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It is of utmost importance to decipher the role of chronic exposure to low doses

of environmental carcinogens on breast cancer progression. The early-transformed

triple-negative human mammary MCF10AT1 cells were chronically (60 days) exposed

to low doses (10−10 M) of Benzo[a]pyrene (B[a]P), a genotoxic agent, and/or Bisphenol

A (BPA), an endocrine disruptor. Our study revealed that exposed MCF10AT1 cells

developed, in a time-dependent manner, an acquired phenotype characterized by

an increase in cancerous properties (anchorage independent growth and stem-like

phenotype). Co-exposure of MCF10AT1 cells to B[a]P and BPA led to a significantly

greater aggressive phenotype compared to B[a]P or BPA alone. This study provided new

insights into the existence of a functional interplay between the aryl hydrocarbon receptor

(AhR) and the G protein-coupled receptor 30 (GPR30) by which chronic and low-dose

exposure of B[a]P and/or BPA fosters the progression of MCF10AT1 cells into a more

aggressive substage. Experiments using AhR or GPR30 antagonists, siRNA strategies,

and RNAseq analysis led us to propose a model in which AhR signaling plays a “driver

role” in the AhR/GPR30 cross-talk in mediating long-term and low-dose exposure of

B[a]P and/or BPA. Retrospective analysis of two independent breast cancer cohorts

revealed that the AhR/GPR30mRNA expression signature resulted in poor breast cancer

prognosis, in particular in the ER-negative and the triple-negative subtypes. Finally, the

study identified targeting AhR and/or GPR30 with specific antagonists as a strategy
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capable of inhibiting carcinogenesis associated with chronic exposure to low doses of

B[a]P and BPA in MCF10AT1 cells. Altogether, our results indicate that the engagement

of both AhR and GPR30 functions, in particular in an ER-negative/triple-negative context

of breast cells, favors tumor progression and leads to poor prognosis.

Keywords: environmental factors, Benzo[a]pyrene, Bisphenol-A, breast cancer, tumor progression, AhR, GPR30

INTRODUCTION

Progression of human breast epithelial cells from non-cancerous
to pre-malignant and of early-transformed mammary cells to
malignant stages is a multiyear, multistep, multiscale, and
multipath disease process. More than 85% of breast cancers
are sporadic and potentially attributable to long-term exposure
to environmental factors, such as chemical carcinogens (1–
5). Given the increasing evidence that common environmental
carcinogens play a significant role in breast cancer, increased
attention has been paid to molecular mechanisms through which
pollutants affect breast tumor formation, progression, and/or
invasion (6–8). The identification of such molecular mechanisms
could have several societal and environmental consequences,
and may lead to the discovery of human biomarkers of
exposure to environmental carcinogens exploitable for breast
cancer prevention.

Previous in vitro investigations have mainly been conducted
on human mammary epithelial cells or on human breast cancer
cells, reflecting the impact of environmental factors on the earlier
and later stages of carcinogenesis (9–13). However, little is known
on the impact of exposure to pollutants on the breast early-
transformed stage. Short-term exposure of cells to carcinogens
at micro- to millimolar concentrations was previously typically
investigated (1, 2, 14–16) which, while informative, is not
optimal in mimicking natural chronic exposure to low doses
of environmental carcinogens and to reflect physiologically-
achievable levels of environmental mammary carcinogens.
Additionally, few studies have attempted to mimic natural
environmental exposure by assessing the impact of exposure to
a combination of several pollutants with distinct mechanisms of
action that may interact or induce a greater adverse effect than
the use of individual compounds.

Benzo[a]pyrene (B[a]P), a family member of poly-cyclic
aromatic hydrocarbons, is considered to be a tobacco,
environmental, and dietary chemical carcinogen classified as
Group 1 carcinogen by the IARC (17). B[a]P is a tumor initiator
that binds and forms a complex with the aryl hydrocarbon
receptor (AhR) (18–20). Upon such activation, the AhR-
transcriptional complex activates specific DNA-recognition
elements, such as xenobiotic response elements (XREs), and
upregulates the expression of genes such as cytochrome P450

Abbreviations: B[a]P, benzo[a]pyrene; AhR, aryl hydrocarbon receptor; XRE,

xenobiotic response element; BPA, bisphenol-A; EDC, endocrine-disrupting

compound; ERα, estrogen receptor alpha; ERβ, estrogen receptor beta; GPR30,

G protein-coupled receptor 30; PXR, pregnane X receptor; PR, progesterone

receptor; AIG, anchorage-independent growth; MFE, mammosphere formation

efficiency; RT-qPCR, real-time quantitative polymerase chain reaction; TCDD,

2,3,7,8-Tetrachlorodibenzo-p-dioxin; OS, overall survival.

isoforms (including CYP1A1). These latter are involved in the
metabolic activation of B[a]P in genotoxic metabolites forming
DNA adducts relevant for carcinogenesis [for review, (21, 22)].
A growing body of evidence is accumulating implicating the
B[a]P/AhR/CYP1A1 pathway in carcinogenesis (23–25). At
early stages of carcinogenesis, short-term and millimolar B[a]P
doses were shown to induce aggressiveness and transformation
of non-cancerous human mammary epithelial cells (26–28).
The impact of chronic and low-dose exposure of these cells to
B[a]P was scarcely investigated, but seems to foster progression
toward the early-transformed stage by favoring increased
mesenchymal, stem-like, and anchorage-independent growth
properties (9–13, 29).

Bisphenol-A (BPA) is a monomer of polycarbonate plastics
and human exposure to BPA mainly occurs through the oral
route due to the leaching of BPA in food and beverage containers,
but non-dietary sources such as dust, air and cosmetics are also
relevant (30). BPA has been the focus of widespread concern due
to the fact that it interferes with endocrine signaling pathways
even at extremely low doses, and thus belongs to the endocrine-
disrupting compounds (EDC) (31, 32). BPA is known to bind
to estrogen receptors alpha and beta (ERα and ERβ), to the G
protein-coupled receptor 30 (GPR30) but also to the pregnane X
receptor (PXR) (31, 33). Although several in vivo studies reported
a carcinogenic potential of BPA [reviewed in (32)], the World
Health Organization (WHO) indicated that there is currently
insufficient evidence on which to base this carcinogenic potential
(34). In vitro studies have however revealed that BPA causes
adverse effects in non-cancerous mammary epithelial cells or
in breast cancer cell lines, including increased cell proliferation,
cell stemness, oxidative stress, and alterations of cell signaling
pathways involved in carcinogenesis (13, 29, 35–38).

The MCF10 unique model of breast cancer progression
comprises a series of isogenic triple-negative cell lines derived
fromMCF10A cells (MCF10A, MCF10AT1 andMCF10CA1a.cl1
cells). The parental cell line (MCF10A) having been originally
isolated from a woman with fibrocystic change (39), the
members of the MCF10 series belong to the triple negative/basal-
like subtype (ER-negative, progesterone receptor (PR)-negative,
HER2-negative) (40–42). These cell lines thus recapitulate the
stages of mammary carcinogenesis (43), making this a valuable
in vitro model for studying the progression of triple-negative
breast cancer (44–46). In the present study, we used MCF10AT1
breast cells which represent the transformed early stage in
the MCF10 unique model of breast cancer progression (43,
44) to further characterize the carcinogenic potential of B[a]P
and BPA. To our knowledge, these cells have never been
used to test the impact of chronic and low-dose exposure to
environmental pollutants.
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The main objectives of this work were to newly investigate:
(i) whether long-term and low-dose exposure to B[a]P and/or
BPA triggers the progression of early-transformed mammary
cells to a more aggressive stage; (ii) whether their combination
enhances the effect of each compound tested individually, in
particular whether BPA facilitates the pro-carcinogenic activity
of B[a]P; and (iii) to identify candidate strategies capable of
inhibiting mammary carcinogenesis linked to chronic exposure
to the environmental pollutants B[a]P and/or BPA.

Our data reveal that long-term and low-dose exposure to
B[a]P and BPA increases cancerous properties of the MCF10AT1
cell line. Importantly exposure to the two pollutants leads
to a greater deleterious impact than the compounds tested
individually, and our data highlight the existence of a unique
functional cross-talk between AhR and GPR30 in mediating
those effects. The clinical relevance of the AhR/GPR30 interplay
is validated by the observation of high mRNA expression levels
of these two receptors in breast cancer patients as markers of
poor prognosis. Finally, this study identified AhR and GPR30 as
novel targets for strategies inhibiting the development of cancer-
associated properties (AIG and MFE) in early-transformed
human mammary cells following long-term and low-dose
exposure to B[a]P and BPA.

MATERIALS AND METHODS

Cell Culture
Early-transformed human mammary MCF10AT1 cells and the
MCF10AT1-derived cancerous MCF10CA1a.cl1 cells (Karmanos
Institute, Detroit, USA) were purchased fromKarmanos Institute
(Detroit, USA) and maintained in complete DMEM/Ham’s
F12 medium with 5% horse serum (Thermo Fisher Scientific,
Waltham, USA) and additional supplements: 100 ng/mL cholera
enterotoxin, 10 mg/mL insulin, 0.5 mg/mL hydrocortisol,
20 ng/mL epidermal growth factor (Sigma, Saint Louis, USA)
100 units/mL penicillin and 100 mg/mL streptomycin. MCF-7
cells were purchased from ATCC (Teddington, UK) and grown
according to the manufacturer’s recommendations. HG5LN
PXR cells stably expressing PXR (47), were grown in DMEM
containing phenol red and 1 g/L glucose with 5% fetal calf
serum (FCS) and additional supplements: 1 mg/mL G418 and 0.5
µg/mL puromycin.

Reagents
B[a]P and BPA were purchased from Sigma (Saint Louis, USA).
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), used as a control,
was purchased from LGC Standard (Molsheim, France). The
GPR30 agonist G1, the GPR30 antagonist G15, and the AhR
agonist ITE were from TOCRIS Bioscience (Bristol, UK); the
AhR antagonist GNF351 from Calbiochem (Billerica, USA).

Establishment and Maintenance of the
Chronically Exposed Cellular Model
MCF10AT1 cells were chronically exposed or not to 10−10

M of B[a]P or to 10−10 M BPA, alone or in combination,
during 60 days (≈20 passages) in phenol red-free DMEM/Ham’s
F12 medium with 5% steroid-depleted, dextran-coated and

charcoal-treated horse serum, containing the above-mentioned
supplements (further referred to as DCC medium). Unexposed
MCF10CA1a.cl1 cells were grown concomitantly in the same
medium for 60 days and named MCF10CA1a.cl160d. Media and
treatments were changed every 2 days. Cells were frozen every
2 weeks.

Anchorage-Independent Growth (AIG)
Anchorage-independent growth was assessed by soft agar assay
as previously described (48). Single-cell suspensions (75 × 103)
were seeded onto soft agar, and colonies were counted after 3
weeks of incubation.

Mammosphere Formation Efficiency (MFE)
Single-cell suspensions were seeded using non-adherent
mammosphere culture conditions (49). After 7 days, primary
mammospheres (first generation) were counted, collected,
trypsinized, and replated for 10 days in non-adherent culture
conditions to generate second-generation mammospheres. The
culture media were replenished every 2–3 days.

RNA Extraction and Real-Time Quantitative
Polymerase Chain Reaction (RT-qPCR)
Total RNA extraction, reverse transcription and RT-qPCR
measurements were performed as described previously
(29, 48). RNA lysates were extracted after exposure to the
different molecules tested, untreated cells were used as
controls in the presence of the corresponding volume of
solvent. One microgram of total RNA from each sample
was reverse-transcribed as previously described (48). RT-
qPCR measurements were performed using a CFX96 with the
SsoAdvancedUniversal SYBR green supermix (BioRad, Hercules,
USA), according to the manufacturer’s recommendations. The
primers used to explore the expression of the ERα, ERβ,
PXR, AhR, GPR30, CYP1A1, and 28S genes are listed in the
Supplementary Table 1.

Western Blot
Western blot experiments were performed as previously
described (48) using the following antibodies: AhR (1:1,000,
ab2770; Abcam, Paris, France), GPR30 (1:1,000, NBP1-31239;
Novus Biologicals, Littleton, USA), α-tubulin (1:10,000, T5168;
Sigma), phospho-p42/44 MAPK (1:1,000, 9106; Cell Signaling),
p42/44 MAPK (1:1,000, 9102; Cell Signaling, Danvers, USA).

GPR30 or AhR Silencing
StealthTM siRNAs siRNA-GPR30 and StealthTM siRNAs
siRNA-AhR and their corresponding scrambled
control RNA (scrambled) were obtained from Ambion
(Carlsbad, USA,4390825) and Invitrogen (Carlsbad, USA,
AHRHSS100337/336), respectively. Fifty nM of siRNA-GPR30,
5 nM of siRNA-AhR or corresponding scrambled RNA were
transfected into MCF10AT1 cells with lipofectamine RNAimax
(Invitrogen). Transfections were performed directly at the
time of cell seeding. Western blots were performed 48 h post-
transfection. Exposure to G1, TCDD, or ITE for RNA collection
or luciferase assay was performed 24 h post-transfection.
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Luciferase Assay
Cells were plated and then transfected with 150 ng XRE-
firefly luciferase reporter plasmid (XRE-luc) (50) and 10 ng
Renilla luciferase plasmid (pTK-RL). Twenty-four hours after
transfection cells were grown for 8 h in the presence of the
indicated treatment, and luciferase activity was then assessed as
previously described (48).

Short-Term Exposure Experiments
In AIG experiments, MCF10AT1 cells were exposed to BPA
and/or B[a]P 10−10 M, ITE 10−10 M, or G1 10−10 M for
72 h in the presence or the absence of a 2 h pre-treatment
with the AhR antagonist GNF351 10−7 M or the GPR30
antagonist G15 10−8 M. Exposure was maintained throughout
the course of the experiments. In MFE assays, MCF10AT1 cells
were exposed to BPA and/or B[a]P 10−10 M, ITE 10−10 M,
or G1 10−10 M in the presence or the absence of GNF351
10−7 M or G15 10−8 M only during the time-course of
the experiments.

RNA-Seq Experiments and Analyses
RNA isolation, library preparation, and RNA-Seq were
performed by the core facility ProfileXpert (Lyon, France)
from three independent cell-culture replicates of each tested cell
line (unexposed MCF10AT160d cells, B[a]P 10−10 M exposed
MCF10AT160d, BPA 10−10 M exposed MCF10AT160d cells,
B[a]P+BPA 10−10 M exposed MCF10AT160d). The resulting
RNA were isolated using the RNeasy mini kit (Qiagen) according
to the manufacturer’s protocol and ribosomal depletion was
performed with the Ribo-zero gold kit (Epicentre). Libraries
were performed from 20 ng ribosomal depleted RNA with the
NEXTFLEX R© Rapid Directional RNA-Seq Library Prep Kit
(BIOO-Scientific). Libraries were sequenced using an Illumina
NextSeq 500 platform (flow cell highoutput V2) and a 75 bp
paired-end sequencing with ∼30–35 million reads per sample.
After trimming, reads were aligned to the human genome (hg19)
using TopHat-2 v. 2.1.0 and data normalization (FPKM) was
performed with Cufflinks software v.2.1.1. Data were logged on
the NCBI Gene Expression Omnibus (GEO) website (http://
www.ncbi.nlm.nih.gov/geo/) and are available as a GSE142073
dataset. Transcripts were considered as differentially expressed
when the p-value of a student non-parametric t-test was ≤

0.05. The Aryl Hydrocarbon Receptor Signaling Canonical
Pathway was evaluated with a functional analysis created with
Ingenuity Pathway Analysis software (IPA R©, QIAGEN Redwood
City, www.qiagen.com/ingenuity). The GPR30 gene expression
signature described by Pandey and collaborators (51) was
introduced in the Ingenuity Pathway Analysis software to assess
the GPR30 signaling pathway.

Cell Proliferation
A total of 4× 104 cells/well were seeded onto and cultured in 24-
well plates. Proliferating cells were analyzed using the ScepterTM

2.0 Cell Counter (Merck Millipore, Billerica, USA).

Cell Viability Assay
A total of 104 cells/well were plated onto a 96-well plate and
treated for 4 days as indicated. Cell viability was assessed as
previously described (52).

Breast Tumor Cohorts
Women with primary breast tumors (n = 113) and known
clinical follow-up who had not received any therapy before
surgery and who relapsed, or not, while receiving endocrine
therapy and/or chemotherapy were recruited from the BB-
0033-00050, Biological Resources Center (CRB) Centre Léon
Bérard, Lyon France (CLB cohort, Supplementary Table 2) (53).
This study has been approved by the local ethics committee
(CRB Centre Léon Bérard, France). The CRB Centre Léon
Bérard is quality certified according NFS96-900 French standard
and, ISO 9001 for clinical trials, ensuring scientific rigor for
sample conservation, traceability and quality, as well as ethical
rules observance and defined rules for transferring samples for
research purposes (Ministry of Health for activities authorization
n◦ AC-2019-3426 and DC-2008-99). The material used in
the study has been collected in agreement with all applicable
laws, rules, and requests of French and European government
authorities, including the patients’ informed written consents.
Extraction of total RNA from frozen tumor samples and RT-
qPCR measurements were performed as previously described
(52, 53). Univariate analyses were performed using the SPSSTM

Software (IBM, USA). The IBM SPSS software (IBM) was used
for all statistical analyses in which the prognostic value of AhR
and GPR30mRNA levels was analyzed. The data were divided at
the median value of AhR or GPR30 mRNA expression into two
groups with either high or low expression levels. The Kaplan-
Meier plotter (KMP) cohort was established from ameta-analysis
of the gene-expression profiles of 1,877 primary breast cancer
samples from patients who had not received any therapy prior to
surgery (54). A p < 0.05 was considered statistically significant.

Long-Term Inhibitory Strategies
MCF10AT1 cells were chronically (60 days) exposed or not
to (B[a]P + BPA) 10−10 M, alone or in combination with
GNF351 10−7 M and/or G15 10−8 M. Control experiments were
performed in MCF10AT1 cells exposed for 60 days to GNF351
10−7 M and/or G15 10−8 M. The resulting established cells were
then tested for AIG and MFE as described above.

RESULTS

Chronic and Low-Dose Exposure to B[a]P
and/or BPA of Early-Transformed
MCF10AT1 Cells Leads to an Enhanced
and Acquired Aggressive Phenotype
The MCF10AT1 cells and the MCF10AT1-derived
MCF10CA1a.cl1 respectively represent the early-transformed
and cancerous stages in the unique MCF10 model of triple
negative breast cancer progression (43, 44). Validation of
progression to malignancy of MCF10AT1 cells was investigated
by assessing: (i) anchorage-independent growth (AIG), a
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hallmark of carcinogenesis associated with aggressiveness and
metastasis in malignant cells; (ii) cancer stem-like and self-
renewing properties by assessing first and second generation
mammosphere-forming efficiency (MFE), as a growing body
of evidence suggests that cancer stem-like cells are involved
in generating and maintaining pre-malignant and malignant
lesions (55–57). Consistent with the substage of breast cancer
progression displayed by each cell line, MCF10AT1 cells formed
significantly fewer and smaller colonies in soft agar (AIG)
and significantly fewer mammospheres than the cancerous
MCF10CA1a.cl1 cells (Supplementary Figures 1A,B).

In order to identify the impact of B[a]P and
BPA on progression to malignancy in conditions
mimicking environmental exposure, the MCF10AT1
cells were chronically (60 days) exposed or not to
physiologically-relevant concentrations (10−10 M) of
B[a]P and/or BPA (58–62) (MCF10AT160d). Unexposed
MCF10AT160d and MCF10CA1a.cl160d cells displayed
unmodified AIG and MFE phenotypes (Figures 1A,B and
Supplementary Figure 1C) compared to the corresponding
parental cells (Supplementary Figures 1A,B). MCF10AT160d
cells exposed to the carcinogenic B[a]P pollutant at a
concentration as low as 10−10 M exhibited significantly
increased AIG (Figure 1A), increased colony size
(Supplementary Figure 1C) and higher MFE (Figure 1B)
compared to the unexposed MCF10AT160d cells. The EDC
BPA (10−10 M, 60 days exposure) also enhanced the cancerous
properties of the exposed MCF10AT160d cells (significant
increase in AIG, in colony size and in MFE), while that impact
was always significantly lower than that of 60-days exposure
to 10−10 M B[a]P (Figures 1A,B, Supplementary Figure 1C).
Of utmost interest, the combination of B[a]P with BPA (10−10

M) had a significantly greater effect than B[a]P (10−10 M)
tested individually (Figures 1A,B, Supplementary Figure 1C).
The cancerous features displayed by the MCF10AT160d cells
exposed to the B[a]P + BPA (10−10 M) combination was at least
equivalent (Figure 1A and Supplementary Figure 1C) if not
greater (second generation of mammospheres, Figure 1B) than
those displayed by the unexposed cancerous MCF10CA1a.cl160d
cells. Supplementary Figure 2 eliminated the possibility that
the aggressive phenotypes observed in the different exposed
MCF10AT160d cells were the consequence of an increase in cell
proliferation (compared to unexposed MF10AT160d).

Unexposed or exposed MCF10AT160d cells were grown
for a further 30 days in the absence of any treatment
(MCF10AT160+30d cells), and then tested for AIG and MFE.
The number and size of colonies in soft agar (Figure 1C and
Supplementary Figure 1D) and the number of mammospheres
(Figure 1D) were similar between MCF10AT160d and
MCF10AT160+30d cells, thus demonstrating that the aggressive
phenotype induced by chronic exposure of MCF10AT1 cells to
low-doses of B[a]P and/or BPA is an acquired phenotype.

Taking advantage of the systematic freezing of exposed
cells over the experimental time-course, AIG and MFE were
retrospectively tested after 23 and 48 days of exposure and
compared to 60 days of exposure (Figures 1E,F). The number of
colonies in soft agar and mammospheres significantly increased

between 23–48 and 48–60 days of chronic exposure, thus
demonstrating that the longer MCF10AT1 cells are exposed
to low doses of B[a]P and/or BPA, the more aggressive is
their resulting phenotype. Once again, the combined exposure
to B[a]P + BPA (10−10 M) caused more deleterious effects
than those of B[a]P or BPA individually, irrespective of the
exposure time.

Collectively, our results suggest that: (i) chronic, low-dose
exposure to B[a]P or BPA enhances the cancerous properties
of MCF10AT1 cells, with exposure to B[a]P being the most
effective; (ii) the resulting aggressive phenotype was acquired
and not reversed or softened when exposure was stopped;
(iii) the duration of the exposure to pollutants impacted the
magnitude of the aggressiveness developed by the exposed cells;
(iv) combining BPA to B[a]P had more impact than exposure to
B[a]P alone and was at least equivalent or higher than that of
cancerous MCF10Ca1a.cl1 cells, supporting progression toward
the cancerous substage.

AhR and GPR30 are Both Expressed and
Functional in MCF10AT1 Cells
As AhR is the main target of B[a]P and BPA is known to bind
to ERα, ERβ, GPR30, and PXR, we investigated the presence
of these receptors in MCF10AT1 cells. Supplementary Figure 3

validated that ERα, ERβ, and PXR were not or scarcely expressed
in MCF10AT1 and MCF10CA1a.cl1 cells. Conversely, we newly
reported that AhR and GPR30 receptors are concomitantly
expressed at the mRNA and protein levels in MCF10AT1 and
MCF10CA1.cl1 cells (Figures 2A,B). Of interest, AhR expression
levels are higher both at the mRNA and protein levels in the
MCF10AT1 cells compared to MCF10ACA1a.cl1.

Gene reporter experiments performed in MCF10AT1 cells
demonstrated that TCDD, a well-known AhR ligand and
activator of AhR-direct transcriptional activity (50), led to an
increase in XRE-luciferase activity (Figure 2C). The selective
AhR agonist ITE (63) also led to a stronger and dose-dependent
activation of AhR-driven transcriptional activity in MCF10AT1
cells (Figure 2C). A concentration as low as 10−11 M of ITE was
sufficient to give rise to a significant increase in XRE-luc activity
(Figure 2C) and the effect of ITE was prevented (Figure 2D) by
a 100-fold excess of the AhR antagonist GNF351 (64).

Rapid phosphorylation of MAPK is one of the main
downstream effects of GPR30 activation (65). In MCF10AT1
cells, the MAPK pathway is rapidly activated (increase in
the phospho-p42/p44 MAPK/MAPK ratio) in the presence of
the selective GPR30 agonist G1 (66) and this activation is
impaired in the presence of the GPR30 antagonist G15 (67)
(Figure 2E), newly revealing the presence of functional GPR30
in MCF10AT1 cells.

The MFE and AIG Responses Triggered by
B[a]P and/or BPA Occur Through a
Functional Cross-Talk Between AhR and
GPR30 in MCF10AT1 Cells
We then aimed at investigating the possible involvement
of the AhR and/or GPR30 receptors in mediating the
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FIGURE 1 | Cumulative and low-dose exposure of BPA and/or B[a]P increases MCF10AT1 cancerous properties (AIG and MFE assays). (A) Average number of

MCF10AT160d colonies in soft agar after 60 days of chronic exposure to B[a]P and/or BPA (10−10 M). (B) Average number of primary and secondary MCF10AT160d
(Continued)
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FIGURE 1 | mammospheres formed after 60 days of chronic exposure to B[a]P and/or BPA (10−10 M). In (A,B), exposure was maintained throughout the course of

the experiments. (C,D) After 60 days of chronic exposure to B[a]P and/or BPA (10−10 M), MCF10AT1 cells were grown for a further 30 days without any exposure,

and single-cell suspensions of cells were seeded in soft agar (C) or in non-adherent mammosphere culturing conditions (D). (E,F) Time-dependent acquisition of the

aggressive phenotype: average number of colonies in soft agar (E) and of secondary mammospheres (F) following 23, 48, or 60 days of chronic exposure to B[a]P

and/or BPA (10−10 M). Data illustrated in (A–F) represent mean ± SD of at least three independent experiments, in triplicate. ***p < 0.001, **p < 0.01, *p < 0.05 or

NS (not significant) in Student t-test.

tumorigenic effects of exposure to B[a]P and/or BPA
10−10 M in short-term experiments. This was tested in the
presence or absence of selective antagonists of AhR or GPR30
(GNF351 and G15, respectively) at non-toxic concentrations
(Supplementary Figures 4A,B).

Figure 3A demonstrates that short-term (72 h) exposure
to 10−10 M BPA and/or 10−10 M B[a]P were sufficient to
generate increased colony numbers in AIG assays. GNF351
and G15 were able to completely inhibit the effects of
B[a]P and/or BPA on AIG (Figure 3A). This result was,
at least to some extent, expected with the B[a]P/GNF351
and the BPA/G15 combinations, but was totally surprising
concerning the BPA/GNF351 and the B[a]P/G15 combinations.
In MFE assays conducted with MCF10AT1 cells exposed only
during the time-course of the experiments (Figure 3B), the
increased number of mammospheres induced by 10−10 M
BPA was totally blocked in the presence of G15, as expected,
but also in the presence of GNF351. Conversely, B[a]P-
induced MFE was completely inhibited by GNF351, while
the GPR30 antagonist G15, surprisingly resulted in a partial
but significant inhibition. The impact of the G15 or GNF351
on the combination B[a]P+BPA was similar to that observed
with B[a]P alone.

We then performed the same experiments using G1
and ITE agonists, at 10−10 M non-toxic concentrations
(Supplementary Figures 4C,D). Figures 3C,D show similar data
as those obtained with B[a]P and/or BPA in Figures 3A,B,
namely that: (i) low-dose exposure of MCF10AT1 cells to 10−10

MG1 or 10−10 M ITE gives rise to significantly increased colony
number (AIG) or increased MFE in the same range as that
observed with 10−10 M BPA or 10−10 M B[a]P, respectively;
(ii) G15 and GNF351 were both able to totally inhibit G1-
dependent AIG or MFE; (iii) the impact of ITE on MFE was
totally blocked in the presence of GNF351, while only partially
inhibited by G15.

To confirm the above data supporting the involvement of both
GPR30 and AhR receptors in mediating the effects of low dose
(10−10 M) BPA, B[a]P, G1, or ITE, we used a siRNA strategy
silencing either AhR or GPR30 (Figures 4A,B). We verified
that siRNA-AhR or siRNA-GPR30 had, however, no impact on
GPR30 or AhR expression, respectively (Figures 4A,B), nor on
MCF10AT1 cell viability (Supplementary Figures 4E,F).

Findings from AIG and MFE experiments conducted in
MCF10AT1 exposed to BPA, B[a]P, G1, or ITE 10−10 M in
the presence of siRNA-AhR or of siRNA-GPR30 (Figures 4C–F)
corroborated those obtained using the AhR- or GPR30-
antagonists (GNF351 and G15, respectively) (Figures 3A–D).
Indeed, AhR knock-out resulted in a total inhibition of BPA-,
B[a]P-, G1-, or ITE-mediated effects (Figures 4C,E). GPR30

silencing, while totally inhibiting BPA- or G1-mediated effects
(Figures 4D,F), was slightly less effective in inhibiting MFE or
AIG assays when cells were exposed to B[a]P (Figures 4D,F) or
ITE (Figure 4D). The impact of siRNA-AhR or siRNA-GPR30 on
the combination B[a]P+BPA was similar to that observed with
B[a]P alone (Figures 4C–F).

Altogether these results support the idea that both AhR
and GPR30 receptors play a role in mediating the deleterious
effects exerted by BPA, G1, B[a]P, or ITE on the MCF10AT1
early-transformed cells. More importantly, our data highlight a
functional cross-talk between GPR30 and AhR.

GPR30-Dependent Mechanisms are
Correlated With Enhanced AhR
Transcriptional Activity
To further decipher the interplay between AhR and GPR30, we
performed XRE-luciferase reporter assays. As anticipated, AhR-
driven transcriptional activity in MCF10AT1 cells was fostered
by TCDD 10−7 M or ITE 10−10 M and lost following AhR
silencing (Figure 5A). Very interestingly, the GPR30 agonist G1
was also able to significantly increase XRE-luciferase activity in
a dose-dependent manner, as illustrated by its effect at 10−7

M and 10−6 M, which is, to our knowledge, the first such
report in the literature (Figure 5B). The G1-induced XRE-
luciferase signal was totally inhibited in the presence of GNF351
(Figure 5C) and also in the presence of siRNA-AhR (Figure 5D).
Silencing GPR30 by a siRNA-GPR30 strategy gave rise to a partial
but significant decrease in G1- (10−6 M) (Figure 5E), TCDD-
(10−7 M), and ITE- (10−10 M) (Figure 5F) -dependent activation
of XRE-luciferase activity. Altogether, these data recapitulate
the cross-talk between AhR and GPR30 on a simplified XRE-
luciferase response.

As CYP1A1 is amongst the canonical genes regulated by
AhR with a promoter containing typical XRE, we further
investigated endogenous CYP1A1 mRNA levels in MCF10AT1
cells upon ITE and G1 treatment. Consistent with Figures 5, 6
revealed that: (i) CYP1A1 mRNA levels significantly increased
upon treatment with TCDD 10−7 M and ITE 10−7 M
(Figure 6A); (ii) the impact of ITE 10−7 M was completely
impaired in the presence of siRNA-AhR (Figure 6A) or
GNF351 10−6 M (Figure 6B), and significantly decreased
in the presence of siRNA-GPR30 (Figure 6C). Figures 6D–F

highlight that G1 10−6 M resulted in a significant increase
in CYP1A1 mRNA levels, and that this was totally impeded
in the presence of siRNA-AhR (Figure 6D), GNF351 10−6 M
(Figure 6E) and significantly decreased in the presence of siRNA-
GPR30 (Figure 6F). Altogether, our XRE-luciferase experiments
and RT-qPCR experiments confirmed, at the transcriptional
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FIGURE 2 | AhR and GPR30 receptors are present and functional in the MCF10AT1 cells. (A) RT-qPCR analysis of AhR and GPR30 mRNA expression levels

represented in arbitrary units (a.u.) in the MCF10AT1 and MCF10CA1a.cl1 cells. MCF-7 cells were used as a control. Values represent mean ± SD of three

(Continued)

Frontiers in Oncology | www.frontiersin.org 8 May 2020 | Volume 10 | Article 712

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Donini et al. Pollutants Impact Breast Cancer Progression

FIGURE 2 | independent experiments conducted in triplicate. (B) Representative Western blot analyses from three independent experiments of AhR and GPR30

protein expression in MCF10AT1 and MCF10CA1a.cl1 cells. MCF-7 cells were used as a control. (C) XRE-luciferase activity following 8 h exposure of MCF10AT1 cells

to ITE at the indicated concentrations. TCDD 10−7 M was used as a control and results were expressed as % of TCDD 10−7 M activity. ***p < 0.001 in Student t-test.

(D) XRE-luciferase activity upon 8 h of exposure to ITE 10−10 M alone or in combination with GNF351 at the indicated concentrations. TCDD 10−7 M was used as a

control, and results were expressed as % of TCDD 10−7 M activity. Student t-tests revealed the statistically significant differences between unexposed and exposed

cells: ***p < 0.001; and between ITE and ITE+GNF351: ###p < 0.001. Values in (C,D) represent mean ± SD of three independent experiments. (E) Representative

Western blot analyses from three independent experiments of the phospho-MAPK/MAPK ratio upon exposure of MCF10AT1 cells to G1 (GPR30 agonist) for the times

indicated, in the presence or absence of a 2 h pre-treatment with G15 (GPR30 antagonist).

FIGURE 3 | Effects of short-term exposure of MCF10AT1 cells by BPA, B[a]P, ITE, and G1 on AIG and MFE are inhibited by GPR30 and AhR antagonists. Average

number of colonies in soft agar (A) or of secondary mammospheres (B) upon exposure to B[a]P and/or BPA 10−10 M for 72 h in the presence or absence of a 2 h

pre-treatment with GNF351 10−7 M or G15 10−8 M. Exposure was maintained throughout the course of the experiments. Unexposed MCF10CA1a.cl1 cells were

used as a control. (C) Average number of colonies in soft agar or (D) secondary mammospheres formed after 72 h exposure with ITE 10−10 M or G1 10−10 M in the

presence or the absence of a 2 h pre-treatment with GNF351 10−7 M or G15 10−8 M. Exposure to BPA 10−10 M or B[a]P 10−10 M was used as controls. Exposure

was maintained throughout the course of the experiments. Data illustrated in (A–D) represent mean ± SD of at least three independent experiments, in triplicate.

***p < 0.001, **p < 0.01 in Student t-test.

level, that GPR30-dependent mechanisms significantly impact
and favor, directly or indirectly, AhR-driven transcriptional-
dependent events.

Having verified that protein expression levels of AhR and of
GPR30 were similar in both the unexposed and the pollutants-
exposed MCF10AT160d cells (Supplementary Figure 5A), the
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FIGURE 4 | Effects of short-term exposure of BPA, B[a]P, ITE and G1 10−10 M on AIG and MFE are inhibited by siRNA-AhR and siRNA-GPR30. Representative

Western blot analysis from three independent experiments of AhR and GPR30 expression in transfected MCF10AT1 cells with (A) siRNA-AhR, (B) siRNA-GPR30 or

their scrambled controls. Quantification of protein expression levels was normalized against tubulin expression. (C,D) Secondary mammospheres formation and (E,F)

average number of colonies in soft agar, with the following treatments: BPA and/or B[a]P, G1, or ITE, 10−10 M. Cells were transfected with either siRNA-AhR,

siRNA-GPR30 or their scrambled controls before being subjected to the treatments. Treatments were maintained throughout the course of experiments. (mean ± SD

of 2 independent experiments, in triplicate). ***p < 0.001, *p < 0.05 vs. their respective unexposed; ###p < 0.001 siRNA vs. scrambled in Student t-test.
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FIGURE 5 | Involvement of GPR30 in AhR transcriptional activity using XRE-luciferase assays. XRE-luciferase activity following 8 h exposure of MCF10AT1 cells to (A)

ITE at the indicated concentrations, TCDD 10−7 M was used as a control and results were expressed as % of TCDD 10−7 M activity; in the presence or absence of

siRNA-AhR (B) G1 at the indicated concentrations. TCDD 10−7 M was used as a control; (C) G1 10−6 M alone or in combination with GNF351 at the indicated

concentrations; TCDD 10−7 M was used as a control. (D,E) XRE-luciferase activity in MCF10AT1 cells transfected with (D) siRNA-AhR, (E) siRNA-GPR30 or their

respective scrambled and treated 48 h after siRNA transfection for 8 h with G1 10−6 M. (F) XRE-luciferase activity in MCF10AT1 cells transfected with either

scrambled RNA or siRNA-GPR30 and treated for 8 h with TCDD 10−7 M or ITE 10−10 M after 48 h of siRNA transfection. All data represent mean ± SD of three

independent experiments conducted in triplicate. *p < 0.05, **p < 0.01, ***p < 0.001; #p < 0.05; ###p < 0.001 in Student t-test.

RNAseq data of each cell line were analyzed using the Ingenuity
Pathway Analysis software. AhR core signaling was identified
as significantly dysregulated in the MCF10AT160d exposed cells
compared to unexposed control MCF10AT160d cells. Indeed,
the significant enrichment of this canonical pathway was

observed both in the B[a]P-exposed MCF10AT160d cells (p =

9.39 10−3), in the B[a]P + BPA exposed MCF10AT160d cells
(p = 7.56 10−3), but also in the BPA-exposed MCF10AT160d
cells (p = 1.26 10−2) (data not shown). Conversely, assessing
the GPR30 signature previously described by Pandey and
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FIGURE 6 | Analysis of CYP1A1 mRNA levels by quantitative RT-qPCR in MCF10AT1 cells. (A) CYP1A1 expression levels in cells transfected with either siRNA-AhR

or scrambled RNA after 4 h of exposure to ITE 10−7 M. TCDD 10−7 M was used as a control and results are expressed as % of TCDD 10−7 M activity. (B) CYP1A1

mRNA expression levels in cells treated with GNF351 alone at indicated concentrations or in combination with ITE 10−7 M or TCDD 10−7 M. TCDD 10−7 M was used

as a control and results are expressed as % of TCDD 10−7 M activity. (C) CYP1A1 mRNA expression levels in cells transfected with either siRNA-GPR30 or scrambled

RNA and exposed to ITE 10−7 M for 4 h. TCDD 10−7 M was used as a control and results are expressed as % of TCDD 10−7 M activity. (D) CYP1A1 mRNA

expression levels in cells transfected with either siRNA-AhR or scrambled RNA and exposed to G1 10−6 M or TCDD 10−7 M for 24 h. TCDD 10−7 M was used as a

control. (E) CYP1A1 mRNA expression levels in cells treated with G1 10−6 M in the presence or absence of GNF351 10−6 M. (F) CYP1A1 mRNA expression levels in

cells transfected with either siRNA-GPR30 or scrambled RNA and exposed to G1 10−6 M for 24 h. Data represent mean ± SD of 3 independent experiments

conducted in triplicate. (A–F) The Student t-test was applied to reveal statistically significant differences between treatments: *p < 0.05, **p < 0.01, ***p < 0.001.

collaborators (51) in the Ingenuity Pathway Analysis software
did not reveal any dysregulation in GPR30 signaling when
the exposed MCF10AT160d cells were compared with the
unexposed control MCF10AT160d cells (data not shown). As
rapid phosphorylation of MAPK is one of the main downstream
effects of GPR30 activation (65), we assessed the activation

status of the MAPK pathway in the unexposed and exposed
MCF10AT160d cells. Supplementary Figure 5B demonstrated
that chronic and low-dose-exposure of MCF10AT1 cells to B[a]P
and/or BPA at 10−10 M did not lead to any activation of
p42/p44MAPK (MCF1Ca1.cl160d cells were used as controls).
Altogether, our data suggest that AhR signaling is constitutively
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TABLE 1 | Univariate analysis of the GPR30 mRNA expression levels, the AhR mRNA expression levels and the GPR30/AhR mRNA expression signature with regards to

overall survival (OS) in different subclasses of the 113 breast cancer samples of the CLB cohort.

n GPR30 mRNA levels AhR mRNA levels AhR/GPR30 signature

HRa 95% CIb pc HRa 95% CIb pc HRa 95% CIb pc

All breast tumor samples 113 2.78 0.8 to 4.1 NS (0.09) 0.68 0.6 to 3.4 NS (0.41) 6.15 1.1 to 5.6 0.01

ER+ subclass 68 0.66 0.4 to 9.2 NS (0.42) 0.10 0.2 to 3.1 NS (0.75) 0.67 0.4 to 6.5 NS (0.41)

ER- subclass 45 5.39 1.1 to 13.3 0.02 2.08 0.7 to 9.7 NS (0.15) 10.25 1.7 to 20.1 0.001

Luminal subclass

(ER+/PR+)d
62 0.03 0.2 to 6.3 NS (0.87) 0.11 0.2 to 3.8 NS (0.74) 0.45 0.4 to 8.5 NS (0.50)

HER2- enriched subclass

(ER-/PR-/HER2+)d
16 2.56 0.5 to 63.1 NS (0.11) 0.17 0.2 to 18.2 NS (0.68) 4.47 0.8 to 96.6 0.03

Triple negative subclass

(ER-/PR-/HER2-)d
21 - NAe − 0.005 0.1 to 12.1 NS (0.94) - N/Af -

aHR, Hazard ratio.
b95% CI, 95% confidence interval.
cp was considered significant when p < 0.05 (bold values). NS, not significant.
dsubclasses of breast cancer were determined using immunohistology (ER, PR, HER2) according to the St Gallen recommendation (68).
eN/A, not applicable as all the cases are censored in the high GPR30 mRNA level group.
fN/A, not applicable as all the cases are censored in the high GPR30 and/or AhR mRNA level group.

activated in the MCF10AT160d exposed to pollutants vs.
unexposed cells.

The GPR30/AhR Gene Expression
Signature Indicates Poor Prognosis
To investigate the clinical relevance of AhR and GPR30, we
performed RT-qPCR analyses to explore GPR30 and AhRmRNA
expression levels in a cohort of 113 human primary breast tumor
samples (Table 1) (53). The resulting Kaplan-Meier curves are
shown in Figure 7. By univariate analysis, we found that neither
GPR30 nor AhR mRNA levels were informative (p = 0.09 and p
= 0.41, Figures 7A,B, respectively), while an AhR/GPR30 gene
expression signature based on high expression levels of both
GPR30 and AhR was significantly associated with shorter overall
survival (OS) (p= 0.01,Table 1 and Figure 7C). Regarding breast
cancer subclasses, the AhR/GPR30 gene expression signature
was more informative in the ER-negative (p = 0.001) than in
the ER-positive (p = 0.41) (Table 1, Figures 7D,E) or luminal
subclasses and (p = 0.50) (Table 1). The situation was less
clear for the HER2-enriched and triple-negative subclasses,
considering the limited size of available samples (n =16 and n
= 21, respectively). We thus performed retrospective analysis
of gene-expression array data using the KMP cohort, which
contains a sizeable number of breast cancer patients (1,308 ER-
positive, 569 ER-negative, 1,055 luminal, 419 HER2-enriched,
and 403 triple-negative/basal-like). The most striking results
(Table 2, univariate analysis) indicated that the AhR/GPR30
signature was again more informative than GPR30 mRNA or
AhR mRNA levels alone and was associated with shorter OS
in the ER-negative subclass (p = 0.005), but not in the ER-
positive or the luminal subclasses (Table 2). The “all breast tumor
samples” univariate analysis of the KMP cohort did not validate
what was observed in the CLB cohort, but this discrepancy
might reflect the difference in proportion of the ER-positive and
ER-negative subclasses in the two cohorts. Finally, the KMP
cohort revealed that the AhR/GPR30 signature was associated

with shorter OS in the triple-negative subclass (p = 0.033).
Altogether, our data reveal a new/original signature based on
a combination of high AhR mRNA expression levels and high
GPR30 mRNA expression levels that represents a novel marker
for poor prognosis in breast cancer, especially in ER-negative or
triple-negative subclasses.

Strategies Inhibiting the Impact of Chronic
and Low-Dose Exposure to B[a]P and BPA
in Early-Transformed MCF10AT1 Cells
To identify candidate strategies capable of blocking mammary
carcinogenesis associated with chronic exposure to low doses
(10−10M) of the environmental pollutants B[a]P and BPA,
MCF10AT1 cells were exposed for 60 days, in the presence or
the absence of the AhR antagonist GNF351 10−7 M and/or the
GPR30 antagonist G15 10−8 M (Figures 8A,B). Exposure for 60
days to the two antagonists, alone or in combination, had no
impact on MFE and AIG. Strikingly, co-exposure for 60 days
to B[a]P + BPA 10−10 M with GNF351 10−7 M and/or G15
10−8 M was sufficient to inhibit the development of pollutants-
driven enhancement of cancerous properties (AIG and MFE) in
MCF10AT1 cells (Figures 8A,B).

DISCUSSION

A growing body of in vitro and in vivo experimental evidence
suggests the implication of environmental factors in the
development and progression of breast cancer. People are
chronically exposed to a mixture of environmental factors,
usually present at low-dose concentrations, constituting
a complex exposome. B[a]P is detected at picomolar
concentrations in body fluids and tissues of cancer patients
(58–60). BPA is detected at nanomolar concentrations in human
samples such as serum, urine and maternal milk (61, 62).
The major obstacles in studying the impact of these two
pollutants in vitro on breast tumorigenesis are thus the choice
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FIGURE 7 | The AhR/GPR30 mRNA expression signature is of poor prognosis and is associated with shorter overall survival (OS). Kaplan-Meier analysis (univariate

analysis) of OS in the CLB breast cancer cohort of: (A) GPR30 mRNA expression levels; (B) AhR mRNA expression levels; (C–E) Patients were divided into two

groups: patients expressing low GPR30 mRNA levels and/or low levels of AhR mRNA (group A) and patients expressing high mRNA levels of GPR30 and AhR (group

B). (C) AhR/GPR30 gene expression signature in all breast tumor samples. (D) GPR30/AhR gene expression signature in the ER-positive subclass. (E) GPR30/AhR

mRNA expression signature in the ER-negative subclass. NS, not significant.
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TABLE 2 | Univariate analysis of the GPR30 mRNA expression levels, the AhR mRNA expression levels and the GPR30/AhR mRNA expression signature with regards to

overall survival (OS) in different subclasses of the 1,877 breast cancer samples of the Kaplan-Meier plotter (KMP) cohort.

n GPR30 mRNA levels AhR mRNA levels AhR/GPR30 signature

HRa 95% CIb pc HRa 95% CIb pc HRa 95% CIb pc

All breast tumor samples 1,877 0.83 0.68 to 1.01 NS (0.06) 0.91 0.73 to 1.15 NS (0.4) 0.78 0.46 to 1.10 NS (0.14)

ER+ subclass 1,308 0.82 0.62 to 1.08 NS (0.15) 0.83 0.63 to 1.1 NS (0.2) 0.67 0.26 to 1.08 NS (0.06)

ER- subclass 569 1.46 1.06 to 2.02 0.02 1.24 0.89 to 1.73 NS (0.2) 1.88 1.43 to 2.33 0.005

Luminal subclass 1,055 1.2 0.88 to 1.64 NS (0.24) 0.8 0.58 to 1.11 NS (0.18) 0.95 0.5 to 1.4 NS (0.82)

HER2- enriched subclass 419 1.22 0.84 to 1.77 NS (0.29) 0.79 0.54 to 1.16 NS (0.23) 0.99 0.45 to 1.53 NS (0.99)

Triple negative /

Basal-like subclass

403 1.44 0.97 to 2.13 NS (0.06) 1.22 0.79 to 1.88 NS (0.36) 1.85 1.28 to 2.41 0.033

aHR, Hazard ratio.
b95% CI, 95% confidence interval.
cp was considered significant when p < 0.05 (bold values). NS, not significant.
dbreast cancer subclasses were based on the St Gallen recommendation (68) according to Gyorffy et al. (69).

of a relevant cellular model and the use of relevant exposure
conditions (long-term and low-dose exposure) mimicking
natural exposure. The few studies having investigated the impact
of chronic and low-dose exposure of B[a]P or BAP on tumor
progression have focused on the early stage of carcinogenesis
(non-transformed epithelial cells) (9–13, 29) MCF10AT1 breast
cells (representing the early-transformed stage of the unique
MCF10model of mammary progression from normal epithelium
to triple negative breast cancer (43, 44) have, to our knowledge,
never been used to test the impact of chronic and low-dose
exposure to environmental pollutants. While the genotoxic and
pro-carcinogenic B[a]P and the EDC BPA are two of the most
studied pollutants, no previous studies, to our knowledge, have
investigated whether the combination of BPA and B[a]P, each
compound possessing distinct mechanisms of action, induces
potentiating effects on tumor progression.

The present study aimed at addressing: (i) the effects of
long-term, cumulative exposure to low doses of B[a]P or BPA
on the mammary early-transformed substage; (ii) whether the
combination of BPA with B[a]P, each compound possessing
distinct mechanisms of action, impacts breast tumor progression
differently from what might be observed with each compound
tested alone. Our study reveals that long term and low dose
(10−10 M) exposure to B[a]P and/or BPA increases the cancerous
properties (AIG and cancer stem-like properties) of the early-
transformed MCF10AT1 cells, and the longer the cells were
exposed, the greater was the impact. Co-exposure of MCF10AT1
cells with the B[a]P and BPA led to a significantly greater
aggressive phenotype compared to B[a]P alone, suggesting
that BPA facilitates the pro-carcinogenic activity of B[a]P and
supporting the potentiating effects of distinct pollutants present
in the exposome. Importantly, the aggressiveness developed
by the exposed MCF10AT160d cells was acquired and not
softened or reverted after stopping B[a]P and/or BPA exposure.
Altogether, our data reveal that long-term and low dose
exposure to B[a]P and/or BPA irreversibly favors the evolution
of early-transformed human mammary cells toward breast
tumor progression.

Mechanistically, while B[a]P and BPA are well-known
activators of AhR and GPR30, respectively, our short-term
exposure experiments highlight that the MFE and AIG response
triggered by exposure of MCF10AT1 cells to B[a]P and/or BPA
occurs through a functional cross-talk between AhR and GPR30.
Regarding the impact of inactivating AhR or GPR30 by two
different strategies (using an antagonist molecule or a siRNA
strategy), the BPA, BPA+B[a]P, or G1 impact on AIG and
MFE was totally reversed when AhR was inhibited, while the
GPR30 inactivation globally seemed to lead to a significant but
not total, reversion of B[a]P, BPA+B[a]P, or ITE impact (in
particular in MFE experiments). Finally, this study provided
evidence that long-term (60 days) co-exposure to B[a]P + BPA
10−10 M with the AhR antagonist GNF351 10−7 M and/or
the GPR30 antagonist G15 10−8 M inhibited the development
of pollutants-driven enhancement of cancerous properties in
MCF10AT1 cells.

The AhR/CYP1A1 pathway participates in carcinogenesis by
mediating stem properties, the formation of mammospheres,
expansion of breast cancer stem cells, and the transcriptional
activity of AhR is mainly implicated in such effects (24).
Our study also reveals that GPR30 participates and favors
AhR-dependent transcriptional activity in early-transformed
breast cells. Indeed, the GPR30 agonist G1 was able to
stimulate AhR-dependent driven activity and CYP1A1 gene
transcription. GPR30 silencing by a siRNA strategy led
to a significant, yet moderate, decrease in ITE-, G1-, or
TCDD-mediated activation of AhR-driven transcriptional
activity or CYP1A1 transcription. This suggests that GPR30-
dependent mechanisms other than those influencing the
AhR-driven transcriptional mechanisms might be involved
in the AhR/GPR30 cross-talk impacting AIG and MFE.
Altogether, our in vitro data support a model in which
GPR30 is involved in an AhR-dependent network leading
to increased cancerous properties of early-transformed
mammary cells.

We thus propose a model (Figure 8C) in which AhR
signaling plays a “driving role” in the AhR/GPR30 cross-talk
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FIGURE 8 | Long-term and low-dose exposure to B[a]P and/or BPA in promoting cancerous properties of early-transformed human mammary cells is driven by

AhR/GPR30 cross-talk. Inhibition of the effects due to chronic and low-dose exposure of MCF10AT1 cells to BPA+B[a]P (10−10 M), using AhR and/or GPR30

antagonists: (A) formation of secondary mammospheres, (B) AIG. The MCF10AT1 cells were chronically (60 days) unexposed or exposed to B[a]P + BPA 10−10 M,

alone or in combination with GNF351 10−7 M and/or G15 10−8 M. Control experiments were performed in MCF10AT1 cells exposed for 60 days to GNF351 10−7 M

and/or G15 10−8 M (mean ± SD of 3 independent experiments, in triplicate). *p < 0.05, ***p < 0.001 vs. unexposed; ###p < 0.001 vs. BPA+B[a]P (10−10 M); (C)

Diagram summarizing our findings.

in mediating the effects of long-term and low dose exposure
of B[a]P and/or BPA on AIG and MFE in MCF10AT1 cells.
The relevance of our model was supported by our RNAseq
data demonstrating that the canonical AhR signaling pathway
was significantly enriched in the B[a]P-exposed MCF10AT160d
cells, in the B[a]P + BPA exposed MCF10AT160d cells, but
also in the BPA-exposed MCF10AT160d cells. Strengthening our
findings, previous studies support a role for AhR and breast

tumor progression: (i) AhR expression levels were significantly
up-regulated in human breast ductal carcinoma in situ and
breast cancer tissues compared to normal/benign breast tissues
(70, 71); (ii) an in vivo model of breast tumorigenesis suggests
that AhR is constitutively activated at early stages of mammary
tumorigenesis (72); (iii) the prognostic value of AhR seems
to be dependent on the activation/inactivation of metastatic
processes (73).
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While this research was ongoing, a study was published
supporting our data by demonstrating in the ERα-negative
SKBR3 breast cancer cells that the environmental pollutant
3-methylcholantrene, mainly known to exert its carcinogenic
effects through AhR, stimulates cell growth response through
a functional interaction between AhR and GPR30 (74).
However, in the ERα-positive MCF-7 breast cancer cell line,
possessing the well-identified close cross-talk between AhR
and ERα [for review (75)], 10−5 M G1 was demonstrated to
increase transcription of CYP1A1 mRNA in AhR-dependent,
but GPR30-independent, mechanisms (76). As MCF10AT1
cells used in this study are triple-negative cells and the
SKBR3 cells are ERα-negative, one cannot exclude that
the detrimental functional cross-talk between AhR and
GPR30 might be exacerbated in such a specific cellular
breast context. Supporting previous data highlighted that in
the ERα-negative/triple negative context, an AhR-signaling
reinforces cell aggressiveness and induces breast cancer stem
cells (77–80).

Altogether, our in vitro data thus demonstrated the role of
the AhR/GPR30 cross-talk in favoring tumor progression, at
least in a triple-negative breast context. Previous controversial
studies emerged regarding the prognostic value of AhR or
GPR30 expression levels in breast cancers (71, 73, 80–84), and
these discrepancies have been suggested as possibly related
to the breast cancer subgroup or the substage considered.
In the present study, the clinical relevance of our in vitro
findings was further reinforced by retrospective analysis of two
independent breast cancer cohorts, showing that in only ER-
negative or triple-negative breast cancer subclasses, the gene
signature involving both AhR and GPR30 mRNA levels were of
poor prognosis.

Hence, we have provided novel insights into the progression
of early-transformed human mammary cells upon long-term
and low-dose exposure to B[a]P and/or BPA and deciphered
the involvement of the functional crosstalk occurring between
AhR and GPR30 leading to an exacerbated AhR-driven network.
Our in vitro and retrospective data analyses further support
the idea that the deleterious impact of this cross-talk might
be of utmost importance in the progression of ER-negative
or triple-negative breast cancers. More importantly, strategies
targeting AhR and/or GPR30 were demonstrated to be efficient
in inhibiting the deleterious impact of cumulative and low-
dose exposure to B[a]P and/or BPA in early-transformed
MCF10AT1 cells. The identification of such molecular
mechanisms may help in the discovery of human biomarkers
of environmental carcinogen exposure and the development of
preventive strategies.
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