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Cancer cells show a formidable capacity to survive under stringent conditions, to elude

mechanisms of control, such as apoptosis, and to resist therapy. Cancer cells reprogram

their metabolism to support uncontrolled proliferation and metastatic progression.

Phenotypic and functional heterogeneity are hallmarks of cancer cells, which endow them

with aggressiveness, metastatic capacity, and resistance to therapy. This heterogeneity

is regulated by a variety of intrinsic and extrinsic stimuli including those from the

tumor microenvironment. Increasing evidence points to a key role for the metabolism

of non-essential amino acids in this complex scenario. Here we discuss the impact of

proline metabolism in cancer development and progression, with particular emphasis

on the enzymes involved in proline synthesis and catabolism, which are linked to

pathways of energy, redox, and anaplerosis. In particular, we emphasize how proline

availability influences collagen synthesis and maturation and the acquisition of cancer cell

plasticity and heterogeneity. Specifically, we propose a model whereby proline availability

generates a cycle based on collagen synthesis and degradation, which, in turn, influences

the epigenetic landscape and tumor heterogeneity. Therapeutic strategies targeting this

metabolic-epigenetic axis hold great promise for the treatment of metastatic cancers.

Keywords: proline, metabolic reprogramming, PRODH, ALDH18A1, PYCR1, collagen prolyl-hydroxylases,

epigenetic remodeling, Budesonide

INTRODUCTION

Metastatic seeding of tumor cells to distant body sites relies on the extraordinary phenotypic
plasticity of cancer cells (1, 2). The acquisition of cancer cell plasticity is emerging as the adaptive
response to a hostile tumor microenvironment. A paradigm of cell plasticity is the epithelial
to mesenchymal transition (EMT) by which epithelial cells acquire mesenchymal traits while
losing epithelial-specific gene expression. This phenotypic switch occurs through a continuum of
intermediated cellular states in which cells acquire intermediate/metastable phenotypes, adopting
phenotypic, and molecular features of both epithelial and mesenchymal cell types (3, 4). How this
multistep process is controlled is a key question and a major unresolved issue.

A central role for metabolism is emerging in the control/modulation of cancer cell plasticity
(5). Upon the activation of oncogenic pathways, cancer cells undergo metabolic reprogramming,
adapting their metabolism to the energetic and anabolic requirements necessary for uncontrolled
proliferation andmotility (5). For instance, cancer cells become dependent on an exogenous source
of non-essential amino acids (NEAAs), which are involved in synthesis of macromolecules redox
balance, and post-translational and epigenetic modifications, i.e., the NEAAs take on regulatory
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functions essential for malignant growth and metastasis. Thus,
it has been hypothesized that during cancer progression, some
NEAAs may become “conditionally essential,” however, it is not
only the product amino acid but also the metabolic pathway,
itself, which is important (6–8).

In this context, a great interest is emerging on the role
of the extracellular matrix (ECM) as a readily available
source of limiting metabolites and an important component
of the tumor cell plasticity. ECM proteins are a great
reservoir of amino acids, mainly NEAAs, that can be released
in the tumor microenvironment by the activity of matrix
metalloproteinases/collagenases secreted by cancer cells (9) and
thus influence cancer cells metabolism. Among NEAAs, ECM
proteins are particularly rich of Glycine and Proline, and the
regulatory functions and the impact of Proline metabolism on
normal and cancer cell behavior has been deeply investigated and
well-described (10–12).

The goal of this review is to describe the emerging knowledge
on the role of Proline metabolism, mainly Proline synthesis, in
the control of cancer cell plasticity, the genes/enzymes/pathways
involved and their relevance as prognostic markers and potential
therapeutic targets. Finally, we will discuss the emerging idea
that cancer cells epigenetic and phenotypic plasticity rely on
a Proline-dependent cycle, based on collagen-synthesis and
degradation, which represents a potential target for the future
development of novel anti-cancer therapies.

PROLINE CATABOLISM IN CANCER

The conversion of Proline into 1
1- pyrroline-5-carboxylate

(P5C) is the first step of Proline catabolism, and is catalyzed by
Proline dehydrogenase/Proline oxidase (PRODH/POX) enzyme.
During this enzymatic reaction, flavin adenine dinucleotide
FAD is reduced to FADH2, which may be used to generate
ATP through the oxidative phosphorylation process. PRODH
enzyme is bound to the inner mitochondrial membrane and its
overexpression, concomitantly with high levels of free Proline,
may concur to generate reactive oxygen species (ROS). In a
second oxidative step, Proline-derived P5C can be converted
into Glutamate in a reaction catalyzed by the pyrroline-5-
carboxylate dehydrogenase (P5CDH) enzyme. Glutamate, after
conversion into α-Ketoglutarate (α-KG), can be burned to
CO2 using the TCA cycle, gaining ATP. Thus, cells can use
Proline to produce ATP, othermetabolites (P5C, glutamate, αKG)
and ROS. The role of PRODH-mediated Proline oxidation in
the proliferation/survival of cancer cells has been exhaustively
described elsewhere (11–14). Here we report a brief description
of the contrasting effects (anti- vs. pro- tumor) of PRODH on
cancer cell behavior.

Antitumor
PRODH is a p53-induced gene and its expression is down
regulated in many tumors (15–18), most likely those carrying
inactivated/mutated p53 variants. PRODH expression is also
induced by the inflammatory factor peroxisome proliferator-
activated receptor gamma (PPARγ) and AMP activated protein
kinase (AMPK), whereas it is repressed by oncogenes, such as

MYC, which acts through miR-23b∗ (19). Overexpression of
PRODH gene in colorectal cancer cells blocks cell cycle and
reduces DNA synthesis (20). PRODH-induced ROS are strong
inducers of apoptosis and autophagy. PRODH activity can also
concur to suppress hypoxia-inducible factor 1 alpha (HIF1α)-
mediated signaling by increasing the synthesis of α-KG, in
hepatocellular carcinoma (21, 22).

Protumor
PRODH expression is induced under hypoxic conditions in
different tumor cell lines and in a mouse xenograft model of
human breast tumor, and contributes to cancer cell survival by
inducing autophagy (23, 24). Moreover, PRODH is upregulated
in a 3D spheroidal cell culture model of breast cancer (BC)
compared to the 2D culture, as well as in metastases compared
to primary tumors in BC patients (25) (Table 1). PRODH
inhibition impairs spheroids growth and reduces lung metastases
formation in vivo (25). PRODH/POX contributes to survival
of triple negative breast cancer (TNBC) cells treated with
HDAC inhibitors (Table 1). PRODH ablation reduces pro-
survival autophagy and increases apoptosis induced by the
HDAC inhibitors used (45). PRODH induces, in vitro and in
vivo, non-small cell lung cancer (NSCLC) cells toward EMT,
proliferation and migration, which are blocked by depletion of
PRODH (46) (Table 1).

All together these findings support the idea that the
pro- or anti-survival roles of PRODH in cancer cells may
be context/environment- and cell type- dependent (75).
Additionally, the product of PRODH activity P5C is the
immediate precursor of Proline. The Proline-P5C cycle provides
unique functions in amino acid metabolism (14).

PROLINE BIOSYNTHESIS GENES
PREDICT POOR PROGNOSIS IN CANCER

De novo synthesis of Proline is supported by Glutamine-derived
Glutamate. In a first step, the P5C synthetase enzyme, encoded by
aldehyde dehydrogenase 18A1 (ALDH18A1) gene catalyzes the
conversion of Glutamate to P5C. In a second reductive step, P5C
is converted to Proline by P5C reductase (PYCR) enzymes (10).
Three isoforms (PYCR1, PYCR2, and PYCRL) of P5C reductase,
each with distinct properties, have been identified (76). PYCR1
and 2 share a high amino acid (aa) sequence similarity (84%),
they are both located in the mitochondria and prefer NADH as
electron donor. Conversely, PYCRL shares only 45% of the aa
sequence similarity with PYCR1 and 2, is localized in the cytosol
and preferentially uses NADPH as reducing agent. PYCR2 is
more sensitive to feedback inhibition by Proline (Ki ∼0.15mM)
than PYCR1 (Ki ∼1.0mM), whereas PYCRL appears insensitive
to Proline inhibition (10, 14). Of note, the up regulation of
Proline synthesis from Glutamine by cMYC (77), and NAD+

NADP+ produced during Proline synthesis are potent regulators
of both glycolysis and the pentose phosphate pathway, strongly
suggesting its importance in cancer (8).

The role played by PYCRs-mediated Proline synthesis in
cancer progression is supported by unbiased transcriptomics,
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TABLE 1 | Proline-related genes and associated cancer types.

Proline-related genes

Cancer

Type/Organ

ALDH18A1 PYCR1 PRODH EIF5A P4HA1 P4HA2 P4HB LEPREL4 PLOD1/2 MMP9/1/13 ATF4

Adrenal

Bladder

Brain

Breast

Cervix

Colon

Esophagus

Gastric

Germ Cell

Head-Neck

Hepatic

Kidney

Leukemia

Lung

Lymphoma

Melanoma

Myeloma

Ovary

Pancreas

Prostate

Thyroid

Reference (26–29) (26, 27, 30)

(28, 31)

(32–44)

(15–18)

(21–25, 45,

46)

(47) (48)

(49–56)

(57)

(58–65)

(66, 67)

(68–72) (26) (26) (26) (73, 74)

The gray boxes indicate that the specific gene has been associated to the specific cancer type.

metabolomics, and proteomics studies, indicating that PYCRs
expression levels, especially PYCR1, influence the clinical course
of cancer (Table 1).

A comprehensive study comparing the mRNA expression
profiles of 1,454 metabolic enzymes across 1,981 tumors covering
19 different tumor types vs. 931 matched normal tissue controls,
identify Proline biosynthesis genes (PYCR1 and ALDH18A1)
among the most up regulated enzymes (26). The Cancer Genome
Atlas (TCGA) database and gene expression profiles from a
Singapore-based cohort reveal that PYCR1 and ALDH18A1 are
among themost up-regulated genes inHepatocellular Carcinoma
(HCC). They both correlate with HCC grade, and predict a
poor clinical outcome (27). PYCR1 knock-down (KD) cells show
decreased cell proliferation, and a reduction of the NAD+–
induced glycolytic and NADP+–dependent oxidative pentose
phosphate pathways has been suggested (27). An independent
study reveal that PYCR1 is induced in HCC tumor tissues
compared to adjacent normal liver tissues and, remarkably, that
PYCR1 ablation induces apoptosis, decreases cell proliferation,
colony formation ability in vitro, and reduces in vivo tumor
size (30). Moreover, a link between PYCR1 expression and
activation of c-Jun N-terminal kinase (JNK) and insulin receptor
substrate 1 (IRS1) signaling has been also suggested (30).
Different studies reported that ablation of PYCR1 generates

smaller tumors. However, besides reduced proliferation/cell
number and/or increased apoptosis, lower tumor volume can be
the consequence of reduced stroma/ECM. Indeed, lower levels
of Proline affect collagen/ECM accumulation, which eventually
results in smaller/more compact tumors that have less capacity to
invade and generate metastasis (57).

In Breast Cancer (BC) tumors, PYCR1 and ALDH18A1
expression levels varies among specific BC subtype. An increase
in PYCR1 copy number and PYCR1 mRNA level is associated
with Luminal B type. Moreover, ALDH18A1 and Glutaminase
protein levels are higher in high proliferative estrogen receptor
positive (ER+) /human epidermal growth factor receptor
negative (HER2−) (Luminal B) compared to low proliferative
ER+/HER2− (Luminal A) tumor cells, thus suggesting that the
Glutamine-Proline axis is a poor prognosis marker in BC (28).
By combining in vitro studies using BC cell lines and clinical
data from human samples, Ding et al. found that PYCR1, but
not PYCR2, is highly expressed in BCs independently of the
specific subtype (ER+ vs. ER−), and positively correlates with
tumor size, grade and invasiveness. Accordingly, PYCR1 KD
reduces BC cells proliferation and invasiveness and increases
the cytotoxicity of chemotherapeutic drugs, thus suggesting
that PYCR1 may be a potential therapeutic target for BC
(31). Complementary to these findings, Liu et al. developed a
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tool to calculate electrons energy dissipation during metabolic
transformations (29), and found that under hypoxic conditions
in which the electron transfer chain (ETC) to oxygen is
blocked, proliferating cells rewire their metabolism and use
Proline biosynthesis and lipogenesis as alternative electron
acceptors. Blocking simultaneously ALDH18A1 and lipogenesis
inhibits breast tumor growth in vivo and in vitro (29). A
recent study demonstrates that infection with oncogenic Kaposi’s
sarcoma-associated herpesvirus (KSHV), an etiological agent
of Kaposi sarcoma, increases Proline synthesis in a 3D model
of breast cancer. KSHV K1 oncoprotein interacts with and
activates PYCR1, promoting tumor growth and development.
Abrogation of PYCR1 abolishes the oncogenic activity of KSHV
K1 protein (32).

PYCR1 is highly expressed also in prostate cancer tissues
(33), in renal cell carcinoma (RCC) (34), in papillary renal cell
carcinoma (PRCC) (35) and in human malignant melanoma
(MM) (36). These studies showed that PYCR1 expression
strongly influence cell behavior (proliferation, colony formation,
apoptosis) in different cancer contexts, and correlate with poor
outcome and decreased overall survival in patients. Of particular
interest is the finding that PYCR1 ablation inhibits migration and
invasion both in PRCC and MM cells, altering phosphorylation
of AKT (36) and mTOR (35).

Independent studies bring to the findings that PYCR1 is
overexpressed also in non-small cell lung cancer (NSCLC)
and has been associated with poor prognosis in patients
with NSCLC (37–40). Knocking down PYCR1 inhibits NSCLC
cell proliferation and cell cycle (37). Interestingly, PYCR1
expression is negatively regulated by miR-488, which inhibits
cell proliferation and clone formation ability, and promotes
apoptosis. These effects are rescued by PYCR1, which in turn
activates p38 MAPK pathway (38). PYCR1 was shown to regulate
NSCLC cell migration and invasion, and the expression of the
typical epithelial-mesenchymal transition markers E-cadherin,
Vimentin, N-cadherin, and Snail1, suggesting that PYCR1 may
be critical for NSCLC aggressiveness and a potential target for
treating NSCLC (39). Accordingly, lung adenocarcinoma cell
sensibility to cisplatin increased upon PYCR1 silencing, further
supporting the idea that PYCR1 is a potential therapeutic target
for lung adenocarcinoma (40). Finally, recent findings showed a
correlation between cancer cells that have mutation in isocitrate
dehydrogenase 1 (IDH1) and increased PYCR1 expression and
Proline levels (41).

Altogether, these findings further support a critical role
of Proline biosynthesis genes in cancer development and
progression, independently of the tumor type.

Transcriptional and Post-translational
Regulation of PYCR1 and ALDH18A1 in
Cancer
Recent studies on the role of Proline biosynthetic enzymes in
neuroblastoma (NB) progression unravel a novel mechanism
of transcriptional regulation of the genes coding for these
enzymes (42). Specifically, myeloid zinc finger 1 (MZF1) and
MZF1 antisense RNA1 (MZF1-AS1) have been identified as

transcriptional regulators of ALDH18A1 and PYCR1. MZF1
induces the expression of ALDH18A1 and PYCR1, promoting
NB aggressiveness. Mechanistically, MZF1AS1 promotes the
up-regulation of both MZF1 and of other oncogenic genes
through the interaction with poly(ADP-ribose) polymerase 1
(PARP1), thus facilitating its interaction with E2F transcription
factor 1 (E2F1). Interestingly, MZF1, MZF1AS1, PARP1, and
E2F1 are all associated with poor prognosis of NB patients,
and blocking MZF1AS1 and PARP1 interaction, using a small
peptide, or targeting MZF1AS1 suppresses Proline synthesis
and tuomorigenesis, thus representing potential targets for NB
therapy (42).

Recently, a lncRNA TRPM2-AS/miR-140-3p/PYCR1 axis has
been described in BC, which regulates cell proliferation and
apoptosis. Specifically, while TRPM2-AS and PYCR1 are both
overexpressed in BC, miR-140-3p is downregulated and directly
targets both TRPM2-AS and PYCR1 (43).

To date the knowledge on PYCR1 post-translational
regulation is still poor. Recently, it has been shown that SIRT3,
a mitochondrial NAD+-dependent deacetylase involved in the
regulation of several metabolic pathways, interacts with PYCR1
both in vitro and in vivo. Acetylation of PYCR1 at K288 residue
by cAMP response element- binding protein (CREB binding
protein, CBP) acetylase reduces its activity and leads to inhibition
of cell proliferation. These findings link Proline metabolism with
SIRT3 and CBP and cell growth, and suggest that this axis may
be a potential target for cancer therapy (44).

Finally, expression of P5CS, PYCR1/2/L is increased by c-
MYC and PI3K signaling in luminal B breast cancer (28) as was
previously shown in cultured cancer cells after ectopic expression
of c-MYC (77).

PROLINE AVAILABILITY CONTROLS
CANCER CELL BEHAVIOR

The emerging evidences that increased PYCR1 and ALDH18A1
expression is a poor prognosis factor in different tumor types
are robust and convincing, and suggest an increased need of
Proline biosynthesis in cancer cells. Proline can be used by cancer
cells as energy source and/or as precursor of protein synthesis.
An interesting finding regarding the requirement of Proline
for proteinogenesis has been reported by Loayzcha-Puch and
colleagues (78). The authors developed a protocol to measure
differential ribosome codon reading (diricore), which is based on
ribosome profiling measurements. The study reports a striking
contrast between the diricore of cancer and normal surrounding
kidney tissues and provides evidence for a cancer cells-specific
limitation of Proline-tRNA availability for protein synthesis
(78). These findings are complemented by the observation that
PYCR1 gene is induced in cancer cells, likely as a compensatory
feedback mechanism against a condition of Proline shortage.
This can be provoked either by a reduced availability of
exogenous Proline and Proline metabolic precursors (Glutamine
and Glutamate), by a sudden increase of Proline consumption
for proteogenic and energetic purposes and/or by both, i.e.,
an increased requirement with a reduced availability. The
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FIGURE 1 | An autoregulatory loop controls Proline biosynthesis. Proline biosynthetic enzymes, ALDH18A1 and PYCR1 are under the control of the amino acid

starvation pathway (AAR-ATF4). Under Proline limiting conditions, uncharged tRNAs accumulate and activate/phosphorylate Gcn2-eIF2α inducing the expression of

the transcription factor ATF4, which in turn activates the expression of PYCR1, ALDH18A1, and the amino acid transporter Slc38a2/SNAT2 genes. When Proline

levels increases, tRNAs are charged and AAR-ATF4 pathway is relieved.

requirement of PYCR1 activity for tumor growth, further support
the idea that Proline availability controls cancer progression
(78). Interestingly, Proline restriction is not an unique feature
of kidney cancer cells, but also of breast cancer cells (78), thus
raising the possibility that it may be a common feature of different
tumors types. Accordingly, some cancer cell lines are starved
of Proline and depend on exogenous Proline to restore their
clonogenic potential, and resolve endoplasmic reticulum (ER)
stress (79).

Remarkably, a finely regulated growth-limiting starvation of
Proline is also a feature of mouse pluripotent embryonic stem
cells (ESCs), which is required to preserve ESC identity. We have
recently showed that the amino acid stress response (AAR)-ATF4
pathway, which is sensitive to nutrient starvation through the
presence of uncharged tRNAs, is active in ESCs and controls
the expression of the Proline biosynthesis genes Aldh18a1 and
Pycr1 (80) (Figure 1). This generates an autoregulatory loop
by which ATF4 induces Proline synthesis/accumulation, which
in turn down regulates ATF4 through the relief of the AAR
pathway (Figure 1). Interestingly, also the amino acid transporter
Slc38a2/Snat2, which madiates Proline uptake in ESCs (81), is
an ATF4 target gene (82, 83) (Figure 1). This autoregulatory

loop causes a specific shortage of Proline that preserves ESC
behavior/identity. When Proline levels suddenly increase, for
instance as a consequence of Proline supplementation, the prolyl-
tRNA is loaded and the synthesis of Proline-rich proteins, such
as collagens, is induced (80). Consequent to the rapid increase
of Proline availability, mESCs undergo a phenotypic transition
named embryonic-stem-to-mesenchymal like transition (esMT).
During esMT, the cells acquire mesenchymal-like, motile and
invasive features, resembling the main characteristics of the
migrating cancer cells (80, 84). Remarkably, pharmacological
blocking of the prolyl-tRNA synthetase activity with the specific
inhibitor halofuginone (85, 86) antagonizes Proline-induced
esMT (80). These findings, together with the observations
that the prolyl-tRNA synthetase-coding gene (26) and the
transcription factor ATF4 (73) are overexpressed in different
tumor types, and promote cancer metabolic homeostasis and
survival (74) (Table 1), point to the key role of Proline
availability in regulating protein synthesis, which sustains cancer
cell proliferation and preserves stem cell identity. Tumor
cells undergo metabolic reprograming that may restrict the
availability of specific amino acids. Thus, sensing of amino
acid availability by different pathways, including mTOR and
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AAR-ATF4 pathways, is crucial for cancer development, mainly
by controlling the efficiency of protein synthesis and in particular
of Proline-rich protein such as collagens.

COLLAGEN-PROLYL HYDROXYLATION IN
CANCER PROGRESSION

Tumor microenvironment and remodeling of the extracellular
matrix (ECM) have gained increasing interest as mechanisms
that contribute to the development of many solid tumors
and in particular, to the reprogramming of cancer cells,
conferring them with aggressive features, e.g., invasiveness,
ability to undergo EMT and therapeutic resistance (87–89).
Collagen is the most abundant protein in the human body
and is the principal component of ECM. In this view,
collagen biosynthesis, and maturation play a critical role.
About 25% of the amino acids in collagen are incorporated
as Proline and half of them are hydroxylated by a group
of Fe2+ αKG/VitC- dependent dioxygenases, the prolyl-4-
hydroxylase (P4H), within the endoplasmic reticulum (ER) (90).
Hydroxylation of Proline residues is a critical modification
required to stabilize the triple helix of collagens. It is thus
reasonable to expect that incorporation of Proline into collagen
may have metabolic consequences. P4H enzymes are tetramers
made of 2α catalytic subunits and 2β subunits, and the genes
encoding for these enzymes have been implicated in cancer
progression (Table 1). High levels of P4HA2 correlate with
poor prognosis in glioma, and P4HA2 knockdown blocks
glioma cells proliferation, migration and acquisition of EMT-like
phenotypes (58). Overexpression of P4HA2 has been implicated
also in cervical cancer (59); papillary thyroid cancer (60);
B-cell lymphoma (61); oral cavity squamous cell carcinoma
development and recurrence (62, 63). P4HA2 is correlated to liver
fibrosis and hepatocellular carcinoma (HCC) (64). Interestingly,
TCGA database analysis reveal higher levels of P4HA2 in HCC
patients with a shorter overall survival and a higher cancer
grade (65). P4HA2 is thus emerging as a potential target for
the development of novel therapeutic anti-cancer strategies.
Elevated P4HA2 and 1 predict patient mortality in human breast
cancers (48, 66). Moreover, prolyl hydroxylase gene expression
is induced by hypoxia and promotes invasiveness and lung
metastasis (48). Conversely, depletion of P4HA2 inhibited BC cell
proliferation and invasiveness in vitro and in vivo, by reducing
collagen deposition (66). P4HA2 has been recently reported to
play a role in the progression of breast ductal carcinoma in
situ (DCIS) (67). Furthermore, high levels of P4HA2 has been
associated with decreased survival in a breast cancer dataset with
almost 2000 patients, and is an independent predictor of disease
outcome with respect to standard clinopathological parameters
(57). Accordingly, silencing of P4HA2 converted Triple Negative
Breast Cancer (TNBC) cells to a more epithelial phenotype, and
reduces invasiveness in a 3D organotypic culture (57).

Deregulated P4HA1 expression has been also implicated
in cancer development and progression. P4HA1 expression is
induced in TNBC and correlates with short relapse-free survival
in patients treated with chemotherapy (49). The authors show

that P4HA1 promotes HIF1α-dependent cancer stemness and
chemoresistance by reducing the availability of α-KG, and
support the idea that P4H is a promising target to inhibit
tumor progression and sensitize TNBC to chemotherapy (49).
Elevated P4HA1 expression was recently described in pancreatic
ductal adenocarcinoma (PDAC) and predicts poor prognosis. Of
note, the authors found a P4HA1-HIF1α positive feedback loop,
which regulates the glycolytic and oncogenic activities of PDAC,
their stemness and chemoresistance (50). Additionally, high
P4HA1 expression is a poor prognostic factor for head and neck
squamous cell carcinoma (51), oral squamous cell carcinoma
(52), and prostate cancer (53). In ovarian cancer P4HA1
promotes migration, invasion, EMT and metastasis formation
(54). In glioma, P4HA1 promotes the transdifferentiation of
glioma stem cells into endothelial cells leading to the formation
of vascular basement membranes (55) and has been considered
as a prognostic marker for high-grade glioma (56).

Prolyl-4 hydroxylases beta polypeptide (P4HB) is the beta
subunit of P4H and belongs to the family of protein disulfide
isomerase (PDI), which acts as chaperone in the ER to inhibit
the aggregation of misfolded proteins. P4HB is overexpressed
in different types of tumors, such as hepatocellular carcinoma
(68), non-small-cell lung cancer (69), and in gastric cancer (GC)
for which it has been considered to have a prognostic value
(70). High levels are mainly associated with invasiveness and
lymphatic metastases of cancers (71). Zhang et al. suggested a
correlation between hypoxia/hypoxic microenvironment, which
plays critical roles in the process of EMT, and P4HB in the context
of GC. Specifically, HIF-1α up-regulates P4HB expression in
gastric cancer and together they cooperate to promote GC
invasion and metastases (72).

In line with the idea that collagen hydroxylation and
maturation underlie tumor progression and metastasis
formation, PLOD1/2 and LEPREL4 genes, which are both
involved in collagen biosynthesis, are upregulated in 19 different
tumor types, (26) (Table 1).

Interestingly, recent phosphoproteomic analysis reveal
that P4HA2 and P4HB are targets of the tyrosine kinase
PKDCC/VLK, which phosphorylates a broad range of secreted
and ER-located proteins (91). Of note, PKDCC/VLK is one of
the most up regulated genes in Proline-induced esMT (80, 84).

In most cases, P4H expression has been linked to the
acquisition of mesenchymal/invasive features and metastasis
formation. In particular, (i) the accumulation/deposition of
collagen near tumors has been associated with metastasis
formation, (ii) inhibition of P4H reduces tumor aggressiveness
both in vitro and in vivo. Despite extensive studies, the
mechanisms underlying P4H-dependent tumor aggressiveness
are still poorly understood.

COLLAGEN-EPIGENETIC INTERPLAY IN
CANCER CELL IDENTITY AND PLASTICITY

Increased collagen synthesis and maturation may in turn
influence cancer cell growth and behavior by acting at different
levels. The most studied role of collagen processing in tumors
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development/progression is focused on its downstream signaling.
Different signaling pathways control synthesis/accumulation of
collagens, including TGFβ. In the context of TGFβ-dependent
activation of fibroblast and consequent production and secretion
of matrix protein and wound healing, TGFβ promotes Proline
biosynthesis in a SMAD4-dependent manner, to support collagen
production (92). Collagens interact with specific receptors, e.g.,
discoidin domain receptors (DDRs) and integrins, and in turn
activate downstream pathways including ERK, PI3K/AKT -
NFkB, Focal adhesion kinase (FAK) and enhance migration
and promotion of EMT. This complex, context- specific role of
collagen signaling in cancer development and progression has
been extensively investigated and recently reviewed (93).

It is now evident that signals from the microenvironment
influence cancer cell behavior, and that tumor
microenvironment, including ECM composition, largely
influences tumor progression. Indeed, the changing in the ECM
mechanical properties, the increased collagen deposition and
stiffness influence cell plasticity, endowing cancer cells with
elevated invasiveness, migration and metastatic dissemination
properties (87–89). In this context, it has been recently shown
that epigenetic silencing of the tumor suppressor RASSF1A in
lung cancer induces P4HA2 expression, which leads to increased
collagen deposition, ECM stiffness and triggers metastatic
dissemination (94). An interesting interplay between Proline
metabolism/collagen synthesis and microenvironment has been
reported in a recent study on lung cancer, where the authors
show the interaction of PYCR1 in the mitochondria with
Kindlin-2, a protein critical for integrin-mediated cell-ECM
adhesion. When ECM stiffness rises, as in cancer, Kindlin-2
translocates in the mithocondria where it interacts with PYCR1,
increasing PYCR1 and proline levels. Kindlin-2 KD reduces
PYCR1 levels and ECM stiffening-dependent increase of Proline
synthesis. In vivo Kindlin-2 ablation strongly reduces PYCR1
and Proline levels, fibrosis, tumor growth and mortality rate (95).

The aforementioned mechanisms allow cancer cells to survive
and adjust to rapid, transient changes. Genetic mutations do
not explain the heterogeneity/plasticity of cancer cells, which
can be better explained by metabolic, epigenetic mechanisms.
In this respect, we have recently proposed a novel mechanism
underlying cancer cells plasticity by which collagen maturation
may act as an epigenetic signal (57). Data provided in recently
published papers underscore the existence of a functional link
between Proline metabolism and epigenetic remodeling (84,
96, 97) and demonstrate that Proline availability influences
mouse embryonic stem cell (mESC) identity and behavior
through modulating AAR-ATF4 pathway (see above paragraph
Proline availability controls cancer cell behavior). Of particular
relevance is the finding that a sudden increase of Proline
availability in mESCs induces a mesenchymal-like transition
(esMT), which resembles the EMT that occurs at the invasive
border of metastatic tumors (80, 84). This phenotypic transition
is accompanied with metabolic and epigenetic changes similar
to that observed in cancer cells. First, the acquisition of
mesenchymal-like invasive features in Proline-treated ESCs
(PiCs) is accompanied by a metabolic reprogramming shift
from a bivalent to a glycolytic metabolism. Furthermore, esMT

is accompanied by epigenetic remodeling, which results in a
genome-wide increase of DNA and histone methylation (84,
98). While several metabolites act as cofactors or substrates
of epigenetic enzymes and may thus influence the epigenetic
landscape (99), a different mechanism has been recently
proposed underlying Proline’s epigenetic activity, which relies
on collagen synthesis/maturation that requires Vitamin C
(VitC) (Figure 2) (57). Following this model, consequently
to a rapid increase of Proline-dependent collagen synthesis,
the activity of Prolyl-hydroxylase (P4h) enzymes for collagen
maturation, consumes VitC in the ER. This results in a
reduced nuclear availability of VitC, which becomes limiting
for the VitC/ αKG /Fe+2-dependent epigenetic enzymes, i.e.,
the JumonjiC-domain containing (JmjC) histone dioxygenases
and the Ten-eleven Translocation (Tet) DNA demethylases,
and determines a genome-wide increase of histones and DNA
methylation (57, 98) (Figure 2). This functional interplay
between P4H and JmjC/Tet enzymes explains, at least in part,
the mechanism through which Proline induces the epigenetic
remodeling associated with reversible esMT/MesT (57, 98).
This previously unexplored functional interplay between Proline
metabolism/collagen hydroxylation and epigenetic remodeling
is not unique of ESCs but similarly occurs in cancer cells
and contribute to breast cancer cell plasticity and metastatic
progression (57) (Figure 2).

These findings lead us to hypothesize the existence of
a Proline metabolism-dependent cycle of collagen synthesis
and degradation in the same cell (Figure 2). Concomitant
to continuous synthesis and maturation of collagen inside
the cells, which promotes cancer cell invasiveness, collagen
is degraded in the tumor microenvironment through the
activity of the metalloproteinases (MMPs) and collagenases. This
serves as reservoir of free extracellular Proline that in turn is
taken up by the cell and used for protein synthesis/collagen
biosynthesis, potentiating the cycle itself, and causing the
epigenetic remodeling (Figure 2). Interestingly, genes encoding
for MMP9, 1 and 13 and PREP, involved in proteins/collagen
degradation are overexpressed in many different tumor types
(26) (Table 1). Additional crucial enzymes required for collagen
degradation and uptake may also contribute to the regeneration
of this cycle, including prolidases (100), which hydrolyzes di- or
tri-peptides with C-terminal Proline or hydroxyproline residues,
and other collagenases.

In this context, interesting findings have been recently
reported in pancreatic ductal adenocarcinoma (PDAC), which
is characterized by cells organized in gland-like structures
embedded in a dense collagen meshwork, which limits the
delivery of nutrients and oxygen (101). Under nutrients
starvation, PDAC cells can survive by using collagen-derived
Proline as a source of energy. In fact, PDAC cells express Proline
metabolic enzymes and are able to uptake collagen both through
macropinocytosis (102) and uPARAP/Endo180 collagen receptor
(101). Tracer experiments showed that upon collagen uptake, free
Proline primarily contributes to biomass through incorporation
into proteins, while only at small ratio in non-protein metabolic
compartments. Genetic and pharmacological inhibition of
PRODH, whose expression is increased in PDAC, significantly
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FIGURE 2 | Impact of Proline/Epigenetic axis on tumor progression. Extracellular Proline released from collagen degradation influences cell identity/behavior at

different levels. Proline may serve as (i) energy source (ATP) through degradation in the mitochondria and (ii) building block for collagens synthesis. Nascent collagens

are hydroxylated in the ER through the activity of Prolyl-4-hydroxylases (P4h) and secreted in the ECM. A sudden increase of collagen synthesis/hydroxylation

provokes a compartmentalized (ER->nucleus) metabolic perturbation of the substrates/cofactors (VitC and/or α-KG) of DNA/Histone hydroxylases (Tet, JMJ).

reduces PDAC cells clonogenicity in vitro, which is rescued
by exogenous Proline, and strongly reduces pancreatic tumor
growth in vivo (101). The authors suggest that collagen-derived
Proline may promote cancer cell survival and proliferation
through TCA cycle metabolism and cellular respiration; however,
it would be interesting to investigate the fate of collagen-derived
free Proline to protein synthesis as an additional/alternative
mechanism of PDAC cells survival and invasiveness.

POTENTIAL THERAPEUTIC STRATEGIES
TARGETING PROLINE METABOLISM IN
CANCER

The critical role of Proline on cancer cell identity and
behavior prompted researchers to develop novel therapeutic anti-
cancer strategies targeting different levels of Proline metabolism
(Figure 3). Among them, halofuginone (HF) holds great
promise. HF is a derivative of febrifugine, a fundamental herb
of traditional Chinese medicine, used to treat malaria for almost
2,000 years. HF binds the glutamyl-prolyl-tRNA synthetase

(EPRS) and inhibits prolyl-tRNA formation (tRNA loading) (85,
86). This inhibition leads to the activation of the aminoacid stress
response (AAR) pathway, which senses amino acid restriction
through the accumulation of uncharged tRNAs, phosphorylation
of Gcn2-eIF2α, and ATF4 expression (80). Increased levels of
ATF4 activates the transcription of a set of genes that are crucial
for the adaptation of cells to a stress environment (103). HF-
dependent inhibition is reversed by exogenous supplementation
of Proline.

HF has gained increasing interest for its potential application
in the treatment of fibrosis and cancer since many studies have
demonstrated its efficacy in inhibiting growth and progression
of many types of tumors, mainly reducing collagen, and stroma
accumulation, metalloproteinases, angiogenesis, and immune
responses. In glioma tumors HF reduces collagen accumulation
(104), in leiomyoma HF reduces cell proliferation in vitro (105)
and in vivo (106); in bladder carcinoma HF inhibits angiogenesis,
tumor stroma and growth (107). HF disrupts the stromal barriers
also in PDAC, and modulates the immune response, leading
to reduced tumor volume (108), and reduced subcutaneous
pancreatic tumor development in a xenograft model (109). HF
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FIGURE 3 | Putative therapeutic targets of Proline metabolism. Halofuginone (HF) binds to the glutamyl-prolyl-tRNA synthetase (PRS) and inhibits the prolyl-tRNA

loading, reducing Proline-rich protein synthesis, such as collagens. Inhibitors of P4H enzymes include collagen mimetics, metal chelators, and α-KG mimetic.

Macrolides, such as Spiramycin, inhibit the translation of mRNAs coding for Proline- rich stretches/motifs by blocking the elongation (eIF5A) of Proline- rich

polypeptides. Budesonide reduces collagen synthesis and maturation, most likely acting as a GR antagonist. Dehydroproline (DHP) and L-tetrahydro-2-furoic acid

(L-THFA) is a PRODH/POX inhibitor.

efficacy has been reported on prostate cancer growth in vivo
(110) and on pheochromocytoma with vasculature reduction
(111). Independent studies indicate that HF inhibits breast cancer
growth by different mechanisms, including the induction of
ROS production, which in turn activate apoptosis, and the
inhibition of cell migration by down regulation of the matrix
metalloproteinase 9 (MMP9) (112), or through activation of
autophagy (113). HF reduces breast and prostate bonemetastasis,
by inhibiting TGFβ- and BMP- signaling (114). Recently, HF has
been found to block breast cancer cells growth by controlling
the exosome production of miRNAs involved in cell cycle and
growth control (115). HF blocks colorectal cancer growth in vitro
and in vivo through inhibition of AKT/mTORC1 pathway (116)
and induction of autophagy under nutrient-rich conditions, and
inhibition of autophagy under nutrient- poor conditions (117).
HF suppresses HCC growth and progression (118, 119), lung
metastasis by decreasing MMP activity (120). HF suppresses
acute promyelocytic leukemia cell proliferation and promotes
apoptosis (121), resulting in hematological remission in vivo

(122); and inhibits multiple myeloma cell proliferation (123).
HF augmented the sensitivity of different cancer cell lines to
radiotherapy (124) and enhances the chemo-sensitivity of cancer
cells (125), HF potentiates the radiotherapy effects of Lewis lung
cancer cell in vitro and in vivo (126), reverting radiotherapy-
dependent induction of TGFβ and EMT (127). HF is effective
for the treatment of metastatic brain tumors (128), reduces
melanoma bonemetastasis, (129). Hence some pre- clinic models
(130), and phase I and II clinical trials have been developed (131),
showing the great potential of this molecule for cancer treatment.

The elongation factor P (EF-P, also known as eIF5A) is
implicated in the translation of mRNAs coding for Proline- rich
stretches/motifs (132, 133). Of note, eIF5A was associated to
development of human cancers, and considered as an oncogene
(47), and a potential therapeutic target (Table 1).

Macrolide antibiotics have been proposed as potential
therapeutic targets relevant for inhibition of Proline-rich protein
synthesis. Accordingly, it has been recently reported that
macrolides can induce ribosome stalling, blocking the elongation
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of Proline- rich polypeptides (134). Interestingly, the macrolide
Spiramycin is a potent inhibitor of Proline- induced esMT (57),
suggesting that it may exert anti metastatic activities although it
has not been yet tested in the cancer cell models.

Based on the well-known role of TGFβ in inducing collagens
gene expression, other potential therapeutic targets that must
be included in this section, as an extension of Proline
metabolism targets for cancer treatment, are TGFβ inhibitors,
which are the focus of many research projects and clinical
trials (135).

The findings that collagen hydroxylation enzymes play
a key role in cancer progression, and that their expression
positively correlates with patient mortality, encouraged
development of chemical inhibitors of P4H enzymes. These
include metal ions and chelators, mimetics of the co-substrate
α-KG, and collagen mimetic peptides. However, so far the
majority of them have shown low clinical relevance, mainly
because of high toxicity and/or low efficacy in vivo (136),
suggesting that although promising, this field still needs
further investigations.

In a very recent study, Budesonide, which is a drug
commonly used to treat asthma and reduce collagen in
pathological fibrotic conditions, has been identified as a
candidate for the treatment of metastatic cancer (57). Indeed,
Budesonide has been identified in a high-through-put phenotypic
screening of 1200 FDA-approved drugs searching for esMT
inhibitors. Budesonide not only antagonizes Proline-dependent
esMT but also impairs the acquisition of mesenchymal
and motile/invasive features in human lung and breast
cancer cell lines, reducing collagen synthesis/accumulation in
vitro. Furthermore, Budesonide impairs ECM and collagen
accumulation in an orthotopic model of human breast cancer
development in vivo and reduces metastasis formation (57).
Although the mechanism of action of Budesonide is still far
from fully elucidated, it may act as a glucocorticoid receptor
(GR) antagonist. Interestingly, asthmatic patients under long-
term treatment with Budesonide show reduced risk to develop
pancreatic ductal adenocarcinoma (137). Moreover, Budesonide
has been recently identified, using a combined connectivity
mapping and pharmacoepidemiology approach, as a potential
treatment for preventing breast cancer (138). Finally, by blocking
collagen synthesis and hydroxylation in the ER, Budesonide
increases VitC availability in the nucleus, resulting in epigenetic
remodeling, i.e., a global reduction of DNA and histone
methylation levels (57), thus showing its potential for targeting
cancer cell plasticity and identity.

Finally, PYCR1 is considered a potential therapeutic target in
HCC (27) and in BC (31) but so far, specific inhibitors of PYCR1
are not available.

CONCLUSIONS AND PERSPECTIVES

Proline is abundantly incorporated into collagen and provides
the structural strength in higher animals. Besides this well-know

function of Proline/collagen, increasing attention has been drawn
to the impact of Proline and collagen metabolism, i.e., collagen
synthesis/hydroxylation and degradation, on cell identity and
behavior (14, 57). In this context, our recent findings that
VitC-dependent collagen hydroxylation influences the epigenetic
landscape and contributes to cellular plasticity (57) open new and
important perspectives.

It has been proposed that oncogenic mutations may perturb
the function of metabolic enzymes, which may in turn act as
oncogenes. We suggest that such mutations, along with cancer
cell metabolic reprogramming, may alter the availability of
specific metabolites/cofactors required by epigenetic enzymes,
e.g., Vitamin C, and alter the epigenetic signature of cancer cells
causing, at least in part, tumor heterogeneity.

Following our proposedmodel, a functional interplay between
Proline metabolism/collagen biosynthesis and epigenetic
remodeling may generate a cycle based on the concomitant
collagen synthesis and degradation, which sustains the cycle itself
and controls cancer cell plasticity and behavior. Development of
therapeutic strategies targeting this metabolic axis may provide
novel options to target cancer cell heterogeneity.

A critical aspect is that proliferating cancer cells develop
significant metabolic heterogeneity in order to survive to
changing microenvironment (5). This heterogeneity is of
particular relevance when envisioning therapeutic strategies
and represents the main roadblock to attempts to control cell
proliferation. The combination of cocktails of drugs that target
metabolic pathways at different levels may represent a successful
strategy to ultimately eradicate metastasizing cancer cells. In this
context, several therapeutic strategies have been proposed that
target Proline metabolism at different levels, including inhibitors
at the level of prolyl-tRNA synthetase/collagen synthesis and
collagen prolyl-hydroxylation. Although these options hold great
promise, further investigations and clinical applications are
needed to validate potential efficacy.
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