturbations
in the global histone and DNA methylation (49, 58). At the
same time, cancer cells increase mitochondrial uptake of iron
via mitoferrin-2 (Mfrn-2) and upregulate frataxin in order to
sequester excess iron (that could lead to increased oxidative
stress) and deliver it to Fe-S cluster assembly enzyme (ISCU),
to allow for Fe-S cluster formation (58–60). To reduce the risk
of iron overloading-dependent lipid peroxidation (that leads
to non-apoptotic form of cell death known as ferroptosis)
cancer cells rely on the selenoprotein glutathione dependent
peroxidase 4 (GPX4) activity, which decreases intracellular
radicals and protects mitochondrial metabolism from ROS-
induced membrane damage (61, 62). Iron accumulation in
cancer cells is also exacerbated by deregulation of iron exporter
ferroportin1 (FPN1). In invasive tumor areas, FPN expression is
lower compared to normal tissue and inversely correlated with
patient survival and disease outcome (48, 63, 64). The expression
of FPN is regulated by hepcidin, a protein linked to cancer driven
inflammation which induces internalization and degradation of
FPN upon its binding (48, 65). In cancer patients, elevated
levels of hepcidin allow to control local tumor iron efflux by an
autocrine/paracrine regulatory mechanism (48, 66). Given the
complex network of iron regulatory genes in cancer cells a better
understanding of their regulation and interplay is necessary.

Role in Macrophages
Immune cells such as macrophages and T cells require iron
to shape their phenotype and determine their responses (67,
68). Macrophages have a very important role to play in iron
recycling from the RBCs. In spleen and liver, macrophages
swallow up senescent RBCs and heme oxygenases (HO-1 and
HO-2) catabolize the heme. The iron resulting from this
process is then stored either in ferritin (FT) or exported
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via ferroportin (FPN) (69, 70). The FThigh and FPN1low

pro-inflammatory macrophages display an iron sequestering
phenotype characterized by iron withdrawal, restriction and
storage (71, 72). Furthermore, these kind of macrophages
enhance the uptake of iron-containing heme clusters and the
expression of heme oxygenase 1 (HO-1) in order to recycle heme-
iron and increase labile iron pool (LIP) (71, 72). It is worthy
of interest that excess amounts of heme or iron in hemorrhagic
tumor areas, caused by hemolytic red blood cells (RBCs), shift the
pro-tumoral macrophage phenotype toward a pro-inflammatory
and anti-tumoral one, which in turn exacerbates tissue damage
(67). On the other hand, the FTlow FPN1high anti-inflammatory
macrophages are predisposed to iron export and redistribution
to the extracellular space, supporting the demand of surrounding
cells (47, 71, 72). It has been widely demonstrated, both in
vitro and in vivo, that anti-inflammatory macrophages TAMs
adopt a strong iron-release phenotype that contributes to tumor
cell proliferation and growth (57). In some cases, the inability
of their FPN to export iron, due to the high levels of local
hepcidin, is bypassed thanks to the increased expression of high-
affinity iron-binding protein lipocalin-2 (Lcn-2) (47, 57). Since
tumors demand an excess of iron, further investigations on TAM
heterogeneity and iron plasticity are urgently needed.

The “Metallic” Cross-Talk Between Macrophages and

Cancer Cells
In the tumor microenvironment both tumor and immune cells
compete for nutrients and metal elements such as iron (47,
48, 73). As mentioned before, iron plays also an important
role in cancer development (48). Several evidences firmly
established the concept of iron crosstalk between cancer cells
and macrophages (47, 74). During early stages of carcinogenesis,
pro-inflammatory cytokines and the exposure to hemolytic red
blood cells (RBCs) shift the macrophages toward an iron loaded
phenotype (67). Consequently, it is not surprising that cancer
and macrophage cells compete for iron uptake in the tumor
microenvironment. Later, the pro-tumoral/anti-inflammatory
macrophages adopt an iron-release phenotype and donate iron
to the tumor microenvironment to support cancer progression
(75) (Figure 2). Iron can be released via FPN and loaded
onto circulating Tf for its uptake by cancer cells via the TfR.
Alternatively, TAMs can rely on lipocalin-2 or ferritin release to
transfer iron (47, 74, 76). To date, it is not known if iron removal
from tumor microenvironment by iron-demanding cancer cells
could be responsible for a shift toward a pro-tumoral and
anti-inflammatory M2-like phenotype, as it happens in a renal
inflammatory context (77). A better understanding of how iron
controls crosstalk betweenmacrophages and cancer cells requires
further investigation.

Opportunities for Improvement of Cancer Therapy
Considering the role of iron in regulating immune and cancer
cells functions, therapies targeting iron metabolism are urgently
needed. Cancer cells are iron influx dependent, and in line
with this concept the application of iron chelators, dietetic
iron depletion, and interference with the hepcidin pathway
represents a first intervention strategy in vivo and in vitro

(47, 78, 79). Various iron chelators able to inhibit cancer cell
growth and modulate global histone and DNA methylation have
been employed for iron overload disorders (49, 51). But to
date, none has obtained approval for the cancer treatment, due
to unfavorable pharmacokinetics and lack of selectivity (48).
At the same time, several drugs and antibodies that interfere
with hepcidin expression or activation have been developed
with promising effects, but unfortunately, the lack of long-term
follow-up studies in patients does not allow to predict their
efficacy and safety (80–82). Moreover, some FPN stabilizers are
being developed, in order to reactivate iron efflux from tumor
cells (48, 81). However, since the pathways that regulates the
hepcidin-FPN axis are complex, further studies are needed.
Another emerging possibility is to target excess iron in tumor
cells through induction of ferroptosis (48, 83, 84). In this regard,
GSH depletion by erastin and inactivation of GPX4 activity by
FDA approved alkylating antineoplastic compound altretamine
(hexamethylmelamine) have shown their efficacy as ferroptosis-
inducer (61, 62, 85, 86). It is worthy of interest that ferroptotic
secretome released from dying cancer cells is able to promote
the recruitment of immune cells and support an M1-type
immune microenvironment (87). To date, there is an increasing
reliance on the use of micro/nanoparticles in cancer therapy.
The treatment of tumor-bearing mice with iron microparticles
has resulted in M1-like iron-loaded macrophages and net tumor
suppression (67, 88). Another type of iron nanoparticle, the
FDA approved ferumoxytol, has been shown to reduce the
tumor growth and polarizing the macrophages toward M1 like
phenotype in mammary, liver, and lung cancers (89). Additional
in vivo studies and clinical trials are required for many of these
compounds to elucidate their specific anticancer properties and
their efficacy. Moreover, it would be useful to correlate iron levels
in serum and tumors with the molecular phenotype of cancer, in
order to choose the best therapy.

Copper
Copper is an essential transition metal required for fundamental
metabolic processes, but it can be toxic if present in excess
(90, 91). As catalytic cofactor of many enzymes, it is
involved in the mitochondrial electron transport chain
(cytochrome c oxidase), in the detoxification of reactive
oxygen species (superoxide dismutase 1 and 3), in the
conversion of hydroperoxides into hydroxides (glutathione
peroxidase), in melanin formation (tyrosinase), and in
“ferroxidation” (ceruloplasmin) (91). Copper ions are
also fundamental for proteins involved in cell signaling
pathways, cell differentiation and death, and for enzymes
involved in nervous system physiology. This metal ion
plays a crucial role in the development and maintenance
of immune function (29, 92). Indeed copper-deficient
patients display decreased numbers of myeloid precursors
in the bone marrow and susceptibility to infections
(29, 93).

The recommended daily intake of copper in healthy adults is
0.9 mg/day (94).

A reduced intake of copper causes neutropenia,
anemia, hypotonia, deterioration of the nervous system,
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FIGURE 2 | Iron recycled and released by TAMs sustains the cancer progression. The pro-tumoral/anti-inflammatory macrophages adopt an iron-export phenotype.

The released iron is absorbed by cancer cells, driven to mitochondria via mitoferrin-2 (Mfrn-2) and delivered to Fe-S clusters proteins essential for mitochondrial

respiration and the activities of TCA cycle enzymes. TAMs rely on uptake of senescent red blood cells (RBC) and on the activity of heme oxygenase 1 (HO-1) in order

to recycle heme-iron and increase labile iron pool (LIP). Iron can be released via ferroportin (FPN) and after ceruloplasmin (CP) activity loaded onto circulating

transferrin (Tf) for its uptake by cancer cells via the transferrin receptor (TfR). Alternatively, TAMs can use lipocalin-2 system or release ferritin to transfer iron. During

cancer progression, tumor cells increase iron storage by ferritin (FT) overexpression, and iron uptake by upregulation of the ferritin light chain binding protein Scara5,

transferrin-receptor (TfR) and lipocalin-2receptor (Lcn-2R). At the same time cancer cells decrease iron export by deregulation of ferroportin1 (FPN1). The figures have

been prepared by assembling in-house built cellular metabolic pathway outlines with a modified and adapted version of BioRender images.

neurodegenerative disorders, and severe intellectual disabilities.
Whereas the overload of copper, mainly in the liver, brain, and
kidney, results in redox copper toxicity (e.g., liver cirrhosis)
(91, 95). Various studies suggest a strong involvement of
altered copper and cupro-proteins levels in cancer (96, 97).
Copper has the ability to catalyze redox reactions and during
its dysregulation reactive oxygen species are generated so
excessively that act as precursors for neoplastic transformation
and metastasis formation (91, 98). Many types of cancer
(brain, multiple myeloma, acute lymphoblastic leukemia, lung,
reticulum cell sarcoma, cervical, breast, and stomach cancer)
show increased intratumoral levels and/or altered overall
distribution of copper (97).

Role in Cancer Cells
An analysis of the human copper proteome in 18 different tumor
types has revealed several copper genes like CTR1, ATOX1,
ATP7B, COX17 to be up-regulated (91). The reduced copper
(including the dietary pool) is transported inside the cells
via CTR1, a high affinity membrane copper transporter. The
increased copper flow via CTR1 is followed by loading onto
copper chaperone ATOX1, which acts as a copper-dependent
transcription factor promoting the transcription of cyclin D1 and
prompting cell replication (91, 99). Furthermore, copper binds
to copper chaperones like COX17 and SCO2, which deliver it
to mitochondria and to target proteins involved in trans Golgi
network, including ATP7A, and ATP7B (100). Since copper
is essential for the activity of cytochrome c oxidase (Cox),
mitochondria rely on the phosphate carrier SLC25A3 for its

uptake (101), and on labile copper pool in endoplasmic reticulum
as additional source (91, 102). The mitochondrial phosphate
carrier SLC25A3 has been associated with chronic myeloid
leukemia progression and might play a role in copper imbalance
(103). MEK1 being a copper-binding protein has led to the
hypothesis that this metal ion is involved in the RAS-RAF-MEK-
ERK pathway, required for cell proliferation, and tumorigenesis
(104). Copper not only binds to proteins directly involved
in cancer progression, but also indirectly modulates their
expression or activation. Copper inhibits prolyl hydroxylase thus
stabilizing HIF-1α and increasing the transcription of various
angiogenic genes (e.g., ceruloplasmin and VEGF) (105) and
genes involved in the epithelial to mesenchymal transition (e.g.,
LOX) (91, 106). The copper-dependent enzyme LOX catalyzes
the cross-linking of collagen and elastin in the extracellular
matrix (ECM) and interacts with MEMO1 (Mediator of cell
Motility 1), another copper-dependent redox enzyme (107).
MEMO1 is involved in cell migration through modulation of
the cytoskeleton and formation of adhesion sites. Furthermore,
copper ions activate the endothelial Nitric Oxide Synthetase
(eNOS), thus increasing the production of the vasodilator
nitric oxide (NO) (108). Other studies are required to unveil
the mechanisms by which these proteins within the cell are
loaded with copper. The dysregulation of these protein functions
could be the priming for processes such as, creation of pre-
metastatic niches, escape of immune defense, and angiogenesis.
Understanding the mechanism of these genes and protein may
open up exciting avenues for developing them as potential cancer
therapeutic targets.
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FIGURE 3 | Copper addiction of cancer cells could prevent the pro-inflammatory phenotype of macrophages. The increased copper flow via CTR1 is followed by

loading onto the copper chaperone ATOX1, which acts as a copper-dependent transcription factor promoting cyclin D1 expression and cell replication. Since copper is

essential for the activity of proteins, like cytochrome c oxidase (Cox), involved in the mitochondrial electron transport chain, mitochondria rely on the phosphate carrier

SLC25A3 (PTP) for its uptake. Copper not only binds to proteins directly involved in cancer progression, such as MEK1, but also indirectly modulates their expression

or activation. Copper inhibits prolyl hydroxylase thus stabilizing HIF-1α and increasing the transcription of several angiogenic genes (e.g., ceruloplasmin and VEGF) and

genes involved in the epithelial to mesenchymal transition (e.g., LOX). Copper is essential for sustaining the pro-inflammatory phenotype of macrophages; indeed, as a

component of the SOD enzyme which catalyzes the production of H2O2 from superoxide, it contributes to the ROS-dependent killing capacity of macrophages. The

removal of copper from microenvironment by cancer cells might drive the polarization of TAMs toward a pro-tumoral M2-like phenotype. In parts the figures are based

on speculations and have been prepared by assembling in-house built cellular metabolic pathway outlines with a modified and adapted version of BioRender images.

Role in Macrophages
Copper is an essential element for immunomodulatory functions
(29). As a component of the SOD enzyme, which catalyzes
the production of H2O2 from superoxide, it sustains the
activity of neutrophils and monocytes, and regulates macrophage
antimicrobial functions by contributing to ROS-dependent
killing capacity (29, 109). Indeed its deficiency leads to a defective
respiratory burst, impaired phagocytosis, and killing ability, with
consequent susceptibility to recurrent pulmonary and urinary
infections as well as septicaemia (29, 110, 111). Macrophages
activated with proinflammatory cytokines (IFNγ and TNFα) and
LPS show increased copper uptake via CTR1, increased copper
accumulation within the phagosomes due to bactericidal Fenton
reactions, and finally increased ceruloplasmin activity (112).
The copper-containing ferroxidase ceruloplasmin promotes iron
export via FPN, thus starving intracellular bacteria of this
essential element (29, 113). Furthermore, M1-like macrophages
display also an increased copper transport to the mitochondria
via COX17 for energy production, to SOD1 for antioxidant
defense or to Atp7a for protein synthesis (29, 112). The literature
on the role of copper in modulatingM2-like macrophages and/or
in sustaining TAMs function into tumor microenvironment
is absent.

The “Metallic” Cross-Talk Between Macrophages and

Cancer Cells
There are not evidences on the copper crosstalk between cancer
cells andmacrophages, thus in this context we can only speculate.
Several studies suggest a strong copper addiction of cancer cells
(114, 115), that probably deprives TAMs of this essential element.
Since copper is essential for sustaining the pro-inflammatory
phenotype of macrophages (29, 113), its removal from tumor

microenvironment could be responsible for a shift toward a
pro-tumoral M2-like phenotype and for an immunosuppressive
environment (Figure 3). Overall, our understanding of how
copper controls TAMs-cancer cells interplay requires further
investigation, with the aim to plan in the future a better
dietary intervention or to find novel targets and innovative
therapeutic agents.

Opportunities to Improve Cancer Therapy
The strong connection between copper and tumor development,
as well as metastization has encouraged scientists to design
and synthesize new copper-complexing agents to be used in
chemotherapy with lower side effects (79, 91). The copper-
binding compounds used as anticancer agents are divided in
two groups: copper chelators, which sequester copper ions from
cells, and copper ionophores, which vehicle copper inside cells
increasing its intracellular levels and priming cytotoxic effects
through multiple pathways (116, 117). The copper complexing
species tetrathiomolybdate (TTM), disulfiram, and clioquinol
have been employed in clinical trials, but only TTM has
given the most promising results (117). In the latest years,
the fact that copper is a limiting factor for multiple phases of
tumor progression, has led the scientists to the identification
of plant based natural molecules with chelating properties,
able to exert antitumoral effects or improve the efficacy of
already known drugs, with low side effects (91, 97). These
compounds in the presence of copper act as pro-oxidants and
produce reactive oxygen species so excessively to induce DNA
degradation (91, 118). The effects of copper, copper oxide
nanoparticles, and copper chelate have been evaluated not only
on cancer cells but also on macrophages (88, 119). Chatterjee
et al., discovered a novel copper chelate, copper N-(2-hydroxy
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acetophenone) glycinate (CuNG), able to reprogram TAMs in a
proinflammatory type which in turn converts Treg and Th2 cells
in anti-tumorigenic Th1 cells (120–122). This compound triggers
in TAMs ROS-mediated activation of MAPKs and ERK1/2
pathways which lead to upregulation of IL-12 and simultaneous
downregulation of TGF-β and IL-10 production (121). We may
speculate on a bivalent role of these redox-active compounds like
CuNG in a clinical approach. The sustained generation of ROS
on the one hand would induce apoptosis of cancer cells, on the
other hand would trigger proimmunogenic macrophages.

Selenium
The metal ion selenium (Se) plays important role in different
biological processes which are mediated by almost 25
selenoproteins (123). As a cofactor for antioxidant enzymes,
it exhibits anti-inflammatory properties and inhibits oxidative
damage as well as DNA alterations (9). Moreover, selenium
homeostasis supports the innate and adaptive immune functions;
indeed its deficiency is associated with T cells and NK cells
dysfunction and with a reduced number of lymphocytes in
both thymus and bursa (9). Selenium is generally transported
by selenoprotein P (SEPP1) and its mutations and/or haplo
insufficiency increases genomic instability and risk of cancer
(124, 125). Indeed, populations with low Se intake are exposed
to higher risk of cancer development and its supplementation in
suboptimal doses enhances immune responses to prevent cancer
growth, reduce relapse, and cancer-specific mortality (9, 14).
However, supra-nutritional doses do not confer protection
against cancer and are associated with toxicity (123).

Role in Cancer Cells
A recent study on SELENOP (SEPP1) has led to the
identification of several single nucleotide polymorphisms (SNPs)
which decrease the expression or function of this metal in
various tumor types, including hepatocellular carcinomas, gastric
adenocarcinomas, colorectal cancer, and prostate cancer (126–
128). SEPP1 is one of the few selenoproteins (SePs) able to
incorporate selenium, be secreted into the plasma, be absorbed
by the other tissues, and degraded to free selenium for synthesis
of other SePs (129). SEPP1 loss induces an oxidative stress
which, on one hand, can increase DNA damage and favor tumor
initiation, on the other, can promote cancer cell cytotoxicity (127,
128, 130). However, SEPP1 expression is not universally down
regulated in all tumor types. Indeed, SEPP1 upregulation has
been observed in metastatic melanoma and poorly differentiated
prostate cancer (128, 131). In cancer cells having high basal
levels of oxidative stress, increased expression of SEPP1 can
protect from cytotoxic effects and also lead to increased tumor
development, proliferation, and resistance to chemotherapy
(128). Selenium by lowering ROS production/accumulation not
only prevents DNA oxidation but also activates mechanisms
that stimulate mitochondrial biogenesis, preserve mitochondrial
membrane potential, and sustain metabolic performance (132).

The glutathione peroxidases GPxs (1,2,3,4, and 6) constitute
some of the most thoroughly studied SePs, because of their
role in oxidative stress and their contribution to tumorigenesis
(133). These proteins have antioxidant properties and catalyze

hydroperoxide reduction by using glutathione (GSH) as a
reductant. GPx1 expression is decreased in many tumor types
and its overexpression, both in vitro and in vivo, has been found
to reduce the growth of cancer cells and carry out a protective
role (128, 134, 135). On the other hand, GPx1 expression has
been linked to higher tumor number and growth rate, as well
as to chemo/radio resistance (136). Like GPx1, GPx2 appears
to have a pro-tumorigenic role in esophagus and liver, whereas
it exhibits an anti-inflammatory role in colon context. Indeed,
its deficiency has been linked to colitis-associated tumorigenesis
(137, 138). Among the glutathione peroxidases, GPx3 is the only
one clearly acting as a tumor suppressor. In tumor cells, GPx3
is often a target of hypermethylation and its downregulation
is associated with bad prognosis and chemoresistance in
several types of tumor (128, 139). Other selenoproteins with
a critical role in maintaining redox balance and in controlling
the multiple stages of tumor progression are the thioredoxin
reductases (TrxRs). They are selenium responsive elements
able to trigger antioxidant defense mechanisms in response to
selenium supplementation (128, 140). Several in vitro and in
vivo studies agree that TrxRs can inhibit tumor growth by
extinguishing oxidative damage and DNA alterations, especially
in the context of inflammatory-driven cancers. However, in
tumor cells with higher basal levels of oxidative stress, these
TrxRs can increase the resistance to apoptosis and even to
chemotherapy (128, 141). Much work still needs to be done to
characterize SePs in tumorigenesis context and to identify and
understand the mechanisms by which they influence neoplastic
transformation. The contradictory behavior of malignant cancer
cells in terms of selenium management, needs to be deepened
and contextualized to type of tissue, molecular phenotype, and
degree of invasiveness, in order to determine the benefits or not
of selenium supplementation. Selenium as regulator of cell redox
balance can have different effects, depending on whether or not
the tumor is inflammatory-driven.

Role in Macrophages
A great body of evidence has extensively highlighted the
role of selenium in the modulation of immune processes,
particularly in macrophages (124). Studies on macrophage-
specific knockout of selenocysteine (Sec) tRNA gene (Trsp),
have demonstrated that selenoproteins drive their polarization
from a pro-inflammatory toward an anti-inflammatory
phenotype, which aids in the resolution of inflammation
and wound healing (124, 142, 143). In particular, loss of
Trsp leads to a decrease in M2 macrophage markers, a
corresponding increase in M1 macrophage markers, an altered
regulation in extracellular matrix-related gene expression and
a diminished migration of macrophages in a protein gel matrix
(124, 144, 145).

This phenotypic switch is combined with changes in cellular
metabolism, particularly of arachidonic acid (146). Selenium
in macrophages, by differential regulation of expression of
mPGES1, TXAS, and H-PGDS, plays an important role
in bioactive oxylipids synthesis, such as cyclopentenone
prostaglandins (CyPGs) (145, 146). In presence of selenium, the
arachidonic acid is metabolized to 15d-PGJ2, which negatively
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FIGURE 4 | Selenium availability in the tumor microenvironment influences the phenotype of macrophages. In a Se-deficient microenvironment TAMs lose glutathione

dependent peroxidases (GPxs) and phagocytic activities (M1-like feature) toward transformed cells and produce PGE2 and TXA2 from arachidonic acid by

cyclooxygenase (COX) supporting the highly glycolytic cancer stem cells (CSC). In the presence of selenium, TAMs rely on selenium importer SEPP1, and increase the

selenoproteins which in turn polarize the macrophages toward an M2-like phenotype, with activation of PPARγ, degradation of pro-inflammatory PGE2, and

production of 112-PGJ2. 112-PGJ2 activates the tumor suppressor protein p53, which in turn upregulates the TCA cycle and oxidative phosphorylation and lowers

glucose uptake by the cells. As a compensatory mechanism the antioxidant machinery (selenium dependent thioredoxin reductases TrxRs and glutathione

peroxidases GPxs) is enhanced but the increase is not sufficient to control ROS production. In a Se-rich microenvironment, its lower uptake might be assumed as one

of the mechanisms through which neoplastic cells modulate M2-like macrophages and/or sustain TAMs function. In parts the figures are based on speculations and

have been prepared by assembling in-house built cellular metabolic pathway outlines with a modified and adapted version of BioRender images.

affects pro-inflammatory signal transduction pathways (146).
Vunta et al., demonstrated that selenium deficiency in mice
exacerbates the LPS-mediated infiltration of macrophages into
the lungs and also that selenium reintegration in macrophages
leads to a significant decrease in LPS-induced expression
of cyclooxygenase-2 (COX-2) and tumor necrosis factor-a
(TNF-a) (146). Furthermore, other studies have associated
the ability of selenoproteins to downregulate the expression
of pro-inflammatory genes and polarize the macrophages
toward an M2 phenotype with the inhibition of histone and
non-histone acetylation, the activation of PPARγ and the
degradation of pro-inflammatory PGE2 (145, 147). Experiments
of gene expression have revealed that SELENOP (SEPP1) is
one of the most upregulated genes in the M2 macrophage
phenotype (128, 148). Moreover, Solinas et al., have found
SELENOP (SEPP1) upregulated 95-fold at the transcript level
in macrophages polarized by cancer cells conditioned media
(149). Despite the lack of experimental evidence, it is possible to
hypothesize that the increased SELENOP in M2 macrophages
may offset the loss of SELENOP in cancer cells and support
metastasis by supplying it in a paracrine manner (150). On
the other hand, Barrett et al., have highlighted a shift toward
M2 phenotype stimulated by IFN-γ and LPS (M1) or IL-13
(M2) in bone marrow derived macrophages isolated from

Sepp1+/− mice (124). In agreement with these results, other
studies have associated the selenium deficiency to the loss of
GPxs and phagocytic activities of macrophages (M1 feature)
toward transformed cells (133, 145, 150).

Development of mouse models lacking selenoproteins in
macrophages has paved the way for understanding immune
modulatory properties of these proteins (143, 144). However,
the role of individual selenoproteins in this process is yet to
be investigated properly. Based on the in vivo studies, selenium
supplementation is essential to effectively resolve inflammation
in most instances (145). Thus, it remains to understand if also
selenocompounds may play a protective role.

The “Metallic” Cross-Talk Between Macrophages and

Cancer Cells
The role of selenium in the cross-talk between macrophages and
cancer cells has been demonstrated only in leukemia disease.
In a Se-deficient microenvironment TAMs produce mostly
PGE2 and TXA2 from arachidonic acid via the COX pathway,
supporting the highly glycolytic cancer stem cells (CSC) (145)
(Figure 4). Following Se-supplementation, selenoproteins affect
the production of 112-PGJ2 in the M2 macrophage. 112-
PGJ2 released by macrophages activates in cancer stem cells
the tumor suppressor protein p53, which in turn upregulates

Frontiers in Oncology | www.frontiersin.org 10 April 2020 | Volume 10 | Article 646

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Serra et al. Metals in Macrophage-Tumor Cells Crosstalk

the TCA cycle, oxidative phosphorylation, and lowers glucose
uptake (145, 151, 152). As a compensatory mechanism, the
antioxidant machinery is increased, although it is not sufficient
to control ROS production and to avoid apoptosis (145)
(Figure 4). Also in this case, a better understanding of how
selenium controls TAMs-cancer cells interplay will require
further investigation. To date, without adequate experimental
evidences, we may only speculate that the absence of selenium
transporter SEPP1 in tumors and its increased expression
in M2-like macrophages, tip selenium balance toward an
immunosuppressive and pro-tumorigenic microenvironment.
One may suggest that lower Se uptake by cancer cells is
one of the mechanisms by which they drive the macrophage
shift toward a proangiogenic, immunosuppressive, and pro-
tumoral function.

Opportunities for Improvement of Cancer Therapy
Selenium supplementation is an attractive and achievable way
to decrease cancer incidence, since selenium compounds are
generally cheap and, at appropriate doses, safe (153, 154).
Various studies have identified many classes of natural as well
as synthetic organoselenium compounds which act as cytotoxic
agents, and the research is ongoing for identifying more such
compounds (154–157). Keeping inmind the immunomodulatory
function of selenium, selenium nanoparticles (SeNPs) have
been synthesized (158, 159). SeNPs have potential to decrease
tumor cell proliferation, drive the anti-tumor function of
TAMs, and in virtue of their properties, be used for imaging
diagnosis and cancer therapy with low costs and negligible
side effects (154, 158, 159). An impressive number of in vitro
and in vivo studies clearly confirms the scarce toxicity of
selenium compounds as monotherapy and in combination with
classical chemotherapy (154). Furthermore, they also seem to
increase the therapeutic potential of other drugs and reduce
their side effects. However, to date the antiproliferative and
proapoptotic properties of selenite, selenium amino acids,
and other selenium compounds have not been confirmed
by clinical trials (155, 156). Since supra-nutritional doses do
not confer protection against cancer, on the contrary are
associated with toxicity, before choosing a selenium-based
therapy, it would be essential to profile serum and tumoral
levels of metal ion, and to contextualize them to type of
tissue, molecular phenotype, histological grading, metastatic
potential, and chemosensitivity. In tumors characterized by
high basal levels of oxidative stress, resistance to ROS-, and
chemotherapy-mediated apoptosis, a selenium-based therapy
would be counterproductive since it would increase tumor
development and proliferation. More focused in vivo studies and
additional clinical trials are necessary.

CONCLUDING REMARKS

The effects of zinc, iron, selenium, and copper on cancer
cells and TAMs (in supplementation or deficiency context)
vary with concentration and tumor type. To sum up: heme
iron intake and high serum levels of iron are associated with
increased risk of breast and liver cancer (160); copper overload
causes liver, lung, urinary, stomach, and cervical cancer; zinc
poisoning or deficiency are associated with breast, lung, gastric,
colon, and prostatic cancer; lower selenium intake increases
liver, gastric, colon, and prostatic cancer incidence. In most
cases these ions have been studied individually and their
combined contribution to cancer progression has been totally
overlooked or not well understood. In cancer growth and
immune escape context, it is very important to consider also
the relationship and balance between these metal ions inside
the tumoral tissue. For example, a lower Zn/Fe ratio in the
malignant prostatic tissue is correlated with poor prognosis
and increased resistance to chemotherapy (161). In this case,
zinc deficiency and iron overload combine their metabolic
effects to increase citrate oxidation and mitochondrial activity
in cancer cells and support their energy status. Also the Se/Zn
balance plays an important role in onset of cancer. When the
selenium is in excess compared to zinc, the metallothionein
system is dysregulated, thereby producing p53 loss of function
and DNA integrity reduction (162). Moreover, the results of
some studies suggest that there is a close relationship between
Cu and Fe in macrophages. Indeed highly toxic ferrous iron,
as result of decreased ceruloplasmin expression/activity and
copper deficiency, accumulates in macrophages leading to severe
dysfunction (163). How the different ions contribute collectively
to all steps of carcinogenesis and immune suppression remains to
be described. The few observations made in co-culture systems
and small animal models need to be amplified, extended to ion-
ion interactions and carefully translated to the human setting.
Wisely designed clinical trials are necessary to establish how
the neoplastic cells influence TAMs functions or conversely,
by controlling metal ions flux. A better understanding of the
metal dynamics by which cancer remodels its microenvironment,
may aid the discovery of innovative therapies able to more
effectively kill tumor cells, or at least limit tumor progression and
metastatic dissemination.
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