
ORIGINAL RESEARCH
published: 08 May 2020

doi: 10.3389/fonc.2020.00691

Frontiers in Oncology | www.frontiersin.org 1 May 2020 | Volume 10 | Article 691

Edited by:

Marius Tresor Chiasseu,

Yale University, United States

Reviewed by:

Jai Narendra Patel,

Levine Cancer Institute, United States

Sandip Patel,

University of California, San Diego,

United States

*Correspondence:

Yi Wang

wangyi2104@njmu.edu.cn

Buhai Wang

wbhself@sina.com

Specialty section:

This article was submitted to

Thoracic Oncology,

a section of the journal

Frontiers in Oncology

Received: 11 November 2019

Accepted: 14 April 2020

Published: 08 May 2020

Citation:

Zhao Z, Zhao D, Xia J, Wang Y and

Wang B (2020) Immunoscore Predicts

Survival in Early-Stage Lung

Adenocarcinoma Patients.

Front. Oncol. 10:691.

doi: 10.3389/fonc.2020.00691

Immunoscore Predicts Survival in
Early-Stage Lung Adenocarcinoma
Patients
Zihuan Zhao 1,2,3, Dan Zhao 4, Ji Xia 2, Yi Wang 3,5* and Buhai Wang 1,2*

1Department of Oncology, Subei People’s Hospital of Jiangsu Province, Yangzhou, China, 2Dalian Medical University, Dalian,

China, 3Department of Respiratory Disease, Nanjing Chest Hospital, Nanjing, China, 4Department of Reproductive Center,

Zhen Jiang Fourth People Hospital, Jiangsu, China, 5Nanjing Medical University, Nanjing, China

Background: The lung cancer staging system is insufficient for a comprehensive

evaluation of patient prognosis. We constructed a novel immunoscore model to predict

patients with high risk and poor survival.

Method: Immunoscore was developed based on z-score transformed enrichment score

of 11 immune-related gene sets of 109 immune risk genes. The immunoscore model was

trained in lung adenocarcinoma cohort from The Cancer Genome Atlas (TCGA-LUAD)

(n = 400), and validated in other two independent cohorts from Gene Expression

Omnibus (GEO), GSE31210 (n = 219) and GSE68465 (n = 356). Meta-set (n = 975)

was formed by combining all training and testing sets.

Result: High immunoscore conferred worse prognosis in all sets. It was an independent

prognostic factors in multivariate Cox analysis in training, testing and meta-set [hazard

ratio (HR)= 2.96 (2.24–3.9), P < 0.001 in training set; HR= 1.99 (1.21–3.26), P= 0.006

in testing set 1; HR= 1.48 (1.69–2.39), P= 0.005 in testing set 2; HR= 2.01 (1.69–2.39),

P< 0.001 in meta-set]. Immunoscore-clinical prognostic signature (ICPS) was developed

by integrating immunoscore and clinical characteristic, and had higher C-index than

immunoscore or stage alone in all sets [0.72 (ICPS) vs. 0.7 (immunoscore) or 0.59 (stage)

in training set; 0.75 vs. 0.72 or 0.7 in testing set 1; 0.65 vs. 0.61 or 0.62 in testing set

2; 0.7 vs. 0.66 or 0.64 in meta-set]. Genome analysis revealed that immunoscore was

positively correlated with tumor mutation burden (R = 0.22, P < 0.001). Besides, high

immunoscore was correlated with high proportion of carcinoma-associated fibroblasts

(R = 0.32, P < 0.001) in tumor microenvironment but fewer CD8+ cells infiltration

(R = −0.28, P < 0.001).

Conclusion: The immunoscore and ICPS are potential biomarkers for evaluating

patient survival. Further investigations are required to validate and improve their

prediction accuracy.

Keywords: immunoscore, lung adenocarcinoma, prognosis, immune gene set, ridge regression

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2020.00691
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2020.00691&domain=pdf&date_stamp=2020-05-08
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:wangyi2104@njmu.edu.cn
mailto:wbhself@sina.com
https://doi.org/10.3389/fonc.2020.00691
https://www.frontiersin.org/articles/10.3389/fonc.2020.00691/full
http://loop.frontiersin.org/people/800258/overview
http://loop.frontiersin.org/people/961984/overview
http://loop.frontiersin.org/people/961830/overview
http://loop.frontiersin.org/people/961897/overview
http://loop.frontiersin.org/people/913703/overview


Zhao et al. Prognostic Value of Immunoscore

INTRODUCTION

Lung cancer ranks the top of cancer-related death worldwide
(1). Histologically, 15 percent of patients are categorized as small
cell lung cancer (SCLC) while the other 85% as non-small cell
lung cancer (NSCLC) (2). Among NSCLC, lung adenocarcinoma
(LUAD) is the most common subtype (3). Surgical resection
remains to be the standard clinical practice for patients with
early-stage LUAD (4), and the 5-year survival rate is about 60%
(5). Platin-based adjuvant chemotherapy has demonstrated the
improvement of 5-year survival for stage II–IIIA patients for
about 5%, at the price of chemotherapy-induced toxicity (6, 7).
Adjuvant immunotherapy with immune checkpoint inhibitors
has come into several clinical trials, but no definitive effectiveness
made so far (8). Although using the American Joint Committee
on Cancer (AJCC) TNM staging system improves prognostic
prediction, it is still inconclusive due to other unknown factors.
Thus, the development of new biomarkers is imperative for
stratifying risk and optimizing treatment for lung cancer patients
with early stage.

Tumor immune microenvironment (TIM) has long been
recognized as a crucial factor in cancer progression and
metastasis (9). Several studies have explored the TIM as
a prognostic biomarker in lung cancer (10). For example,
Brambilla et al. found higher CD4+/CD8+ ratio conferred
better survival in patients with NSCLC (11). Also, for cancer
cell itself, programmed cell death protein ligand 1 (PD-L1)
expression and tumor mutation burden (TMB) have been used
to predict outcome in NSCLC patients. Several investigations
have indicated that patients with high TMB or high PD-L1
expression were associated with poor survival in resected NSCLC
patients and might benefit from adjuvant chemotherapy (12,
13). However, substantial patients with low PD-L1 expression
and low TMB still have poor outcomes. Therefore, exploring
additional prognostic markers based on TIM could benefit larger
population (14).

In our research, we developed novel prognostic early-stage
lung cancer immunoscore model by integrating enrichment
score of 11 immune gene sets using ssGSEA algorithm. ssGSEA
algorithm was based on gene ranks in and out of the selected
gene set (15). To date several signatures used for phenotype
classification or survival prediction have been developed by
leveraging this algorithm (16–18). After immunoscore model
construction in the training set, we evaluated its prognostic
abilities in training, testing and meta-set. Moreover, we
built Immunoscore-clinical prognostic signature (ICPS) by
incorporating both immunoscore and clinical factors.

MATERIALS AND METHODS

Clinical Data Processing
We used three largest publically available datasets, TCGA-
LUAD, GSE31210, and GSE68465, deposited in Genomic
Data Commons (GDC) portal (https://portal.gdc.cancer.gov)
or Gene Expression Omnibus (GEO) website (https://www.
ncbi.nlm.nih.gov/geo) (19–23). Clinical and pathological
information regarding to TCGA-LUAD cohort were retrieved

from cBioportal website (https://www.cbioportal.org) with
“cdgsr” package (24–26), whereas information related to
GSE31210 and GSE68465 were obtained through “GEOquery”
package (27). Samples without overall survival (OS) information
or with OS time of 0 were excluded. We also ruled out samples
with documented neoadjuvant therapies to reduce potential
confounding bias. TNM stage were used and transformed to
AJCC staging groups. Samples with specific T subcategories (like
T2a or T2b) were converted to staging groups according to AJCC
7th edition. T1N0, T2N0, T1N1, T2N1 or T3N0 were converted
to stage 1A, 1B, 2A, 2B, respectively, conforming to AJCC 6th
edition. For GSE31210 without TNM stage information, we used
the pathological stage in the clinical file directly.

RNA-seq and Microarray Data
Preprocessing
Raw “.CEL” files of microarray data were downloaded from GEO
website and read by “affy” package with the latest brainarray
CDF files (October 2019, version 24) (28, 29). Robust multi-array
average (RMA) algorithm in “affy” package was then applied to
normalize gene expression intensity (28, 30). RMA algorithm
included background adjustment, quantile normalization, and
measurement summation when multiple probes were used to
quantify the same gene expression intensity. After normalization,
“arrayQualityMetrics” package was utilized to detect and exclude
possible outliers (31). For RNA-seq data, level 3 FPKM data were
downloaded using TCGAbiolink R package (32). FPKM values
were then transformed into TPM values, which allowed a more
direct comparison between samples as the sum of all TPMs in
each sample were the same. As a result, the inflated statistical
significance was reduced (33). TPM values were subsequently
log 2 transformed to fit a more normal distribution. Entrez
IDs were used across all platforms. Only samples with clinical
information were retained. Finally, TCGA-LUAD cohort was
used as the training set for immunoscore model construction,
which contained 400 patients with RNA-seq data and survival
information. Twomicroarray datasets, GSE31210 (n= 219) from
Affymetrix Human Genome U133 Plus 2.0 Array platform as
testing set 1, and GSE68485 (n = 356) from Affymetrix Human
Genome U133A Array platform as testing set 2, were used to
assess the immunoscore performance in predicting survival of
early-stage LUAD patients.

Immunoscore Construction
We searched Immport database (https://immport.niaid.nih.gov)
and downloaded 1811 immune-related genes from 17 categories
(18). Of 1,811 immune-related genes, 1,361 of them were
contained in the training set. Univariate Cox proportional
regression analysis was used to investigate their associations with
patient survival using “survival” package (34). Only the genes
with P-value< 0.05 and hazard ratio (HR)> 1 were screened out
as immune risk genes for further study. We then implemented
single sample gene set enrichment analysis (ssGSEA) algorithm
to quantify the enrichment score of immune risk genes in various
immune-related gene set using “GSVA” package (35). Difference
of enrichment statistic of genes in the gene set and outside
were computed, and normalized to fit a relatively uniform scale
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as Barbie et al. described (15, 35). We then transformed the
normalized enrichment score into Z-score to conform standard
normal distribution using the following algorithm:

ZNESij =
NESij −Mj

SDj

The final Z-score transformed normalized enrichment score
of sample i, immune gene set j was denoted by ZNESij.The
normalized enrichment score of sample i, immune gene set j
was denoted by NESij. The mean and standard deviation (SD)
of enrichment score across all samples in immune gene set j
were denoted by Mj and SDj, respectively. This transformation
obtained a uniform underlying distribution (mean= 0, standard
deviation = 1) of each gene set across various platform;
Immunoscore model was established by integrating all Z-score
transformed normalized enrichment score using regularized Cox
regression with the ridge penalty.

Immunoscorei =
∑n

j=1
βj ∗ ZNESij

Immunoscore of sample i was denoted by Immunoscorei.
Ridge Cox regression coefficient of gene set j was denoted by
βj and standard normal distribution transformed normalized
enrichment score of sample i, immune gene set j was denoted
by SNESij.Ridge regression was used to address the possible
collinearity (i.e., the correlated immune gene sets) to prevent
overfitting (36). It was conducted by “glmnet” package and
the tuning parameter Lambda was chosen with minimum
criteria (37). Thus, a new variable immunoscore was created
to predict patient survival. It could also be served as the
quantitative measurement of hazardous level of tumor immune
microenvironment with its biological background.

Validation of Immunoscore
After immunoscore development, we applied the same formula
to two independent testing sets, GSE31210 and GSE68485.
Meta-set was formed by combining all training and testing
sets. Univariate and Multivariate regression were used to
evaluate the predictive power of the immunoscore model in all
training, testing and meta-set. Age, stage, gender and smoking
history were included in multivariable Cox analysis. Fraction
of genome alteration in TCGA-LUAD clinical profile was also
involved as a covariate in the TCGA-LUAD cohort. Patients
were divided into high-immunoscore and low-immunoscore
subgroups based on median value in the training set. Patients
with immunoscore higher than cut-off value were assigned to
high-immunoscore subgroup, while with immunoscore lower
or equal to cut-off value were assigned to low-immunoscore
subgroup. Kaplan-Meier analysis was performed to these two
groups. Time-dependent receiver operator characteristic (ROC)
curve analysis was utilized to assess the predictive accuracy
for early-stage LUAD patients using “timeROC” package (38).
The prognostic value of immunoscore in various treatment
groups was evaluated in GSE68465, which contained detailed
information of whether patients received adjuvant chemotherapy
or radiotherapy with sufficient sample size in each category (75

patients with documented adjuvant therapy, 271 patients without
documented adjucvant therapy).

Comparison With Other Gene Expression
Signatures
The immunoscore was compared with other existing NSCLC
prognostic signature to assess its clinical utility. To date,
numerous gene expression signatures have been developed. We
selected two immune-related signatures (39, 40), one glycolysis-
based signature. In addition, another malignancy gene signature
was included, which had the top-ranked prognostic capability
when compared with random signature in lung adenocarcinoma
patient (41, 42). Detailed information regarding these signatures
was provided in Supplementary Table 3. Gene symbols in the
signatures were transformed into Entrez IDs. Using coefficients
provided in supplementary materials, continuous risk score of
each signature was computed in TCGA-LUAD, GSE31210, and
GSE68465 cohorts. For malignancy gene signature, risk score
was generated in each set by first principal component of
provided gene list. Hazard ratios of univariate and multivariate
Cox regression were used to evaluate their survival associations.
C-index derived from “coxph” function with default Efron
method to handle ties was utilized to determine their prognostic
classification capabilities.

Immunoscore-Clinical Prognostic
Signature Construction
To make full use of both immunoscore and clinical variables
in prognostic prediction, we constructed immunoscore-clinical
prognostic signature (ICPS). Stage was converted to numeric
variable. Stage IA, IB, IIA, IIB were assigned as 1, 2, 3, 4,
respectively. Stage II with no subcategories were assigned as 3.5.
Similarly, median value of ICPS in the training set was used as
the cut-off value. C-index of ICPS was compared with stage or
immunoscore alone using “compareC” package (43).

Genomic Analysis
Somatic mutation profile were downloaded from Genomic Data
Common (GDC) website. Maftools was used to summarize
the somatic mutation (44). Samples measured by Whole
Genome Amplification (WGA) of Repli-G DNA (which could be
identified by tumor barcode) were excluded to reduce possible
bias. Tumor mutation burden (TMB) was calculated as previous
study described:

TMBi = 1.0 ∗ NTMi + 1.5 ∗ TMi

Tumor mutation burden of sample i was denoted by
TMBi. Total number of nontruncating mutation and total
number of truncating mutation were denoted by NTMi and
TMi, respectively.

The silent mutation was not included in the formula as
it does not result in any change downstream. The truncating
mutation was assigned a higher weight as it is considered more
detrimental (45). Mutated genes between high-immunoscore and
low-immunoscore groups were compared by fisher exact test
using “mafcompare” function (44). Gene ontology and pathway
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analyses were then performed using differentially mutated genes
by “clusterProfiler” package (46).

Tumor Purity and Various Cell Composition
Characterization
We established our immunoscore model based on the bulk
gene expression data of the tumor. It could also be used as the
measurement of hazardous level of tumor environment (TME)
with its biological background. TME contained not only cancer
cells, but surrounding non-cancerous immune and normal cells.
To further delineate the correlation between immunoscore and
TME, we need to first figure out the TME components. TCGA-
LUAD cohort was used for TME evaluation. Tumor purity, the
percentage of cancer cell inside the tumor, could be estimated in
different ways. Aran et al. developed consensus measurement of
purity estimations (CPE), which used the median value of several
genomic algorithms and immunohistochemistry (IHC) after
normalization by combined mean and standard deviation (47).
As a result, the bias introduced by a single method or algorithm
was minimized. We also utilized Estimating the Proportion
of Immune and Cancer cells (EPIC) algorithm, a method
to predict various cell types in tumor tissue using RNA-seq
tumor gene expression profile (48). Non-log transformed TPM

data of TCGA-LUAD samples were used and the Ensemble
gene IDs were converted into the official gene symbols as
the algorithm required. The EPIC algorithm was based
on reference gene expression profiles to infer proportions
of surrounding non-malignant cells with experimental
measurements confirming its predictive robustness. Samples
with convergence code other than 0 were excluded as these might
be outliers.

Gene Set Enrichment Analysis and
Association With Clinical or Molecular
Variables
Gene set enrichment analysis was performed to assess the
association of immunoscore to the functional immune pathways.
Differential gene expression profile between high-immunoscore
and low-immunoscore subgroups was derived by “eBayes”
function using limma package (49). We run fgsea algorithm
with top 12,000 genes using C5 gene set from MsigDB
database (https://www.gsea-msigdb.org/gsea/msigdb/). Gene set
related to immune system were extracted. The correlation of
immunoscore with clinical factors and certain molecular markers
were also evaluated.

FIGURE 1 | Flowchart of the study. GSEA, gene set enrichment analysis.
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Statistical Analysis
Group comparison between a continuous variable were
conducted by t-test or ANOVA. All correlation analyses were
performed with spearman method, and considered highly
correlated when absolute value of correlation coefficient was
>0.25. False discovery rate was calculated as the adjusted
P-value. All statistical procedures were conducted by R software
version 3.6.1 (50). All p-values were two-sided and considered
statistically significant when <0.05. Gene set was with P < 0.05
and FDR < 0.25 was considered significantly enriched.

RESULT

Immunoscore Model Construction
The flowchart of our study procedures was illustrated in
Figure 1. A total of 975 patients with early-stage lung
adenocarcinoma were included in the study. Detailed clinical
information was shown in Table 1. In the training set, 109
genes were correlated with worse prognosis (HR > 1, P <

0.05, Supplementary Table 1). Gene set “TGFb family members,”
“TGFb_Family_Member” and “Interferons” contained only
1 gene and were excluded from further analysis. Z-score
transformed enrichment scores of the remaining 11 gene
set were then calculated as the method described. All of
them were correlated with poor survival in the training set
(Figure 2A; Supplementary Table 2). Ridge Cox regression was
then performed and immunoscore was derived by the sum of
all Z-score transformed enrichment scores weighed by ridge
regression coefficients (Figures 2B,C; Supplementary Table 2).
The predictive accuracy of immunoscore to 2, 3, and 5-
year survival were estimated by time-dependent receiver ROC
analysis (Figure 2D).

Validation of Immuoscore
The immunoscore of the testing sets were calculated using the
same formula. We also built a meta-set by combing all training
and testing sets. Patients were stratified into high and low-
immunoscore subgroups using median value of immunoscore
in the training set as the cut-off value (−0.0126). Kaplan–Meier
survival analysis and log-rank test was performed to compare
the difference between these two subgroups. The result exhibited
that patients from high-immunoscore subgroup were more likely
to suffer worse overall survival (P < 0.001 in the training set,
testing sets, and meta-set; Figures 3A–D). Similarly, patients
with higher score were also linked to shorter disease-free survival
(DFS) interval (P < 0.001 in training set, testing set 1 and meta-
set, P = 0.005 in testing set 2, Supplementary Figure 1). Time-
dependent ROC analyses were also performed to testing sets and
meta-set (Supplementary Figure 2).

Cox regression was used to assess its survival association.
Univariate Cox regression analysis revealed that immunoscore
was a significant risk factor in all three training and testing
sets (HR = 3.11, 95% confidence interval (CI) 2.4–4.04, P <

0.001 in training set; HR = 2.39, 95% CI 1.6–3.58, P < 0.001
in testing set 1; HR = 1.44, 95% CI 1.17–1.78, P < 0.001 in
testing set 2; HR= 1.88, 95% CI 1.63–2.17 in meta-set; Figure 4).
Multivariate Cox regression analysis indicated that immunoscore

TABLE 1 | Detailed patient clinical characteristics.

Characteristics Training set Testing set 1 Testing set 2

Source TCGA GSE31210 GSE68465

Sample size 400 219 356

Platform RNA-seq Affymetrix

Human

Genome U133

Plus 2.0 Array

Affymetrix

Human

Genome

U133A Array

AJCC stage

IA 130 (32.5) 112 (51.1) 112 (31.5)

IB 143 (35.8) 53 (24.2) 155 (43.5)

II — 54 (24.7) —

IIA 57 (14.2) — 24 (6.7)

IIB 70 (17.5) — 65 (18.3)

Age group

≤65 190 (47.5) 170 (77.6) 186 (52.2)

> 65 201 (50.2) 49 (22.4) 170 (47.8)

Smoking history

Non-smoker 57 (14.2) 112 (51.1) 40 (11.2)

Ever-smoker 333 (83.2) 107 (48.9) 243 (68.3)

Unknown 10 (2.5) — 73 (20.5)

Gender

Male 177 (45.6) 103 (46.4) 175 (49.2)

Female 211 (54.4) 119 (53.6) 181 (50.8)

Survival status

Alive 273 (68.2) 186 (84.9) 189 (53.1)

Dead 127 (31.8) 33 (15.1) 167 (46.9)

Genome alteration

≤ 0.2 170 (42.5) — —

> 0.2 229 (57.2) — —

Unknown 1 (0.2) — —

Values in parentheses are percentages.

was an independent risk factor in training (HR = 2.96, 95% CI
2.24–3.9, P < 0.001), testing set 1 (HR = 1.99, 95% CI 1.21–
3.26, P = 0.006), testing set 2 (HR= 1.48, 95% CI 1.13–1.93, P =

0.005), and meta-set (HR = 2.01, 95% CI 1.69–2.39, P < 0.001),
as shown in Figure 5. Moreover, Immunoscore could identify
patients with worse survival in all clinical subgroups in meta-set
(Supplementary Figure 3).

Comparison of Immunoscore With Other
Genomic Signatures
To assess the utility of immunoscore model, we compared
prognostic association of immunoscore against other published
genomic signatures (Supplementary Table 3). Besides Song et al.
signature, most signatures had good performance in univariate
and multivariate regression analyses (Supplementary Figure 4;
Figure 6A). Immunoscore exhibited a generally higher C-index
than other signatures in all three cohorts, except less than
Chen2 et al. signature in GSE31210 (0.72 vs. 0.726, Figure 6B).
Meanwhile, immunoscore achieved the highest mean C-index
(0.68 vs. range from 0.58 to 0.64, Figure 6B).
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FIGURE 2 | Immunoscore model construction. (A) Forest plot exhibiting different immune gene sets and patient overall survival in the training set. (B) 10-fold

cross-validation for tuning parameter selection in the ridge regression model. The partial likelihood deviance is plotted against log (λ), where λ is the tuning parameter.

Partial likelihood deviance values are shown, with error bars representing standard error (SE). The dotted vertical line on the left was drawn by minimum criteria

whereas the line on the right represented the 1-SE criteria. We chose the minimum criteria. (C) Ridge regression coefficients of the 13 immune gene sets. The dotted

line indicated the value chosen by the minimum criteria of the 10-fold validation. (D) Time-dependent receiver operator analysis (ROC) of the immunoscore in the

training set. HR.95%CI, hazard ratio with 95% confidence interval. P.adj, adjusted P-value by false discovery rate.

Immunoscore-Clinical Prognostic
Signature Construction
Stage, age and immunoscore were all independent prognostic
variables in multivariable Cox analysis in all 3 sets and meta-
set. To explore whether combing these variables would improve
prediction accuracy, coefficients of multivariate regression of
these three factors in the training-set were used to introduce a
new variable, immunoscore-clinical prognostic signature (ICPS).

ICPS = 1.06076428 ∗ immunoscore

+0.19653598 ∗ stage+ 0.01961085 ∗ age

Patients were stratified into high-ICPS and low-ICPS subgroups
using median value of ICPS in training set as the cut-off
(1.74). High-ICPS subgroup was significantly correlated with
worse survival in each set (P < 0.001, Figure 7). Figure 7

also exhibited C-index of ICPS was significantly higher than
either immunoscore or stage, in training [0.72 (ICPS) vs. 0.7
(immunoscore) and 0.59 (stage), P < 0.001 when compared with
stage], testing set 1 [0.75 (ICPS) vs. 0.72 (immunoscore) and 0.7
(stage), P = 0.015 when compared with stage], and testing set 2
[0.65 (ICPS) vs. 0.61 (immunoscore) and 0.62 (stage), P < 0.001
when compared with stage]. Moreover, C-index of ICPS was
significantly higher than both of them in meta-set [0.7 (ICPS) vs.
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FIGURE 3 | Survival analysis of the immunoscore. Kaplan–Meier curves for patient overall survival by immunoscore group in the (A) training set, (B) testing set 1, (C)

testing set 2, and (D) meta-set.

0.66 (immunoscore) and 0.64 (stage), P < 0.001 when compared
with immunoscore or stage, Figure 7].

Immunoscore, ICPS, and Adjuvant Therapy
A small subset of early-stage LUAD patient received
postoperative adjuvant chemotherapy or radiotherapy. To
investigate whether various treatment strategies had an effect to
immunoscore and ICPS model, we used GSE68465 cohort with
comprehensive documentation of adjuvant therapy. Patients
who received adjuvant therapy had a worse overall survival
(Figure 8A). It might be due to clinical practice, as adjuvant
therapy was more likely to be applied to patients with higher
stage and worse condition. Survival analysis indicated that
immunoscore and ICPS could still stratify patients with different
prognosis in each treatment group (Figures 8B,C).

Genome Analysis
To explore the possible underlying causes of difference in
immunoscore between patients, we searched GDC website
and downloaded all available somatic mutation data of lung
adenocarcinoma patients. Three hundred fifty-eight available
mutation profiles in TCGA-LUAD cohort (174 in high-
immunoscore subgroup, 148 in low-immunoscore subgroup)
were summarized by maftools. The mutation profiles of high-
immunoscore and low-immunoscore subgroups were illustrated
in Figures 9A,B, respectively. Differentially mutated genes
between low-immunocore and high-immunoscore subgroups
were identified by Fisher exact test using “mafcompare” function.
Twenty of them were shown in Figure 9C. TP53 was the most
commonly mutated gene in high-immunoscore subgroup and
had the smallest adjusted P-value. TP53 was a tumor suppressor
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FIGURE 4 | The univariate Cox analysis of the immunoscore and clinicopathological factors. The HR in training cohort was 3.11, with 95% confidence interval (CI)

from 2.44 to 4.04 (P < 0.001). The HR in testing set 1 was 2.39, with 95% CI from 1.6 to 3.58 (P < 0.001). The HR in testing set 2 was 1.44, with 95% CI from 1.17

to 1.78 (P < 0.001). The HR in meta-set was 1.88, with 95% CI from 1.63 to 2.17 (P < 0.001). HR.95%CI, hazard ratio with 95% confidence interval.

gene, encoding P53 transcriptional factor which responds to
DNA damage repair. TP53 mutation has been recently reported
to be associated with response to immunotherapy in certain
subtype of NSCLC (51). We discovered that TP53 mutation
was correlated with immunoscore. P53 mutation might induce
genome instability, increasing neoantigen load, leading to a

more dangerous tumor immune microenvironment, resulting
in higher immunoscore. Another established immunotherapy
biomarker, tumor mutation burden (TMB), was also positively
correlated with immunoscore (R = 0.22, P < 0.001, Figure 9D).
Gene ontology and KEGG pathway analyses of the differentially
mutated genes were provided in Supplementary Figure 5.
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FIGURE 5 | Multivariate Cox analysis evaluating independently predictive ability of immunoscore for patient survival. The immunoscore was able to independently

predict patient survival in training set (hazard ratio (HR) = 2.96, 95% confidence interval (CI) from 2.24 to 3.9, P < 0.001), testing set 1 (HR = 1.99, 95% CI from 1.05

to 3.81, P = 0.006), testing set 2 (HR = 1.48, 95% CI from 1.13 to 1.93, P=0.005), and meta-set (HR = 2.01, 95% CI from 1.69 to 2.39, P <0.001). HR.95%CI,

hazard ratio with 95% confidence interval.

Immunoscore and Tumor
Microenvironment
The relationship between immunoscore and tumor
microenvironment was investigated using TCGA-LUAD cohort.
Tumor purity, the percentage of cancer cells inside the tumor,
was estimated by consensus measurement of purity estimations
(CPE). Patients with high immunoscore tend to have low tumor

purity (R=−0.12, P= 0.015, Figure 10A). Patients were divided
into high-purity and low-purity subgroup using median value
of tumor purity (0.637). Kaplan-Meier survival curves indicated
high tumor purity tend to have generally worse survival, but

did not reach statistical significance (P = 0.3, Figure 10B).

We next investigated the cellular composition of TME. EPIC
algorithm, which was designed specifically for RNA-seq data,
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FIGURE 6 | Comparison of immunoscore and other existing NSCLC signatures. (A) Hazard ratio of each gene expression signature in multivariable Cox analysis. (B)

C-index of each signature in each independent dataset and mean C-index. HR.95%CI, hazard ratio with 95% confidence interval.

FIGURE 7 | Kaplan–Meier survival analysis and compare C-index of ICPS with immunoscore and stage in (A) training set, (B) testing set 1, (C) testing set 2, (D)

meta-set.
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FIGURE 8 | (A) Kaplan–Meier curves for patients who received adjuvant therapy or not (B) Kaplan–Meier curves for survival prediction by the immunoscore in patients

who received adjunctive therapy or not. (C) Kaplan–Meier curves for survival prediction by the ICPS in patients who received adjunctive therapy or not.

was used to infer the proportions of different infiltrating immune
and stromal cells. Using absolute value of 0.25 as cut-off,
cancer-associated fibroblast (CAF) (R = 0.32, P < 0.001) and
CD8T cell (R = −0.27, P < 0.001) were highly correlated
to immunoscore (Figure 10C; Supplementary Table 4). In
univariate Cox analysis, only CAF attained a borderline
significant P value (HR = 2.42, 95% CI 0.9–6.55, P = 0.081,
Figure 10D).

Immunoscore, Clinicopathological
Characteristics, and Biological Phenotypes
Gene set enrichment analysis between high-immunoscore and
low-immunoscore were conducted. Immune-related pathways
were extracted and most of them were enriched to the low
end (27 out of 29 Immune-related pathways). The relationship
between immunoscore and other clinicopathological factors were
assessed in TCGA-LUAD cohort. Higher T andN stage possessed
greater immunoscore, whereas its distribution in age, gender
and smoking status was not significantly different (Figure 11B).
Of immune checkpoint molecules, immunoscore was only
correlated to PD-L1 and LAG3 (R= 0.16, P= 0.001 for PD-L1; R
= 0.1, P = 0.04 for LAG3, Figure 11B; Supplementary Table 5).
Interestingly, Several hypoxia-inducible factor (HIF)-
1 pathway markers, like HIF-1A (R= 0.41, P < 0.001),
SLC2A1 (R = 0.6, P < 0.001), LOXL2 (R = 0.55, P < 0.001),
PDK1 (R = 0.27, P < 0.001), and LDHA (R = 0.53,
P< 0.001), were highly correlated with immunoscore
(Figure 11C, Supplementary Table 5) (52).

DISCUSSION

Lung cancer treatment has been improved dramatically during
the past decades, mainly owing to the constant discoveries of

genomic alterations during lung cancer pathogenesis. However,
the patient prognostic evaluation is still based on the AJCC
staging system. Although it is a powerful prognostic prediction
tool, it is inadequate to get a precise assessment of patient
survival. In early-stage LUAD, the AJCC staging system is far
from getting accurate prediction since about 30 percent of
patients would develop recurrence, with 2-year survival at about
17% (53). To identify this subset of patients with high risk of
recurrence and poor survival is critical since receiving adjuvant
chemotherapy or newly developed adjuvant immunotherapymay
of great benefit to them.

Up to now, Numerous gene expression signatures have been
established for the prediction of lung cancer patient survival
(41). Few of them, however, have been translated into real
clinical practice. It might be caused by several defects in
signature construction. First, some of them were trained from
a small cohort with high variance and insufficient independent
samples to test its robustness. Second, Gene expression data were
measured by different experimental strategy with batch effect,
whichmeans that the signature constructed in one specific cohort
cannot be generalized into other platforms. Third, most of the
signatures were composed of several specific genes and ignore
other possible causes, which severely decreased its stability and
could potentially lead to overfitting.

In our research, we compared immunoscore with other
gene expression signatures. Immunoscore achieved the highest
mean C-index, indicating its superior prognostic classification
capability. Of immune-related gene signatures, Li et al. (40)
signature also had good performance. Li’s signature used the
binary variable, the pairwise comparison between immune-
related gene groups, as features in model construction.
Immunoscore and Li’s signature had a lot in common, as
both of them used some sort of gene ranks (ssGSEA in
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FIGURE 9 | Mutation profile in the TCGA-LUAD cohort. (A) Mutation profile of high-immunoscore subgroup. (B) Mutation profile of low-immunoscore subgroup. (C)

Differentially mutated genes between high and low immunoscore patients. (D) Correlation between tumor mutation burden (TMB) and immunoscore. OR.95%CI, odds

ratio with 95% confidence interval. P.adj, adjusted P-value by false discovery rate.

immunoscore; pairwise comparison in Li’s signature) rather
than gene expression intensity, making them not sensitive to
preprocessing strategies and batch effect.

Our model also has its biomedical sense. It was constructed
based on enrichment score of risk genes from multiple
immune gene sets, and all selected immune gene sets were
significantly correlated with worse patient survival. Thus,
higher immunoscore indicated a more dangerous tumor
microenvironment. The top three contributors to immunoscore
were cytokine receptor, antimircrobial, and cytokine. Several
cytokine-cytokine receptors signaling pathway have been
identified to play a important role in cancer cell proliferation and

survival. Most cytokine receptors were located at cell surface,
and activated when contacting with specific cytokines. In GSEA
analysis, innate immune response activating cell surface receptor
signaling pathway ranked the top. Gene ontology analysis also
indicated several gene sets related to cell membrane are enriched
in differentially mutated genes. Overall, it implied that cell
surface signaling pathways were tightly linked to immunoscore
and disruption of these pathways might portend poor prognosis.
In addition, drugs modifying cytokine-cytokine receptor
signaling in combination with other immunotherapy might be a
promising treatment strategy. Antimicrobial pathway has been
linked to carcinogenesis, as infection by some microorganisms
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FIGURE 10 | Tumor microenvironment (TME) change associated with immunoscore. (A) Correlation between immunoscore and tumor purity. (B) Kaplan-Meier curves

of patient survival according to tumor purity in the TCGA-LUAD cohort. (C) Correlation matrix of immunoscore and cell proportions. (D) Univariate Cox analysis of

various cell type. HR.95%CI, hazard ratio with 95% confidence interval. P.adj, adjusted P-value by false discovery rate.

might lead to cell proliferation, and could be reversed by
antimicrobials agents (54).

Tumor purity and cellular composition in tumor
microenvironment were also investigated. Patients with
high immunoscore tend to have low tumor purity. Furthermore,
immunoscore was positively associated with CAFs and but
inversely associated with CD8+ T cells. CD8+ T cell has direct
cytolytic effect, whereas CAF, on the other hand, may suppress
CD8+ cell function by upregulating PD-1, PD-L1, and FAS
ligand on Treg cells (55). In addition, KEGG pathway analysis
of differentially mutated genes also found ECM-interaction
pathway abnormality. ECM stiffness might lead to activation of
cancer cells and pro-tumor effect of CAF (56). Besides, cancer cell

could induce CAF to remodel ECM, whereas CAF might sustain
cancer growth by secreting aspartate (57). Further investigations
are needed to figure out how fibroblast communicate with
other cells or molecules inside TME and give insight to novel
drug targets.

We next explored the phenotypical difference between
samples of high and low immunoscore.

Most immune-related pathways were enriched in low-
immunoscore subgroup, indicating high-immunoscore
subgroup was a “immune cold” subtype. We also discovered
multiple markers of HIF-hydroxylase oxygen-sensing pathway
to be correlated with immunoscore. HIF could enhance
tumor proliferation in TME by altering immune cell function
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FIGURE 11 | (A) Comparison of enrichment levels of immune-related pathways between high-immunoscore and low-immunoscore subgroups. (B) Distribution of

immunoscore in various clinical subgroups. (C) Correlation matrix of immunoscore and certain gene expression.
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and recruiting pro-tumor immune cells (58). For example,
expression of HIF1A in tumor-associated macrophage (TAM)
might suppress T cell function (59). More experiments and
analyses are required to elucidate how HIF pathway affect tumor
immune microenvironment as HIF1A is an incredibly promising
target for cancer therapy (60).

Our study has several advantages. First, we trained our
model in a large cohort with sufficient samples used to
test its robustness. Second, we built our immunoscore
model to predict patient outcome based on the enrichment
levels of different gene sets rather than several single
genes, making it a more comprehensive evaluation of
tumor immune microenvironment and prevent overfitting.
Third, when integrating clinical factors and immunoscore
to construct a new ICPS model, it outperformed either
immunoscore or stage alone. Fourth, immunoscore itself
could also be seen as a proxy variable, the measurement
of tumor immune microenvironment, and we found
that genome instability, several specific immune cell
proportions and functional pathway activation were correlated
to immunoscore.

We admit some limitations. First, we used publically
available datasets in retrospective manner. We did not have
all clinical information needed for the study. For example,
patients with inherent immune disorder or taking drugs with
impact on immune system should be ruled out. Second, gene
expression signatures were developed in different platform
with diverse preprocessing strategies and normalization
procedure. Although immunoscore outperformed other
signatures, it might be due to technical bias or batch effect.
Third, the immunoscore model contained several genes
with still unknown effects in LUAD, and this “black-box”
impact severely undermined the model interpretability.
More experiments are needed to elucidate their biological
associations. Finally, we cannot estimate its predictive value
to immune checkpoint inhibitors due to lack of response data
to immunotherapy. Further studies are needed to validate and
improve immunoscore model.
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