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Improved insight into the molecular mechanisms of head and neck squamous cell

carcinoma (HNSCC) is required to predict prognosis and develop a new therapeutic

strategy for targeted genes. The aim of this study is to identify significant genes

associated with HNSCC and to further analyze its prognostic significance. In our study,

the cancer genome atlas (TCGA) HNSCC database and the gene expression profiles of

GSE6631 from the Gene Expression Omnibus (GEO) were used to explore the differential

co-expression genes in HNSCC compared with normal tissues. A total of 29 differential

co-expression genes were screened out by Weighted Gene Co-expression Network

Analysis (WGCNA) and differential gene expression analysis methods. As suggested

in functional annotation analysis using the R clusterProfiler package, these genes were

mainly enriched in epidermis development and differentiation (biological process), apical

plasma membrane and cell-cell junction (cellular component), and enzyme inhibitor

activity (molecular function). Furthermore, in a protein-protein interaction (PPI) network

containing 21 nodes and 25 edges, the ten hub genes (S100A8, S100A9, IL1RN, CSTA,

ANXA1, KRT4, TGM3, SCEL, PPL, and PSCA) were identified using the CytoHubba

plugin of Cytoscape. The expression of the ten hub genes were all downregulated in

HNSCC tissues compared with normal tissues. Based on survival analysis, the lower

expression of CSTA was associated with worse overall survival (OS) in patients with

HNSCC. Finally, the protein level of CSTA, which was validated by the Human Protein

Atlas (HPA) database, was down-regulated consistently with mRNA levels in head and

neck cancer samples. In summary, our study demonstrated that a survival-related gene

is highly correlated with head and neck cancer development. Thus, CSTA may play

important roles in the progression of head and neck cancer and serve as a potential

biomarker for future diagnosis and treatment.

Keywords: head and neck squamous cell carcinoma, differential gene expression analysis, weighted gene

co-expression network analysis, the differential co-expression genes, biomarkers
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INTRODUCTION

Head and neck squamous cell carcinoma (HNSCC) is one of
most common types of cancer in the world. HNSCC includes
several malignancies that originate in the mouth, nasopharynx,
oropharynx, hypopharynx, larynx, and neck (1). According to the
published global cancer statistics report, there were more than
an estimated 650,000 new cases and 330,000 deaths diagnosed
in 2018 (2). Many lifestyle factors have been investigated,
with tobacco use, alcohol consumption, human papillomavirus
(HPV), and Epstein-Barr virus (EBV) infection being considered
as the risk factors that are associated with the progression of
HNSCC (3). However, HPV is currently the one most well-
studied and frequently used biomarker in HNSCC (4–6). In the
past several years, the treatments for managing head and neck
cancer included the following: radiation therapy, surgery, and
chemotherapy. Appropriate combinations of the three treatment
modalities is selected according to the site of the cancer and the
stage of the disease (1, 3). Although there are diverse treatments
for HNSCC, patients have a limited survival advantage.

With the development of genomic technologies,
bioinformatics has become increasingly popular for gene
expression profiles analysis to study the molecular mechanisms

FIGURE 1 | Study design and workflow of this study.

of diseases and discover disease-specific biomarkers (7). One
important method to understand the gene function and gene
association from genome-wide expression is Weighted Gene
Co-expression Network Analysis (WGCNA) (8). WGCNA can
be used to detect co-expression modules of highly correlated
genes and interested modules associated with clinical traits
(9), providing great insight into predicting the functions of
co-expression genes and finding genes that play key roles in
human diseases (10–12). Furthermore, another powerful analysis
within transcriptomics is differential gene expression analysis,
which provides methods for studying molecular mechanisms
underlying genome regulation and discovering quantitative
changes in expression levels between experimental groups
and control groups (13). Such gene expression differences can
lead to the discovery of potential biomarkers for a particular
disease. Therefore, using two approaches, the findings from
WGCNA and differential gene expression analysis are combined
to enhance the discriminating ability of highly related genes that
are useful to serve as candidate biomarkers.

In this study, the mRNA expression data of HNSCC from
the TCGA and GEO databases were analyzed by WGCNA and
differential gene expression analysis to obtain differential co-
expression genes. We further explored HNSCC development
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through functional enrichment and protein-protein interaction
(PPI) analysis combined with survival analysis. The study
provides a potential basis to understand the cause and potential
molecular events of HNSCC by analyzing differential co-
expression genes for clinical diagnosis or treatment.

MATERIALS AND METHODS

The workflow of the analysis hub gene extraction curation
pipeline is shown in Figure 1.

We elaborate on each step in the following sub-sections.

Datasets From TCGA and GEO Database
The gene expression profiles of HNSCC were downloaded
from TCGA (https://portal.gdc.cancer.gov/) and GEO (https://
www.ncbi.nlm.nih.gov/gds). In the TCGA database, all data on
HNSCC and corresponding clinical information were freely
downloaded by R package TCGAbiolinks (14). There were
544 NHSCC samples, including 500 head and neck cancers
and 44 normal tissues, and RNAseq count data on 19,430
genes. A total of the data had been generated by using
the Illumina HiSeq 2,000 platform, and were annotated to a
reference transcript set of Human hg38 gene standard track.
As suggested by the edgeR package tutorial (15), genes of low

FIGURE 2 | Identification of modules associated with the clinical information in the TCGA-HNSCC dataset. (A) The Cluster dendrogram of co-expression network

modules was ordered by a hierarchical clustering of genes based on the 1-TOM matrix. Each module was assigned different colors. (B) Module-trait relationships.

Each row corresponds to a color module and column corresponds to a clinical trait (cancer and normal). Each cell contains the corresponding correlation and P-value.
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read counts are usually not of interest for further analysis. So,
we kept the genes with a cpm (count per million) ≥1 in this
study. After filtering using function rpkm in edgeR package,
which is calculated by dividing gene counts by gene length, a
total of 15,367 genes with RPKM values were subject to our
next analysis.

In addition, the normalized expression profiles of GSE6631,
another gene expression profile of HNSCC from GEO, was
obtained using R package GEOquery (16). GSE6631 consisted of
22 tumor samples and 22 paired normal tissues from patients
with HNSCC, which were studied with the GPL8300 platform
[HG_U95Av2] Affymetrix Human Genome U95 Version 2
Array. Probes were converted to the gene symbols based

on a manufacturer-provided annotation file and duplicated
probes for the same gene were removed by determining
the median expression value of all its corresponding probes.
As a result, a list of 9,203 genes were selected for the
subsequent analysis.

Identification of Key Co-expression
Modules Using WGCNA
Co-expression networks facilitate methods on network-based
gene screening that can be used to identify candidate biomarkers
and therapeutic targets. In our study, the gene expression data
profiles of TCGA-HNSCC and GSE6631 were constructed to
gene co-expression networks using theWGCNA package in R (8).

FIGURE 3 | Identification of modules associated with clinical information in the GSE6631 dataset. (A) The Cluster dendrogram of co-expression network modules

was ordered by a hierarchical clustering of genes based on the 1-TOM matrix. Each module was assigned different colors. (B) Module-trait relationships. Each row

corresponds to a color module and each column correlates to a clinical trait (cancer and normal). Each cell contains the corresponding correlation and P-value.
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WGCNA was used to explore the modules of highly correlated
genes among samples for relating modules to external sample
traits. To build a scale-free network, soft powers β = 3 and
20 were selected using the function pickSoftThreshold. Next, the
adjacencymatrix was created by the following formula: aij = |Sij|

β

(aij: adjacency matrix between gene i and gene j, Sij: similarity
matrix which is done by Pearson correlation of all gene pairs,
β: softpower value), and was transformed into a topological
overlap matrix (TOM) as well as the corresponding dissimilarity
(1-TOM). Afterwards, a hierarchical clustering dendrogram of

the 1-TOM matrix was constructed to classify the similar
gene expressions into different gene co-expression modules.
To further identify functional modules in a co-expression
network, the module-trait associations between modules, and
clinical trait information were calculated according to the
previous study (17). Therefore, modules with high correlation
coefficient were considered candidates relevant to clinical traits,
and were selected for subsequent analysis. A more detailed
description of theWGCNAmethod was reported in our previous
study (17).

FIGURE 4 | Identification of differentially expressed genes (DEGs) among the TCGA and GSE6631 datasets of HNSCC with the cut-off criteria of |logFC| ≥ 1.0 and

adj. P < 0.05. (A) Volcano plot of DEGs in the TCGA dataset. (B) Volcano plot of DEGs in the GSE6631 dataset. (C) The Venn diagram of genes among DEG lists and

co-expression module. In total, 29 overlapping genes in the intersection of DEG lists and two co-expression modules.
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Differential Expression Analysis and
Interaction With the Modules of Interest
The R package limma (linear models for microarray data)
provides an integrated solution for differential expression
analyses on RNA-Sequencing and microarray data (18). In
order to find the differentially expressed genes (DEGs) between
HNSCC and normal tissues, limma was applied in the TCGA-
HNSCC and GSE6631 dataset, respectively, to screen out DEGs.
The p-value was adjusted by the Benjamini–Hochberg method to
control for the false discovery Rate (FDR). Genes with the cut-
off criteria of |logFC| ≥ 1.0 and adj. P < 0.05 were regarded as
DEGs. The DEGs of the TCGA-HNSCC and GSE6631 dataset
were visualized as a volcano plot by using the R package
ggplot2 (19). Subsequently, the overlapping genes between DEGs
and co-expression genes that were extracted from the co-
expression network were used to identify potential prognostic
genes, which were presented as a Venn diagram using the R
package VennDiagram (20).

Functional Annotation for Genes of Interest
To explore Gene Ontology (GO) of selected genes, R package
clusterProfiler package (21) was used to explore the functions
among genes of interest, with a cut-off criterion of adjusted p
< 0.05. GO annotation that contains the three sub-ontologies—
biological process (BP), cellular component (CC), and molecular
function (MF)—can identify the biological properties of genes
and gene sets for all organisms (22).

Construction of PPI and Screening of Hub
Genes
In our study, we used the STRING (Search Tool for the Retrieval
of InteractingGenes) online tool, which is designed for predicting
protein–protein interactions (PPI), to construct a PPI network
of selected genes (23). Using the STRING database, genes with
a score ≥ 0.4 were chosen to build a network model visualized
by Cytoscape (v3.7.2) (24). In a co-expression network, Maximal
Clique Centrality (MCC) algorithm was reported to be the most

FIGURE 5 | Gene Ontology (GO) enrichment analysis for the genes in the brown module. The color represents the adjusted p-values (BH), and the size of the spots

represents the gene number.
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FIGURE 6 | Visualization of the protein-protein interaction (PPI) network and the candidate hub genes. (A) PPI network of the genes between DEG lists and two

co-expression modules. The blue nodes represent the genes. Edges indicate interaction associations between nodes. (B) Identification of the hub genes from the PPI

network using maximal clique centrality (MCC) algorithm. Edges represent the protein-protein associations. The red nodes represent genes with a high MCC sores,

while the yellow node represent genes with a low MCC sore.

FIGURE 7 | Validation of expression levels of the ten hub genes among HNSCCs and normal tissues from the TCGA database. (A) Gene expression value S100A8

among samples of TCGA. (B) Gene expression value S100A9 among samples of TCGA. (C) Gene expression value IL1RN among samples of TCGA. (D) Gene

expression value CSTA among samples of TCGA. (E) Gene expression value ANXA1 among samples of TCGA. (F) Gene expression value KRT4 among samples of

TCGA. (G) Gene expression value TGM3 among samples of TCGA. (H) Gene expression value SCEL among samples of TCGA. (I) Gene expression value PPL among

samples of TCGA. (J) Gene expression value PSCA among samples of TCGA.
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effective method of finding hub nodes (25). The MCC of each
node was calculated by CytoHubba, a plugin in Cytoscape (25). In
this study, the genes with the top 10MCC values were considered
as hub genes.

Verification of the Expression Patterns and
the Prognostic Values of Hub Genes
In order to confirm the reliability of the hub genes, we verified
the expression patterns of the hub genes in different pathological
tumors and normal tissues. The expression level of each hub
gene between cancer and normal tissue was plotted as a box plot
graph. Based on the data from the TCGAdatabase, Kaplan–Meier
univariate survival analysis was performed by using the survival
package in R software to explore the relationship between
overall survival (OS) and hub genes in patients. Moreover, the
association between disease-free survival (DFS) and hub genes

expressed in HNSCC patients was determined using the online
tool GEPIA2 (26). In our study, only patients with completed
follow-up times were selected for survival analysis and then
divided into two separate groups based on the median expression
value of hub genes. The survival-related hub genes with log-rank
p < 0.05 were regarded as statistically significant.

Validation of Protein Expressions of
Survival-Related Hub Genes by the HPA
Database
The protein expression of the survival-related genes
between HNSCC and normal tissues was determined using
immunohistochemistry (IHC) from the Human Protein Atlas
database (HPA, https://www.proteinatlas.org/). HPA is a valuable
database that provides a large amount of transcriptomics
and proteomics data in specific human tissues and cells for

FIGURE 8 | Overall survival (OS) analysis of 10 hub genes in HNSCC patients from the GEPIA2 database. (A) Survival analysis for S100A8 in HNSCC. (B) Survival

analysis for S100A9 in HNSCC. (C) Survival analysis for IL1RN in HNSCC. (D) Survival analysis for CSTA in HNSCC. (E) Survival analysis for ANXA1 in HNSCC. (F)

Survival analysis for KRT4 in HNSCC. (G) Survival analysis for TGM3 in HNSCC. (H) Survival analysis for SCEL in HNSCC. (I) Survival analysis for PPL in HNSCC. (J)

Survival analysis for PSCA in HNSCC. The patients were stratified into high-level group (red) and low-level group (green) according to median expression of the gene.

Log-rank P < 0.05 was considered to be a statistically significant difference.
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researchers (27). Moreover, the IHC-based protein expression
pattern is the most common application of immunostaining to
detect the relative location and abundance of proteins (28).

RESULTS

Construction of Weighted Gene
Co-expression Modules
In order to find the functional clusters in HNSCC patients, the
gene co-expression networks were constructed from the TCGA-
HNSCC and GSE6631 datasets with the WGCNA package. With
each module assigned a color, a total of 10 modules in the
TCGA-HNSCC (Figure 2A) and nine modules in the GSE6631
(Figure 3A) were identified in the present study (excluding a
gray module that was not assigned into any cluster). Then, we
plotted the heatmap of module-trait relationships to evaluate the
association between each module and two clinical traits (cancer
and normal). The results of the module-trait relationships are
presented in Figure 2B, 3B, revealing that the brown module
in the TCGA-HNSCC and pink module in the GSE6631 were

found to have the highest association with normal tissues (brown
module: r = 0.58, p= 9e−51; pink module: r = 0.8, p= 1e−10).

Identification of Genes Between the DEG
Lists and Co-expression Modules
Based on the cut-off criteria of |logFC| ≥ 1.0 and adj. P <

0.05, a total of 3,728 DEGs in the TCGA dataset (Figure 4A)
and 160 DEGs in the GSE6631 dataset (Figure 4B) were found
to be dysregulated in tumor tissues by the limma package. As
shown in Figure 4C, 458 and 123 co-expression genes were found
in the brown module of TCGA dataset and the pink module
in GSE6631, respectively. In total, the 29 overlapping genes
were extracted for validating the genes of co-expression modules
(Figure 4C).

Functional Enrichment Analyses for the 29
Genes
To gain further insight into the potential functions of the 29 genes
that overlapped with DEG lists and two co-expression modules,
gene enrichment analysis was performed by the clusterProfiler

FIGURE 9 | Disease-free survival (DFS) analysis of 10 hub genes in HNSCC patients from the GEPIA2 database. (A) Survival analysis for S100A8 in HNSCC. (B)

Survival analysis for S100A9 in HNSCC. (C) Survival analysis for IL1RN in HNSCC. (D) Survival analysis for CSTA in HNSCC. (E) Survival analysis for ANXA1 in

HNSCC. (F) Survival analysis for KRT4 in HNSCC. (G) Survival analysis for TGM3 in HNSCC. (H) Survival analysis for SCEL in HNSCC. (I) Survival analysis for PPL in

HNSCC. (J) Survival analysis for PSCA in HNSCC. The patients were stratified into high-level group (red) and low-level group (green) according to median expression

of the gene. Log-rank P < 0.05 was considered to be a statistically significant difference.
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package. After screening of GO enrichment analysis, we observed
several enriched gene sets shown in Figure 5. The biological
process (BP) of 29 genes are mainly enriched in epidermis
development and epidermal cell differentiation. For the result
of the cellular component (CC), it was revealed that these genes
were mainly involved in apical plasma membrane, apical part of
cell, and cell-cell junction. Moreover, in the molecular function
(MF) analysis, peptidase regulator activity and enzyme inhibitor
activity were suggested to be related to the 29 genes.

PPI Network Construction and Hub Genes
Identification
The PPI network among the overlapped genes was established
by using the STRING database, with 21 nodes and 25 edges
(Figure 6A). The hub genes selected from the PPI network
using the MCC algorithm of CytoHubba plugin were shown
in Figure 6B. According to the MCC sores, the top ten
highest-scored genes, including S100 calcium-binding protein
A8 (S100A8), S100 calcium-binding protein A9 (S100A9),
Interleukin-1 receptor antagonist (IL1RN), Cystatin A (CSTA),
Annexin-A1 (ANXA1), Keratin 4 (KRT4), Transglutaminase 3
(TGM3), Sciellin (SCEL), Periplakin (PPL), and Prostate Stem
Cell Antigen (PSCA), were selected as the hub genes.

Verification of the Expression Patterns, the
Prognostic Values, and Protein Expression
of Hub Genes
After the ten hub genes (S100A8, S100A9, IL1RN, CSTA,
ANXA1, KRT4, TGM3, SCEL, PPL, and PSCA) were screened
out by CytoHubba plugin, we verified the expression levels of
the hub genes among the patients of the TCGA database. As
shown in Figure 7, all of the ten hub genes were found to
be significantly downregulated in HNSCC carcinoma compared
with normal tissues. In addition, OS and DFS analyses of
the ten hub genes were performed by Kaplan–Meier plotter
using the R survival package (Figure 8) and the GEPIA2
database (Figure 9) for investigating the prognostic values
of the hub gens in the HNSCC patients. Of the ten hub
genes, the Kaplan–Meier analyses suggested that the lower
expression level of CSTA was significantly associated with
worse OS of the HNSCC patients (P < 0.05) (Figure 8D),
while with DFS there was no significant difference observed in
HNSCC patients with an expression level of CSTA (P < 0.05)
(Figure 9D). Furthermore, the protein levels of the CSTA gene
was significantly lower in tumor tissues compared with normal
tissues based on the HPA database (Figure 10). All the above-
mentioned observations confirmed down-expression of CSTA is
associated with worse prognosis and lower overall survival in
HNSCC patients.

DISCUSSION

Head and neck squamous cell carcinomas (HNSCC) are a
group of cancers found in several regions, including the mouth,
nose, throat, larynx, sinuses, or salivary glands. Although
the treatment of head and neck cancer has improved, the

FIGURE 10 | Immunohistochemistry of the CSTA gene in HNSCC and normal

tissues from the human protein atlas (HPA) database. (A) Protein levels of

CSTA in HNSCC tissues (antibody CAB047315; staining: not detected;

intensity: negative; quantity: none). (B) Protein levels of CSTA in normal oral

mucosa tissues (antibody CAB047315; staining: high; intensity: strong;

quantity: >75%).

prognosis of patients is generally poor due to the lack of
precise molecular targets. Therefore, better biomarkers for
specific prognosis and progression of HNSCC are demanded.
In this study, a total of 29 significant genes with the
same expression trends were identified in the TCGA and
GSE6631 databases using integrated bioinformatic analysis. As
suggested in functional annotation analysis by the clusterProfiler
package, these genes were mainly enriched in epidermis
development and differentiation, which are basic processes in
cell proliferation. Furthermore, according to MCC scores from
the CytoHubba plugin in Cytoscape, the top 10 HNSCC-related
genes were screened out (namely S100A8, S100A9, IL1RN,
CSTA, ANXA1, KRT4, TGM3, SCEL, PPL, and PSCA) and
all their expression patterns were found be downregulated in
HNSCC tissues compared with the normal controls. Among
them, CSTA downexpression was significantly associated with
poor overall survival in head and neck cancers. Finally,
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survival and immunohistochemical analysis for CSTA was
carried out.

CSTA, also known as Cystatin A or stefin A, is a member of
the cystatin superfamily. It is an intracellular inhibitor regulating
the activities of cystatin proteinase and has an important role in
desmosome-mediated cell-cell adhesion (29, 30). Furthermore,
lower mRNA levels of CSTA have been reported in breast (31),
prostate (32), skin (30), and esophagus tumors (33) as compared
to adjacent control tissues (34, 35). In our study, CSTA was
down-regulated in tumor tissues compared with normal tissues,
showing a significant correlation with HNSCC. Previous studies
demonstrated that higher levels of CSTA in tumor tissues have
been shown to correlate with a favorable prognosis of patients
with HNSCC, that was consistent with our finding of survival
analysis (36–39).

As with all research, our study also had limitations about
the classification of tumors to different subtypes. Although we
provided a comprehensive bioinformatics analysis to identify
potential diagnostic genes between cancer and normal tissues, it
may not be very accurate for each patient with HNSCC subtypes.
Moreover, the molecular mechanisms involved in the survival-
related genes that affected the prognosis of HNSCC patients
should be further validated through a series of experiments.

In summary, by integrating WGCNA with differential gene
expression analysis, our study generated the significant survival-
related gene CSTA that has potential for prognosis prediction
in HNSCC.
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