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Purpose: The aim of this study was to investigate the diagnostic value of

machine-learning models with radiomic features and clinical features in preoperative

differentiation of common lesions located in the anterior skull base.

Methods: A total of 235 patients diagnosed with pituitary adenoma, meningioma,

craniopharyngioma, or Rathke cleft cyst were enrolled in the current study. The

discrimination was divided into three groups: pituitary adenoma vs. craniopharyngioma,

meningioma vs. craniopharyngioma, and pituitary adenoma vs. Rathke cleft cyst. In each

group, five selection methods were adopted to select suitable features for the classifier,

and nine machine-learning classifiers were employed to build discriminative models. The

diagnostic performance of each combination was evaluated with area under the receiver

operating characteristic curve (AUC), accuracy, sensitivity, and specificity calculated for

both the training group and the testing group.

Results: In each group, several classifiers combined with suitable selection methods

represented feasible diagnostic performance with AUC of more than 0.80. Moreover, the

combination of least absolute shrinkage and selection operator as the feature-selection

method and linear discriminant analysis as the classification algorithm represented the

best comprehensive discriminative ability.

Conclusion: Radiomics-based machine learning could potentially serve as a novel

method to assist in discriminating common lesions in the anterior skull base prior

to operation.

Keywords: pituitary adenoma, meningioma, craniopharyngioma, Rathke cleft cyst, anterior skull base, radiomics,

machine learning
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INTRODUCTION

A variety of lesions are present in the anterior skull base. The
most common types of tumors in this area are pituitary adenoma,
craniopharyngioma, and meningioma (1, 2). Rathke cleft cyst is
also taken as the common differential diagnosis for the sellarmass
as a congenital lesion (3). The importance of early diagnosis for
lesions in this region has been highlighted because even these
benign lesions may be progressive and unrelenting if situated in
an area where growth cannot be controlled, and some of them
could show aggressive behavior (4). Magnetic resonance (MR)
scan is highly recommended for preoperative evaluation of the
anterior skull base lesion owing to the advantage of excellent soft
tissue resolution. Descriptions of the four types of lesions in MR
imaging (MRI) are characteristic (5). However, the diagnostic
accuracy of MR images depends on experiences of radiologists,
and in some cases, these lesions with similar MRI patterns
may mimic each other and complicate the radiological diagnosis
(6, 7). Therefore, new methods that could assist in preoperative
differentiation may be of clinical value.

Radiomics could extract high-dimensional features from
medical images and provide information associated with the
pathophysiology of lesions that is difficult to be assessed
by visual inspection (8–10). Moreover, mineable radiomic
features of lesions could be analyzed with the novel machine-
learning technology that has shown promising prospects in
the biomedical domain (11). Radiomics-based machine learning
has been applied in differential diagnosis of various brain
tumors in previous studies, representing the potential to
be utilized in clinical practice to facilitate diagnosis, and
offer guidance for decision making (12–16). In the present
study, we evaluated the ability of machine-learning technology
combined with MRI radiomic features and clinical parameters
in differentiating the four common types of lesions in the
anterior skull base. Considering the epidemiology and position
of lesions, the differential analysis was divided into three
groups: pituitary adenoma vs. craniopharyngioma (the most
common tumors in the sellar/suprasellar region), meningioma
vs. craniopharyngiomas (the most common tumors in the
parasellar region), and pituitary adenoma vs. Rathke cleft cyst
(the most common lesions in the intrasellar region).

METHOD

Patient Selection
Institution database was reviewed to search for patients treated at
our neurosurgery department fromNovember 2014 to June 2018.
We initially selected the potentially qualified patients according
to the following criteria: (a) with the pathological confirmation of
pituitary adenoma, craniopharyngioma, meningioma, or Rathke
cleft cyst; (b) the lesion was located at the anterior skull base;
and (c) with preoperative sellar MR images. Exclusion criteria
were as follows: (a) history of any other intracranial diseases,
such as stroke and intracranial infection; (b) history of any
anti-tumor treatment prior to MR scans, such as brain surgery,
chemotherapy, or radiotherapy; and (c) incomplete electronic
medical records. The flowchart of patient selection is shown

in Figure 1. Clinical parameters were recorded, including age,
gender, lesion size, and the time between MR scan and surgery.
The lesion size was measured by the maximum diameter of
the lesion that was collected from radiological reports. This
retrospective study was approved by the institutional review
board. The written informed consent was obtained from all
participants (written informed consent for patients<16 years old
was obtained from their parents or guardians).

Image Acquisition
All patients underwent MR scans via a 3.0-T GE scanner with
an eight-channel phase array head coil. The parameters of the
contrast-enhanced T1-weighted imaging were as follows: TR/TE
= 552/10ms, slice thickness = 5mm, flip angle = 90◦, field of
view= 150× 150 mm2, data matrix= 256× 256, and voxel size
= 1.0× 1.0× 1.0 mm3. The scanning was conducted within 200 s
after injection of gadopentetate dimeglumine (0.1 mmol/kg) as
the contrast agent. The preoperative MR images were collected
from picture archiving and communication system (PACS) of our
institutional radiology department (Figure 2).

Feature Extraction
Texture features were extracted from MR images as radiomic
parameters by two neurosurgeons together with the assistance
of senior radiologists using LIFEx software (http://www.lifexsoft.
org) (17). Following protocols of the software, the region
of interest (ROI) was manually drawn within the border of
the lesion in each slice. Considering the clear depiction of
the boundary of lesions, ROI delineation was performed on
the contrast-enhanced T1-weighted imaging, in which lesions
were carefully separated from adjacent brain tissues through
different enhancement patterns and surrounding anatomic
structures. Any disagreements regarding the border of lesions
were recorded and solved by senior radiologists. After the
whole lesion was contoured slice by slice, three-dimensional
radiomic parameters could be automatically calculated by the
software with established formulas (Supplementary Material 1).
A total of 40 features were obtained from two orders,
including the first-order features from shape-based matrix
and histogram-based matrix, and the second-order/higher-
order features from gray-level co-occurrence matrix (GLCM),
gray-level zone length matrix (GLZLM), neighborhood gray-
level dependence matrix (NGLDM), and gray-level run length
matrix (GLRLM) (Supplementary Material 2). Examples of ROI
delineation are shown in Supplementary Material 3. Combined
with two clinical parameters (age and gender), a dataset was built
for further analysis.

Machine-Learning Modeling
Given that there was a relatively large number of statistics and
some parameters may not be associated with the differential
process, optimal features should be selected first for the
predictive model. The feature-selection method was important
but complicated considering the sample size and efficiency in
discrimination. Least absolute shrinkage and selection operator
(LASSO) regression model was reported to be appropriate
for high-dimensional data regression analysis (18, 19). Other
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FIGURE 1 | Workflow chart of the patient enrollment process.

FIGURE 2 | Examples of different lesions on contrast-enhanced T1-weighted image. (A) Craniopharyngioma; (B) meningioma; (C) pituitary adenoma; (D) Rathke

cleft cyst.
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TABLE 1 | Characteristics of patients and lesions.

Craniopharyngioma Meningioma Pituitary adenoma Rathke cleft cyst P-value

Number 63 64 68 40

Gender, n (%) 0.006

Male 37 (58.7) 18 (28.1) 32 (47.1) 18 (45.0)

Female 26 (41.3) 46 (71.9) 36 (52.9) 22 (55.0)

Age, n (%) <0.001

≤18 years 21 (33.3) 2 (3.1) 1 (1.5) 0 (0.0)

19∼30 years 11 (17.5) 0 (0.0) 7 (10.3) 11 (27.5)

31∼60 years 27 (42.9) 51 (79.7) 43 (63.2) 26 (65.0)

>60 years 4 (6.3) 11 (17.2) 17 (25.0) 3 (7.5)

Mean age (range) (year) 31.62 (2∼73) 49.19 (9∼72) 49.16 (18∼73) 44.23 (21∼68)

Maximum diameter (mm) 28.86 (12.5∼52.4) 20.41 (8∼40) 23.21 (7∼50.5) 19.87 (8∼38.3) <0.001

Average time between MR scan and surgery (day) 6.2 7.5 5.3 6.4 0.321

MR, magnetic resonance.

TABLE 2 | Results of the discriminative model of LASSO + LDA in distinguishing lesions in the training group and the testing group.

Training group Testing group

AUC Accuracy Sensitivity Specificity AUC Accuracy Sensitivity Specificity

Pituitary adenoma vs. craniopharyngioma 0.845 0.851 0.897 0.820 0.804 0.800 0.888 0.734

Meningioma vs. craniopharyngioma 0.882 0.881 0.944 0.832 0.807 0.819 0.863 0.794

Pituitary adenoma vs. Rathke cleft cyst 0.873 0.887 0.861 0.901 0.816 0.836 0.829 0.840

AUC, area under curve; LASSO, least absolute shrinkage and selection operator; LDA, linear discriminant analysis.

selection methods were also evaluated by previous researchers
and reported to represent good diagnostic performances (20, 21).
To settle the dilemma, five different feature-selection methods
were adopted, namely, distance correlation, random forest (RF),
LASSO, eXtreme gradient boosting (Xgboost), and gradient
boosting decision tree (GBDT). A similar predicament also needs
to be solved in regard to the selection of machine-learning
classifiers. We employed nine classification algorithms in this
study, including linear discriminant analysis (LDA), support
vectormachine (SVM), RF, Adaboost, k-nearest neighbor (KNN),
GaussianNB, logistic regression (LR), GBDT, and decision tree
(DT). Patients were randomly divided into the training group and
the testing group at the ratio of 4:1 on the basis of experiences
from previous studies (22–24). The model was first created
by the training group and then applied to the independent
testing group, and this procedure was repeated over 100 times
to conclude the realistic distribution of classification accuracies.
Area under receiver operating characteristic (ROC) curve (AUC),
accuracy, sensitivity, and specificity were calculated based on the
confusion matrix to assess the discriminative ability of different
models. Regular statistical analyses of this study were performed
using SPSS (Version 22.0, IBM Corp. Armonk, NY, USA), and
machine-learning algorithms were programmed with Python
Programming Language and scikit-learn package.

RESULTS

Patient Characteristic
A total number of 235 patients who underwent surgical resection
of lesions in our neurosurgery department were enrolled in the

current study. Among all participants involved, 68 patients were
diagnosed with pituitary adenoma, 63 patients were diagnosed
with craniopharyngioma, 64 patients were diagnosed with
meningioma, and 40 patients were diagnosed with Rathke cleft
cyst. The average age of patients was 49.16, 31.62, 49.19, and 44.23
years, respectively. The mean value of the maximum diameter of
lesions was 23.21, 28.86, 20.41, and 19.87mm, respectively. The
characteristics of patients and lesions are summarized in Table 1.

Machine-Learning Model Assessment
In each group, 45 diagnostic models were established through
the combinations of five selection methods and nine classifiers.
The combination of LASSO as the selection method and LDA as
the classifier (LASSO + LDA) seemed to be the optimal model
in differentiating common lesions in the anterior skull base with
AUC of more than 0.80 in all three groups. It is worth noting that
some combinations represented better performance than LASSO
+ LDA in a single group, but LASSO + LDA showed the best
comprehensive discriminative ability.

Group 1 was the differentiation between pituitary adenoma
and craniopharyngioma considering these are the most common
tumors located in the sellar/suprasellar region. For LASSO
+ LDA, ROC analysis demonstrated that AUC, accuracy,
sensitivity, and specificity in the training group were 0.845, 0.851,
0.897, and 0.820, respectively. In the testing group, this predictive
model was proven to be feasible in discrimination with AUC of
0.804, accuracy of 0.800, sensitivity of 0.888, and specificity of
0.734 (Table 2). Besides, other models like RF + RF (AUC =

0.811 in the testing group) and GBDT+ RF (AUC= 0.837 in the
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TABLE 3 | Results of discriminative models in distinguishing pituitary adenoma from craniopharyngioma in the testing group.

Distance correlation RF LASSO Xgboost GBDT

Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC

LDA 0.719 0.727 0.778 0.782 0.800 0.804 0.730 0.734 0.793 0.799

SVM 0.696 0.712 / / 0.700 0.717 0.700 0.696 / /

RF 0.727 0.747 0.804 0.811 0.770 0.780 0.781 0.786 0.841 0.837

Adaboost 0.796 0.799 0.833 0.837 0.785 0.784 0.770 0.774 0.833 0.831

KNN 0.800 0.800 0.689 0.690 0.756 0.765 0.689 0.694 0.722 0.727

GaussianNB 0.744 0.750 0.726 0.730 0.670 0.681 0.715 0.724 0.737 0.741

LR 0.752 0.758 0.822 0.819 0.774 0.783 0.693 0.705 0.767 0.771

GBDT 0.796 0.796 0.859 0.857 0.874 0.866 0.811 0.809 0.844 0.840

DT 0.752 0.754 0.800 0.798 0.767 0.766 0.763 0.757 0.785 0.783

RF, random forest; LASSO, least absolute shrinkage and selection operator; Xgboost, eXtreme gradient boosting; GBDT, gradient boosting decision tree; LDA, linear discriminant

analysis; SVM, support vector machine; KNN, k-nearest neighbor; LR, logistic regression; DT, decision tree; AUC, area under curve.

/, over-fitting.

TABLE 4 | Results of discriminative models in distinguishing meningioma from craniopharyngioma in the testing group.

Distance correlation RF LASSO Xgboost GBDT

Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC

LDA 0.846 0.843 0.850 0.842 0.819 0.807 0.800 0.792 0.815 0.809

SVM 0.807 0.804 / / 0.712 0.732 / / / /

RF 0.769 0.777 0.773 0.780 0.735 0.744 0.796 0.798 0.812 0.822

Adaboost 0.753 0.766 0.746 0.758 0.777 0.784 0.784 0.790 0.773 0.781

KNN 0.838 0.846 0.708 0.713 0.742 0.746 0.669 0.663 0.650 0.656

GaussianNB 0.762 0.753 0.777 0.778 0.700 0.681 0.715 0.691 0.804 0.787

LR 0.796 0.800 0.777 0.783 0.765 0.763 0.735 0.725 0.785 0.780

GBDT 0.769 0.773 0.769 0.774 0.773 0.782 0.765 0.769 0.812 0.816

DT 0.742 0.744 0.723 0.722 0.712 0.710 0.719 0.726 0.765 0.767

RF, random forest; LASSO, least absolute shrinkage and selection operator; Xgboost, eXtreme gradient boosting; GBDT, gradient boosting decision tree; LDA, linear discriminant

analysis; SVM, support vector machine; KNN, k-nearest neighbor; LR, logistic regression; DT, decision tree; AUC, area under curve.

/, over-fitting.

testing group) also represented feasible ability in distinguishing
pituitary adenoma from craniopharyngioma (Table 3).

Group 2 was the differentiation between meningioma and
craniopharyngioma, given that they are the most common
tumors located in the parasellar region. ROC analysis illustrated
the differential ability of LASSO + LDA with AUC of 0.882,
accuracy of 0.881, sensitivity of 0.944, and specificity of 0.832
in the training group. In the testing group, AUC of LASSO
+ LDA was 0.807, accuracy was 0.819, sensitivity was 0.863,
and specificity was 0.794 (Table 2). Besides, distance correlation
+ LDA (AUC = 0.843 in the testing group), RF + LDA
(AUC = 0.842 in the testing group), GBDT + LDA (AUC =

0.809 in the testing group), and distance correlation + KNN
(AUC = 0.846 in the testing group) also represented reliable
diagnostic performance in discrimination between meningioma
and craniopharyngioma (Table 4).

Group 3 was the differentiation between pituitary adenoma
and Rathke cleft cyst, which are the most common lesions
in the intrasellar region. In the training group, ROC analysis

demonstrated that AUC of LASSO + LDA was 0.873 with
accuracy of 0.887, sensitivity of 0.861, and specificity of 0.901.
In the testing group, this model also represented feasible
discriminative ability with AUC of 0.816, accuracy of 0.836,
sensitivity of 0.829, and specificity of 0.840 (Table 2). In addition,
distance correlation + RF also represented good performance
in differentiating pituitary adenoma from Rathke cleft cyst with
AUC of 0.825 in the testing group (Table 5).

The features selected into LASSO + LDA model are
listed in Table 6. The association between discriminant
functions for LASSO + LDA model is represented in
Figure 3, in which minimal overlap between two clusters
was observed in each group. Figure 4 represents examples
of distributions of the direct LDA function for lesions for
one of the 100 independent cycles. In group 1, a shift of
the LDA function values for craniopharyngioma toward
positive values was shown while predominantly negative
values for pituitary adenoma. Similar trends could be
observed in group 2 and group 3, suggesting that the LASSO
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TABLE 5 | Results of discriminative models in distinguishing pituitary adenoma from Rathke cleft cyst in the testing group.

Distance correlation RF LASSO Xgboost GBDT

Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC

LDA 0.841 0.803 0.827 0.804 0.836 0.816 0.754 0.682 0.786 0.767

SVM 0.754 0.678 / / 0.627 0.500 0.645 0.544 / /

RF 0.863 0.825 0.768 0.714 0.777 0.710 0.855 0.813 0.823 0.775

Adaboost 0.813 0.794 0.804 0.774 0.818 0.778 0.818 0.778 0.836 0.809

KNN 0.786 0.735 0.745 0.696 0.732 0.666 0.759 0.706 0.768 0.723

GaussianNB 0.841 0.806 0.814 0.786 0.677 0.655 0.800 0.745 0.827 0.792

LR 0.800 0.736 0.823 0.781 0.755 0.683 0.818 0.764 0.805 0.769

GBDT 0.845 0.808 0.832 0.798 0.786 0.743 0.818 0.776 0.850 0.821

DT 0.832 0.798 0.791 0.761 0.736 0.700 0.786 0.757 0.809 0.780

RF, random forest; LASSO, least absolute shrinkage and selection operator; Xgboost, eXtreme gradient boosting; GBDT, gradient boosting decision tree; LDA, linear discriminant

analysis; SVM, support vector machine; KNN, k-nearest neighbor; LR, logistic regression; DT, decision tree; AUC, area under curve.

/, over-fitting.

+ LDA model had feasible discriminative ability in the
three groups.

DISCUSSION

In the present study, a series of clinical parameters and radiomic
features were utilized in differentiating four types of lesions in
the anterior skull base. The predictive models were built using
five feature-selection methods (distance correlation, RF, LASSO,
Xgboost, and GBDT) and nine machine-learning classification
algorithms (LDA, SVM, RF, Adaboost, KNN, GaussianNB, LR,
GBDT, and DT). The combination of LASSO as the feature-
selection method and LDA as the classification algorithm
represented the optimal comprehensive performance with AUC
of over 0.80 in all of the training groups and the testing groups.
Moreover, several models also showed reliable discriminative
ability between two types of lesions in a single group. Considering
the features we selected could be extracted from routine MR
images, the predictive model has the potential to be utilized as
a novel, convenient tool in clinical practice.

The most important result of our research was to identify
suitable discriminative models for lesions located in the anterior
skull base. In previous studies, researchers investigated various
combinations and tried to identify the optimal diagnostic
or prognostic model. For instance, one study on CT-based
survival prediction of non-small cell lung cancer involved
models with four selection and classification methods (25).
Another study made evaluations on models with 14 selection
and 12 classification methods in predicting the overall survival
of lung cancer patients (26). Similar studies were performed
in bone tumor and head and neck cancer, implicating that
the machine-learning model could potentially be a reliable
method in differential diagnosis and prognosis prediction (27–
30). However, it brought our attention and further investigation
that various classifiers were used but that unanimous results on
which one could be taken as the universal method were not
reached. Considering that the purpose of clinical application
of machine learning is to lessen the workload for doctors,

TABLE 6 | Parameters selected in the discriminative model of LASSO + LDA.

Group 1 Group 2 Group 3

Age

minValue

meanvalue

maxValue

SHAPE_Volume

GLCM_Contrast

GLRLM_HGRE

GLRLM_SRHGE

GLRLM_LRHGE

GLRLM_GLNU

GLRLM_RLNU

GLZLM_LZE

GLZLM_SZHGE

GLZLM_LZLGE

GLZLM_LZHGE

GLZLM_GLNU

GLZLM_ZLNU

Age

minValue

meanValue

stdValue

maxValue

SHAPE_Volume

GLCM_Contrast

GLRLM_HGRE

GLRLM_LRHGE

GLRLM_GLNU

GLRLM_RLNU

GLZLM_LZE

GLZLM_HGZE

GLZLM_SZHGE

GLZLM_LZHGE

GLZLM_GLNU

GLZLM_ZLNU

minValue

meanValue

maxValue

SHAPE_Volume

GLRLM_SRHGE

GLRLM_LRHGE

GLRLM_GLNU

GLRLM_RLNU

GLZLM_LZE

GLZLM_HGZE

GLZLM_SZHGE

GLZLM_LZHGE

GLZLM_ZLNU

GLCM, gray-level co-occurrence matrix; GLZLM, gray-level zone length matrix; NGLDM,

neighborhood gray-level dependence matrix; GLRLM, gray-level run length matrix;

LASSO, least absolute shrinkage and selection operator; LDA, linear discriminant analysis.

simple discriminative models between two types of lesions
are relatively meaningless because of complicated and elusive
situations in clinical practice. Based on this idea, not only
different combinations were tested, but also analyses on four
types of lesions were performed simultaneously in three groups
in the present study.

LASSO is a brilliant feature-selection method that tries to
retain useful features in both ridge regression and subset selection
(31).With the characteristics of avoiding over-fitting, it is suitable
for large sets of radiomic features when a relatively small
number of samples are involved (28). LDA is a machine-learning
classification algorithm that could find a linear model with the
best discriminative ability for two classes. The mechanism of
LDA is to identify the boundaries around clusters of two classes
and to project the statistics into a lower-dimensional space with
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FIGURE 3 | Relationships between the discriminant functions for different lesions in the three groups and for the group centroids. (A) Pituitary adenoma vs.

craniopharyngioma; (B) meningioma vs. craniopharyngioma; (C) pituitary adenoma vs. Rathke cleft cyst.

FIGURE 4 | Examples of distributions of the linear discriminant analysis (LDA) function determined for the lesions for one cycle. (A) Pituitary adenoma vs.

craniopharyngioma; (B) meningioma vs. craniopharyngioma; (C) pituitary adenoma vs. Rathke cleft cyst.

good discriminative power based on the distance to a centroid
of each cluster (32). LDA was reported to be able to reduce
the dimensionality and to preserve the class discrimination
information as much as possible. The combination of LASSO
and LDA showed optimal comprehensive results in all three
groups with AUC of more than 0.80 in each group. However,
the results of our study were not as good as those of others.
One study on the prediction of ATRX mutation in low-grade
gliomas represented brilliant results with AUC of 0.925 in the
validation group (19). Another study on differentiating sacral
chordoma from sacral giant cell tumor represented AUC of 0.984
in the validation group (30). Future researches withmore feature-
selection methods and machine-learning classifiers are required
to verify our results and to explore the optimal model with
higher reliability.

There were some limitations in the present study. First,
this study was performed in a single center, and only patients
with resectable tumors were enrolled. Second, the study cohort,
especially the testing cohort, was relatively small, which was a
common limitation of other similar studies. Multicenter studies
with larger sample sizes are required to validate our results.
Third, only the contrast-enhanced T1-weighted imaging was
used in radiomic analysis considering that this sequence was
most suitable and available for the evaluation of lesions in the
anterior skull base. Multi-model imaging statistics need to be
integrated into the model to improve its performance in future
studies. Fourth, images acquired from different MR scanners
may possibly result in the model performance discrepancy.
Standardized imaging quality and consistent protocols are
required if the predictive models are put into clinical work.
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In conclusion, we utilized MRI radiomics and clinical
parameters to build predictive models via the combinations
of selection methods and machine-learning classifiers. Our
results indicated that radiomics-based machine learning could
preoperatively differentiate common lesions in the anterior skull
base with feasible diagnostic performance and facilitate clinical
decision making.
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