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CUX1 belongs to the homeodomain transcription factor family and is evolutionarily and

functionally conserved from Drosophila to humans. In addition to the involvement in

various physiological events including tissue development, cell proliferation, differentiation

and migration, and DNA damage response, CUX1 has been implicated in tumorigenesis.

Interestingly,CUX1 has been recently recognized as a haploinsufficient tumor suppressor,

which is paradoxically overexpressed in tumor cells. While loss of heterozygosity and/or

mutations of CUX1 have been frequently detected in many types of cancers, genomic

amplification, and overexpression of CUX1 have also been reported in cancer tissues

and are correlated with higher tumor grade and poor prognosis. Therefore, deciphering

the roles of different CUX1 isoforms and in different tumor stages is required to establish

a CUX1-based therapeutic strategy for cancer treatment.

Keywords: CUX1, haploinsufficient tumor suppressor, tumor progression, DNA damage, KRAS mutation

INTRODUCTION

CUX1 is previously called CDP (CCAAT displacement protein), Cut-like 1 (CUTL1), or Cut
[reviewed in Sansregret and Nepveu (1) and Hulea and Nepveu (2)]. The term “cut” was derived
from a Drosophila mutant with the “cut wing” phenotype (3, 4). In 2007, the Human Genome
Organization proposed to change the gene root of Cut-like# (CUTL#) to CUT#. Therefore, CUX1
(human gene), Cux1 (mouse gene), and CUX1 (protein) are the simplified nomenclature. CUX1
belongs to the homeodomain (HD) transcription factor family, which was first identified as a sea
urchin transcription repressor of the sperm H2B gene by binding to promoter element–CCAAT
and competing the binding of other transcriptional activators (5). However, some other studies
have shown that CUX1 may also function as either a transcriptional repressor or an activator
in a promoter-dependent manner (6–8). CUX1 is present in all metazoans and evolutionarily
and functionally conserved from Drosophila to humans, because ectopic expression of human or
mouse CUX1 can rescue a wing scalloping mutant phenotype caused by loss of cut (the Drosophila
ortholog of CUX1) expression along the prospective wing margins in Drosophila (9). The human
CUX1 is at least 340 kb in length and located on the chromosome 7q22 (10). As a transcription
factor, CUX1 has been implicated in cell proliferation, differentiation, and migration in various
tissues and organs (1, 11–13) [reviewed in Vadnais et al. (8)]. Ectopic overexpression of Cux1
leads to multiorgan hyperplasia in a transgenic mouse model (14, 15). Two distinct Cux1 knockout
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mouse lines exhibit various phenotypes such as high postnatal
lethality, growth retardation, nearly complete hair loss, severely
reduced male fertility due to behavioral reasons, cachexia due to
muscle wasting and loss of body fat, thin and flaky bones, and
abnormal hematopoiesis (16–18) [reviewed in Sansregret and
Nepveu (1)]. In addition to its physiological functions, emerging
evidence has shown the involvement of CUX1 in tumorigenesis
[reviewed in Hulea and Nepveu (2), Liu et al. (19), and Ramdzan
and Nepveu (20)], but the exact roles of CUX1 in tumor
development are still under debate. In this review, we introduce
the protein structures and isoforms of CUX1, describe the various
biological processes in which they are involved, summarize the
role of CUX1 in tumor development and progression, and discuss
the possible explanations related to the paradoxical roles of CUX1
in tumor development.

STRUCTURES AND ISOFORMS OF CUX1

As a transcriptional factor, CUX1 contains four DNA-binding
domains including three Cut repeats (CR1, CR2, and CR3) and
one HD (21) (Figure 1). In addition, CUX1 also carries one
autoinhibitory domain (ID) at its N-terminus (22) and two

active repression domains (R1 and R2) at its C-terminus (23)
(Figure 1). CUX1 protein possesses multiple isoforms generated

from either proteolysis of full-length CUX1 or alternative

transcription initiation of CUX1 gene [reviewed in Sansregret
and Nepveu (1) and Hulea and Nepveu (2)]. According to

their apparent molecular weight, those CUX1 isoforms were

named p200 (full-length CUX1), p150, p110, p90, p80, and p75.
Among them, the p150, p110, p90, and p80 are the products

of proteolysis of full-length CUX1. The generation of p110 and
p90 was mediated by a nuclear cathepsin-L, which removes

the N-terminal half of CUX1 (24, 25) (Figure 1), whereas the

FIGURE 1 | The isoforms of CUX1 and proteinases responsible for their proteolysis. ID, autoinhibitory domain; CR, cut repeats; HD, homeodomain; R1/R2, two active

repression domains. The figure is partly modified from Vadnais et al. (8).

isoform p80 is a result of two proteolytic events catalyzed
by the nuclear cathepsin-L and an unknown caspase at the
N- and C-terminal sides, respectively (26), leading to a removal
of both the N-terminal half and a region at the C-terminus
(Figure 1). Notably, apoptosis onset is not required for such a
caspase-mediated p80 processing (26), suggesting the existence
of apoptosis-independent role of caspases. The isoform p150 is a
proteolytic product of CUX1 at the C-terminal region, but which
protease is responsible for p150 processing remains unknown
(27, 28). The isoform p75 is encoded by a short CUX1 transcript,
which is generated from an alternative transcriptional initiation
site within the intron 20 (29). In addition, neutrophil elastase has
also been reported to proteolytically process full-length CUX1 to
generate short CUX1 isoforms (30, 31).

The DNA-binding patterns and/or dynamics of CUX1
isoforms are largely determined by which DNA-binding domains
are present in them. Although the full-length CUX1 contains
all the four DNA-binding domains (three CRs and one HD), it
binds to DNA at the –CCAAT motif in a rapid but transient
manner and exclusively functions as a transcriptional repressor
(32). The isoform p150 with an impaired HD is incapable of
binding to DNA and functions as a dominant-negative isoform
in the lactating mammary gland (28), whereas the isoforms
p110, p90, and p75 with the removal of the N-terminal ID and
the CR1 could slowly but stably bind to DNA at the ATCRAT
motifs and function as either a repressor or an activator in a
promoter-dependent manner (6–8, 33–35).

THE INVOLVEMENT OF CUX1 IN VARIOUS
BIOLOGICAL PROCESSES

Physiologically, CUX1 has been reported to play important
roles in tissue development, cell migration, proliferation and
differentiation, and DNA damage repair.
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Roles of CUX1 in the Development of
Nervous System
CUX1 expression is detectable in layers II–V in human
developing neocortices in the fetal period and disappeared until
3 months of age after birth, suggesting the role of CUX1 in
the development of human neocortex (36). Analyses of loss-
and gain-of-function of cut mutants in Drosophila have revealed
the roles of cut (the Drosophila ortholog of CUX1) in the
peripheral nervous system. There are two types of anatomically
distinguishable sensory organs, external sensory (es) organs,
and internal (chordotonal) sensory organs. In Drosophila, cut is
exclusively expressed in cells of the es organ but repressed in
cells of the chordotonal organ (37, 38). Therefore, the lethal cut
mutants exhibit the transformation of es organs into chordotonal
organs (37, 39, 40), whereas forced cut overexpression in
Drosophila embryos resulted in the conversion of chordotonal
organs into es organs (41). Moreover, the level of Cut is
a determinant of the distinct dendrite branching patterns of
dendritic arborization (da) sensory in Drosophila (42). Cux1 and
Cux2, a homolog protein of Cux1, have been shown to stimulate
dendrite branching, spine development, and synapse formation
in layers II–III neurons of the cerebral cortex (43, 44). However,
an in vitro study showed opposite results indicating that Cux1
suppresses dendritogenesis of neuronal cells (45). Therefore,
additional studies are required for clarifying the role of Cux1 in
the development of nervous system.

Roles of CUX1 in Cell Proliferation,
Differentiation, and Migration
Anumber of studies have indicated that the expression and/or the
DNA-binding dynamics of CUX1 are in a cell cycle–dependent

manner (Figure 2). For example, the expression of histone
nuclear factor D (HiNF-D), which includes CUX1 as its
DNA-binding partner, was upregulated in S-phase in normal
cells (46–50); the CUX1-DNA binding was undetectable in G0
and early G1 phase, became detectable in the late G1 phase,
and peaked in S phase (11). This dynamic change of CUX1-
DNA binding is attributed to at least two posttranslational
modifications, Cdc25A-mediated dephosphorylation at the
CUX1 HD domain, and cathepsin L–mediated proteolytic
cleavage to generate p110 CUX1 (11, 24, 33); in G2 phase,
the binding of CUX1-DNA was attenuated due to CyclinA-
Cdk1 mediated phosphorylation of CUX1 (51). In addition,
Alain Nepveu group also demonstrated that the cyclin B/CDK1–
mediated hyperphosphorylation of CUX1 could reset CUX1
DNA-binding activity to the zero level at each cell division (52).
On the other hand, a subset of the downstream target genes of
CUX1 has been reported to play a role in cell cycle progression
(6, 7, 34, 53). These studies together suggest the involvement
of CUX1 in cell cycle regulation and cell proliferation. In line
with these findings, cells with p110 CUX1 overexpression showed
accelerated entry into S phase and cell proliferation, whereas
mouse embryo fibroblasts derived from Cux1z/z mutant mice
showed an extended G1 phase and retarded cell proliferation
(54). Moreover, Cux1 transgenic mice displayed organomegaly
and multiorgan hyperplasia (14). All these in vitro and in vivo
findings indicate the implication of CUX1 in cell proliferation.

Early studies have demonstrated that Cux1 is exclusively
expressed in undifferentiated cells (21, 55–58), suggesting
the role of CUX1 in cell differentiation. In both mice and
humans, Cux1 expression is high in long-term hematopoietic
stem cell (LT-HSC) but low in short-term hematopoietic
stem cell (ST-HSC) and myeloid progenitors, and in vivo

FIGURE 2 | The proteolysis and DNA binding of CUX1 are regulated in a cell cycle–dependent manner. This figure is partly modified from Vanden Heuvel et al. (14).
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Cux1 knockdown led to expansion of myeloid and ST-HSC,
suggesting that Cux1 may be essential for maintaining HSC
quiescence, suppressing HSC proliferation and self-renewal,
and regulating lineage specification and differentiation (59).
Cux1 nonfunctional mutant mice on inbred backgrounds die
shortly after birth due to retarded differentiation of the lung
epithelia, and the survival outbred Cux1 nonfunctional mutant
mice exhibit an abnormal pelage because of disrupted hair
follicle morphogenesis, suggesting that Cux1 is essential for the
differentiation of epithelia in lung and hair follicle (18).

In addition to cell proliferation and differentiation, some
recent studies have disclosed the involvement of Cux1 in cell
migration and invasion. A high-throughput RNAi screening
demonstrated that Cux1 knockdown led to impaired cell
migration and invasion in NIH-3T3 and a series of human
cancer cell lines (12). Correspondingly,MEF cells (MEFs) derived
from Cux1 knockout mice are defective in migration and
invasion compared to MEFs derived from wild-type mice (13).
Interestingly, the migration defect in Cux1 knockout MEFs can
be completely rescued by p110 CUX1 but partially rescued by
p200 CUX1 (full-length CUX1) (35). Moreover, stimulated or
inhibited proteolytic processing of p200 CUX1 can, respectively,
enhance or decrease cell migration, suggesting that CUX1-
mediated cell migration may be attributed to its proteolytic
products (13, 35).

Relationship Between CUX1 and DNA
Damage Repair
Genomic integrity is critical for proper cellular function and
faithful transmission of genetic information to progeny. In
addition to implicating in cell proliferation, differentiation, and
migration, accumulating evidence has indicated the involvement
of CUX1 in DNA damage response (DDR). According to
a genome-wide location analysis of p110 CUX1, 18 DDR-
related genes, including ATM (ATM serine/threonine kinase)
and ATR (ATR serine/threonine kinase), were suggested to
be the putative targets of p110 CUX1 (6, 7). A subsequent
study further confirmed the direct transcriptional regulation
of CUX1 on those DDR genes and suggested that CUX1
is required for ATM- and/or ATR-mediated DNA repair in
response to DNA damages induced by ionizing radiation (IR)
and/or ultraviolet (UV), respectively (6). In addition to direct
transcriptional regulation of DDR-related genes, CUX1 was
reported to function as an accessory factor to promote DNA
damage repair independent of its transcriptional activity (60–
64). By directly interacting with 8-oxoguanine DNA glycosylase
1 (OGG1), CUX1 can stimulate the DNA binding, Schiff-base
formation, glycosylase, and apurinic/apyrimidinic (AP)-lyase
activities of OGG1 to enhance the removal of ROS-induced DNA
adducts, 7,8-dihydro-8-oxoguanine (8-oxoG) (63). The direct
activity of DNA damage repair of CUX1 is mainly attributed to its
CUT domains because a CUX1 recombinant protein containing
only CUT domains 1 and 2 is sufficient to accelerate DNA
damage repair (62). More interestingly, in line with this finding,
some other CUT domain proteins have also shown to be directly
involved in base excision repair (65, 66), suggesting that the CUT

domain may serve as a therapeutic target of tumor in response to
DNA damage.

ROLES OF CUX1 IN TUMOR
DEVELOPMENT

In addition to its physiological functions, CUX1 has been
implicated in tumor development in many species including
Drosophila, mouse, and humans. But whether CUX1 functions
as an oncogene or tumor suppressor is still under debate,
because the results of CUX1 studies on tumor development
are controversial.

CUX1 Serves as an Oncogene
There are several lines of evidence indicating the oncogenic
role of CUX1. First, elevated expression of CUX1 has been
observed in many types of cancers, including colorectal cancer
(67), multiple myeloma (68), uterine leiomyomas (69), high-
grade breast cancer (12), pancreatic cancer (70), melanoma (71),
and glioma (72); second, CUX1 expression is positively associated
with poor prognosis in glioma, glioblastoma, colorectal cancer,
breast cancer, and pancreatic cancer (12, 61, 67, 72); third,
mouse mammary tumor virus (MMTV) p200, p110, and p75
CUX1 transgenic mice develop late-onset mammary carcinoma
(64, 73); fourth, active Kras mutations, such as KRASG12D

and KRASQ61L, have been observed in mammary carcinomas
from MMTV-p200 CUX1 transgenic mice, and CUX1 can
cooperate with KRASG12V, an active Kras mutant, to promote
lung tumor formation in vivo (64); fifth, CUX1 is a transcriptional
target downstream of the transforming growth factor β and/or
PI3K-AKT signalings and contributes to enhanced proliferation,
migration/invasion, and reduced apoptosis in tumor cells (12,
70). More interestingly, a very recent study has demonstrated
that CUX1 can generate a circular RNA (circ-CUX1) to promote
tumor progression in neuroblastoma (NB) (74). This circ-CUX1
carries exon 2 and partial intron 2 of CUX1 and is up-regulated
in NB tissues and cell lines. The levels of circ-CUX1 negatively
associate with the survival probability in NB patients. Circ-
CUX1 can directly interact with EWSR1 and facilitate EWSR1-
MAZ interaction, resulting in transactivation of MAZ and
transcriptional alteration of CUX1 and other genes associated
with tumor progression (74).

The mechanisms by which CUX1 promotes tumor
development have been investigated in many types of cancers
especially in breast cancer and pancreatic cancer. For example,
by cooperating with GLIS1, CUX1 can stimulate autocrine
activation of the Wnt/β-catenin pathway to enhance cell
migration and invasion in breast cancer (75). CUX1 stimulates
migration and invasion by transcriptionally activating or
repressing a series of target genes related to cell motility,
including activating snail and slug and repressing E-cadherin,
in breast cancer cells (13). CUX1 stabilizes Src and in turn
activates its downstream signaling molecules such as RhoA,
Rac1, Cdc42, and ROCK by transcriptionally upregulating
C-terminal Src kinase (Csk) in pancreatic cancer (76). CUX1
can transcriptionally upregulate WNT5A and GRIA3 to
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reduce apoptosis and promote proliferation, migration, and
invasiveness in pancreatic cancer (77, 78). The p110 CUX1
activates a transcriptional program that reinforces the spindle
assembly checkpoint and delays mitosis until extranumerary
centrosomes have clustered to two poles, thereby enabling bipolar
mitosis and survival of tetraploid cells (53). CUX1 was reported
to promote the aggressiveness of pancreatic neuroendocrine
tumor partly through modulating MMP9 expression (79). In
addition, CUX1 was enriched in tumor-associated macrophages
(TAMs) and interacted with nuclear factor κB (NF-κB) p65 to
attenuate the activation of NF-κB signaling, leading to a decrease
in T-cell attraction and an increase in angiogenesis in pancreatic
cancer (80).

CUX1 Acts as a Tumor Suppressor
Although some previous studies have indicated the oncogenic
role of CUX1 in tumor progression, other studies also exhibit
substantial evidence to support CUX1 as an important tumor
suppressor in many types of cancers.

The evidence of CUX1 as a tumor suppressor first emerged
from cytogenetic studies showing 7q− (deletions within the long
arm of chromosome 7) in many types of cancers, including
myeloid leukemia, pancreatic carcinoma, kidney carcinoma,
colon carcinoma, ovarian carcinoma, lung carcinoma, head-
and-neck carcinoma, cholangiocarcinoma, uterine leiomyoma,
and breast cancer (81–88). Next, loss of heterozygosity (LOH)
analyses confirmed LOH at 7q22 in a subset of breast cancer,
uterine leiomyoma, and ovarian cancer (88–91), suggesting
that genes in this region including CUX1 may function as
tumor suppressors. Furthermore, CUX1 was late identified as a
haploinsufficient tumor suppressor in acute myeloid leukemia,
because RNAi-mediated cut (the Drosophila ortholog of CUX1)
knockdown led to the development of melanotic pseudotumors
in a Drosophila tumor model (92). More importantly, a
comprehensive study by interrogating total 7,651 genome
sequences derived from 28 tumor types revealed nonsense and
frameshift mutations in CUX1 in 1–5% of tumors and found
that CUX1 deficiency can lead to activation of the pro-oncogenic
PI3K-AKT signaling (93). In addition, CUX1 has been shown to
negatively regulate invasion in castrate-resistant prostate cancer
(94) and multidrug resistance in gastric cancer (95). It is worth
mentioning that, although loss and/or inactivation of a CUX1
allele have been documented in many studies, there is so far no
case of a tumor where both alleles have been lost or inactivated,
suggesting the coexistence of an inactivated and an activated
CUX1 alleles in tumor cells.

Possible Explanations on the Opposite
Roles of CUX1 in Tumor Progression
It seems paradoxical that CUX1 possesses both oncogenic and
tumor-suppressive features. One possible explanation comes
from the protective role of CUX1 in DNA damage repair, because
the machinery of DNA damage repair is a double-edge sword in
tumor initiation and progression. On the one hand, an effective
DNA-repair machinery is required to prevent accumulation of
DNA lesions, genomic instability, and subsequent malignant
transformation in normal cells, suggesting the suppressive roles

of DNA repair in tumor initiation (96). On the other hand, a
basal repair activity is also essential for tumor cells to avoid DNA
damage–induced cell death (97). Given the involvement of CUX1
in both exogenous DNA damage (induced by temozolomide,
H2O2, UV, and IR) and endogenous DNA damage (induced by
intracellular ROS) (6, 7, 61, 63, 64), it is conceivable that CUX1
may, respectively, function as a tumor suppressor or an oncogene
in the stages of tumor initiation or progression.

The second explanation rises from the existence of various
CUX1 isoforms and their divergent transcriptional activities.
By alternative transcriptional initiation and/or proteolytic
processing, CUX1 generates several short isoforms that possess
distinct DNA-binding capacity and transcriptional activities
compared to the full-length CUX1 (p200 CUX1). p200
CUX1 binds to DNA in a rapid but transient manner and
exclusively functions as a transcriptional repressor through either
competition occupancy for CCAAT or Sp1 binding sites or
active repression by the recruitment of histone deacetylases
(HDACs) (23, 98). However, in contrast to full-length CUX1,
the short isoforms can bind to DNA stably and function as
either transcriptional repressors or activators in a promote-
specific manner (33–35). Because most of the short isoforms are
derived from the full-length CUX1 transcript, RNAi approach is
not able to specifically knock down indicated isoforms, which
makes RNAi not suitable to determine the roles of full-length
CUX1 and its isoforms in tumor progression. So far, from
the results of overexpression studies, it is clear that the CUX1
short isoforms may mainly function as oncogenes. For example,
MMTV-p110, p75 transgenic mice developed mammary tumors
after a long latency period, and genes involved in Wnt/β-catenin
signaling were directly regulated by those short CUX1 isoforms
(73). Stimulation or inhibition of the proteolytic processing of
p200 CUX1 toward p110 CUX1 can, respectively, enhance or
attenuate cell migration, suggesting that the p110 CUX1 but not
the p200 CUX1 plays a major role in promoting cell migration
(13). p200 CUX1 is proteolytically processed into p110 CUX1
by a nuclear cathepsin L at the G1/S transition, and forced
overexpression of p110 CUX1 stimulates cell proliferation (24,
54).Moreover, the nuclear accumulation and activity of cathepsin
L were increased in many transformed cells in parallel with
augmented CUX1 processing, and the cell-permeable but not
the non–cell-permeable inhibitors of cathepsin L delay the entry
into S phase and proliferation in transformed cells (99). These
findings suggest that the short CUX1 isoforms contribute to its
oncogenic role in tumor progression. However, the exact role of
p200 CUX1 in tumor progression is still under debate. A previous
study had shown that MMTV-p200 mice developed mammary
tumors with a slightly higher penetrance than the MMTV-p75
or p110 CUX1 mice by promoting faster DNA repair, thereby
allowing transformed cells to avoid senescence and continue to
proliferate (64), suggesting the oncogenic role of p200 CUX1.
But recent findings showing that many types of tumors possess
nonsense or frameshift mutations of CUX1 paradoxically suggest
that p200 CUX1 may function as a tumor suppressor (93).
Very recently, by employing K562 cells, which predominantly
express the p200 CUX1, Arthur et al. (100) have demonstrated
that p200 CUX1 binds distal cis-regulatory elements associated
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with gene activation, but the coexistence of p200 CUX1
and its short isoforms in many other cancer cells is still a
bottleneck in the process to disclose the exact roles of them in
tumor development. Therefore, more precise and sophisticated
studies, for example, by employing CRISPR/Cas9 genome editing
approach to establish either p200 CUX1 unprocessable or p200
CUX1 null mutants, are required to define the roles of p200
CUX1 and its isoforms in tumor development.

The third explanation derives from the presence of CUX1 in
both tumor cells and TAMs and the inhibitory effects of CUX1
on the NF-κB signaling. The Michl P group has demonstrated
the overexpression of CUX1 in both tumor cells and TAMs
in pancreatic cancer (70, 80). They demonstrated that the full-
length CUX1 interacts with NF-κB p65 and HDAC1 to form a
protein trimer to repress NF-κB signaling in TAMs, resulting in
inhibition of M1 polarization and enhanced angiogenesis and
tumor progression (80). While inhibition on NF-κB signaling
in TAMs promotes tumor progression, aberrant and constitutive
activation NF-κB signaling is frequent in tumoral cells and shows
positive effects on tumor progression (101, 102). Therefore, if
CUX1 can inhibit NF-κB signaling in both tumor cells and
TAMs, CUX1-mediated inhibition on NF-κB signaling in tumor
cells or TAMs may, respectively, suppress or promote tumor
development, which may contribute to the paradoxical roles of
CUX1 to tumor development.

SUMMARY

As an evolutionarily conserved transcription factor, CUX1 is
expressed in almost all metazoans. Because of the proteolytic
processing or alternative transcriptional initiation, CUX1
possesses multiple isoforms with differential DNA-binding
capacity and transcriptional activity. The full-length CUX1 binds

to DNA in a rapid but transient manner to exclusively repress
gene expression by either passively occupying the binding sites

of transcriptional activators or actively recruiting HDACs to
achieve epigenetic silencing. CUX1 is physiologically implicated
in tissue development, cell proliferation, differentiation and
migration, and DNA damage repair. The inbred Cux1−/− or
inactive mice are postnatal lethal due to retarded differentiation
of the lung epithelia, and the survival outbred Cux1−/−

mice exhibit an abnormal pelage because of disrupted hair
follicle morphogenesis. The pathological involvement of CUX1
in tumorigenesis is complicated. Both sides of evidence,
respectively, support the tumor suppressive or oncogenic roles of
CUX1 in tumor development and progression. So far, the short
isoforms of CUX1, such as p110 and p75 CUX1, seem to carry
oncogenic features, while the exact role of full-length CUX1 in
tumor progression remains elusive. Therefore, further studies
specifically targeting full-length CUX1 or short isoforms are
required to decipher the role of CUX1 in tumor progression.
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