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Malignant pleural mesothelioma (MPM) is a treatment recalcitrant tumor with a poor

overall survival (OS). Current approved treatment consists of first line chemotherapy

that only modestly increases OS, illustrating the desperate need for other treatment

options inMPM. Unfortunately, clinical studies that investigate the effectivity of checkpoint

inhibitor (CI) treatment failed to improve clinical outcome over current applied therapies. In

general, MPM is characterized as an immunological cold tumor with low T-cell infiltration,

which could explain the disappointing results of clinical trials investigating CI treatment

in MPM. Currently, many other therapeutic approaches, such as cellular therapies and

cancer vaccines are investigated that could induce a tumor-specific immune response

and increase of the number of tumor-infiltrating lymphocytes. In this reviewwewill discuss

these novel treatment approaches for MPM.
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INTRODUCTION

Malignant pleural mesothelioma (MPM) is a lethal cancer with limited treatment options (1–3).
Current first-line treatment, consisting of platinum/antifolate combination therapy, leads to
a median overall survival (OS) of 9–2 months (4). The addition of Bevacizumab to first-
line treatment increased OS by 2.7 months and is now the accepted standard therapy in
France (5, 6). Since then, no new treatments that could improve the outcome for MPM were
reported. Immunotherapies, aiming at the activation of the immune system by blocking inhibitory
checkpoint receptors, called checkpoint inhibitor (CI) treatment have drastically improved OS
for non-small cell lung cancer and melanoma patients (7). So far, CI treatment has been
promising for a small group of MPM patients in phase I/II trials, with response rates between
9 and 29% (8–17). However, unfortunately the DETERMINE phase IIb trial failed to show
superiority of anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) (Tremelimumab) over
placebo in a second or third-line setting for MPM (18). Moreover, in the PROMISE-meso trial,
blockade of programmed cell death protein 1 (PD1) failed to prolong progression free survival
(PFS) or OS compared to second-line chemotherapy (gemcitabine/vinerolbine) treatment (19).
Combination treatment of monoclonal antibodies (mAbs) targeting PD1 or PD1 ligand (PD-L1)
with anti-CTLA4 mAb seems to be more effective than CI monotherapy in MPM (10, 20, 21).
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The results of the ongoing Checkmate 753 phase III trial
are awaited (NCT02899299), where Nivolumab (PD1 blockade)
and Ipilimumab (CTLA-4 blockade) are combined as first
line therapy in unresectable MPM and compared to first-
line chemotherapy consisting of pemetrexed and cisplatin or
carboplatin (22). As CI treatment, especially anti-PD(L)1 mAb,
reinvigorates T-cells, the low number of tumor-infiltrating T-cells
(TILs) in MPM might explain the relatively low response rates
found in clinical trials investigating anti-PD1/PD-L1 treatment
(23). Tumors with high numbers of TILs respond better to CIs
(24). In MPM, dendritic cells (DCs) are reduced in both their
numbers and their functionality, which could explain the low
numbers of TILs (25). Induction of tumor-specific T-cells that
infiltrate tumor and kill tumor cells upon antigen recognition
by secretion of perforins, granzymes and death ligands, such as
Fas and TRAIL could improve clinical outcomes (26, 27). Cancer
vaccines and DC-therapy can induce activation and proliferation
of tumor specific T-cells. Additionally, chimeric antigen receptor
(CAR) T-cells, specific for a tumor antigen, can be used to
target specific tumor antigens directly. Recent developments in
therapies initiating a tumor directed immune response, such
as cancer vaccines, DC-therapy and CAR T-cell therapy in
a clinical setting in MPM will be discussed in this review
(Figure 1).

CANCER VACCINES

Cancer vaccines can be made of tumor lysate, single or
multiple peptides, viruses, or attenuated bacteria. The purpose
of vaccinating cancer patients is to elicit a tumor-specific type
1-polarized T-cell response, leading to clinical benefit for the
patient. Immunostimulatory adjuvants, such as granulocyte-
macrophage colony-stimulating factor (GM-CSF) and toll-
like receptor (TLR) ligands are often combined with cancer
vaccines, to attract and activate antigen presenting cells
(APC) that will take up the cancer vaccines (28). Certain
adjuvants, such as Montanide, protect the peptides in the
cancer vaccine and create a depot for slow antigen release
that attracts lymphocytes and DCs, therefore called depot
adjuvants (29). For MPM, Wilms Tumor 1 (WT-1) peptide-
based vaccine, Galinpepimut-S and CRS-207 are the most
thoroughly evaluated cancer vaccines and will be discussed in
more detail.

WT-1 CANCER VACCINES

WT-1 is a protein expressed on almost all (97%) MPM
cells with a variable distribution and intensity and serves as
an immunohistochemical marker for MPM diagnosis, making
WT-1 an appropriate target for immunotherapy (30). The
cancer vaccine, Galinpepimut-S consist of four WT-1 peptides
of different lengths that can be presented in both MHC class
I and II molecules, permitting the activation of both CD4+

and CD8+ T-cells (31). Treatment with Galinpepimut-S was
investigated in a randomized phase II study in MPM patients

with positive (> 10%) WT-1 expression. Herein, Galinpepimut-
S was administrated with adjuvants (GM-CSF and Montanide)
and compared to placebo, in which only the adjuvants were
administered. Unfortunately, the study was closed after inclusion
of 41 patients due to futility of the placebo treatment and
a non-significant increase in median OS (4, 5 months) and
median PFS (2, 8 months) for Galinpepimut-S treated patients,
as compared to the placebo arm (31). In July 2019, a clinical trial
which investigates the combined treatment of Galinpepimut-
S with nivolumab in patients with WT-1 expressing MPM
(NCT04040231) has started.

CRS-207

CRS-207 is a live-attenuated listeria-encoding humanmesothelin
(MSLN) vaccine. APCs will phagocytose the Listeria bacteria
in CRS-207, leading to release of MSLN, that is subsequently
presented by APCs to T-cells in the lymph nodes, thereby
inducing an MSLN-specific immune response. MSLN is
expressed in 90% of epithelioid MPM patients, which comprises
up to 80% of all MPM patients (32). MSLN is not expressed
in most sarcomatoid MPMs and only minimally in biphasic
MPM. MSLN has low expression on non-malignant cells,
making it an attractive target for immunotherapy (32, 33).
In a phase Ib trial, treatment-naïve MPM patients received 2
CRS-207 doses, followed by 6 cycles of pemetrexed/cisplatin
and CRS-207 booster infusions (34). The disease control
rate was 89%, with 1 complete response (CR) and 19 partial
responses (PR) in 35 evaluable patients. Unfortunate, the
median OS was 14.7 months, which is comparable to OS
observed after standard chemotherapy treatment (34, 35).
Additional trials were initiated with CRS-207 in combination
with pembrolizumab (Keytruda), chemotherapy and GM-
CSF transfected tumor cell vaccine (GVAX) (NCT 01675765,
NCT03175172, NCT02243371), and results are awaited (36).
Unfortunately, the Keytruda trial has been halted because of
insufficient clinical activity (NCT03175172).

In conclusion, despite careful selection of adjuvants
and antigenic targets of cancer vaccines applied in MPM,
therapeutic success or induction of a clinically detectable
cytolytic immune response has not yet been shown (37).
Combining cancer vaccines specifically with agents that target
the immunosuppressive tumor microenvironment (TME) might
improve clinical outcome. Clinical trials investigating these
combination therapies are currently investigated and results
are awaited.

DC-THERAPY

DCs are low in numbers and are impaired in functionality
in MPM patients (25). Moreover, the TME in MPM causes
immunosuppression through secretion of immunosuppressive
cytokines and expression of inhibitory molecules by tumor cells
and immune cells again affecting DC mediated T-cell activation
(38–41). To circumvent the immunosuppressive TME, DCs can
be activated and loaded with selected tumor associated antigens
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FIGURE 1 | Overview of current clinically tested cancer vaccines and cellular therapies for MPM An overview of the working mechanism of CRS-207 (A1),

Galinpepimut-s (A2), allogeneic tumor lysate loaded moDC therapy (B1), WT1 moDC therapy (B2), MSLN-specific CD28 co-stimulated CAR T-cell therapy (C1A),

MSLN-specific 4-1BB co-stimulated CAR T-cell therapy (C1B) and FAP CAR T-cell therapy (C2). The potential enhancements of MSLN-specific CAR T-cell therapy are

displayed in C3. IV, intravenous; ID, intradermal; IP, intrapleural; MSLN, mesothelin; moDC, monocyte-derived dendritic cell; MHC, major histocompatibility complex;

TCR, T-cell receptor; WT1, Wilms Tumor 1 protein; TAA, tumor-associated antigen; ITAM, Immunoreceptor tyrosine-based activation motif; DNPD-1R, dominant

negative PD1 receptor; CCR2, CC chemokine receptor 2; FAP, fibroblast activation protein.
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(TAAs) or whole tumor lysate in vitro. DC-therapy has been
developed in three generations. In first generation DC-therapy,
monocytes isolated from peripheral blood were cultured with
GM-CSF and interleukin (IL) 4, leading to the differentiation
into immature monocyte-derived DCs (moDC) (42). These
immature moDCs were loaded with TAAs or tumor lysate and
reinjected without any further activating stimulation into the
patient. Second-generation DC-therapy, additionally stimulated
the generated moDCs in vitro with a maturation/activation
cocktail, consisting of cytokines and immune stimulants, such
as poly IC, TLR ligands and prostaglandin E2 (40–42). Second
generation DC-therapy is currently used in various clinical
trials. Response rates for second-generation DC-therapy in
melanoma, prostate cancer, malignant glioma and renal cell
carcinoma vary from 8 to 15% with an increase in OS of
∼20% (42, 43). In contrary, an overall response rate of 7.1%
was found in studies investigating first-generation DC-therapy
in various malignancies, but mainly melanoma (44). Next-
generation DC-therapy, aims at using naturally occurring DCs
(nDC) that are purified directly from peripheral blood, in
vitro loaded TAAs or tumor lysate and activated, and used
for DC-therapy. The benefits of using nDCs are a shortened
culture-time and lower manufacturing costs. It is also thought
that DC-therapy containing nDCs will improve response rates,
however this still has to be confirmed in clinical trials (42,
45, 46). DCs can be classically loaded with proteins during
culture but TAAs can also be presented via RNA transfection
methods or cancer cell-DC fusion (45, 47). The type of
antigen source can vary from specific TAAs to complete tumor
lysates. Analysis of 173 clinical trials in a wide variety of
tumors showed that active immunotherapy using tumor-lysate
(ORR 8.1%) was clinically more effective than peptide-based
therapies (ORR 3.6%) (48), indicating that vaccinating with
a broad range of tumor-associated proteins prohibits escape
by the tumor and supports the hypothesis of immunoediting
(Box 1).

BOX 1 | Immunoediting.

Immunoediting is a term that describes the balance between the prevention

of tumor establishment through surveillance by the immune system and

tumor cell growth when tumor cells escape from immunosurveillance

(49–51).

Immunoediting by malignant cells contains three phases: elimination,

equilibrium, and escape:

Elimination: cancer cells are eliminated by the innate and adaptive immune

system.

Equilibrium: mutations and adaptations occur in certain cancer cells,

leading to escape from the immune system of these cancer cells. During this

phase, these mutated/adapted cancer cells will decrease antigen expression

and become resistant to the immune system, whereas non-mutated cancer

cells will be eliminated by the immune system, thereby increasing the

frequency of mutated/adapted cancer cells. This process can take several

years (52).

Escape: mutated/adapted cancer cells will proliferate and cause tumor

outgrowth that can no longer be hampered or controlled by the immune

system (53).

DC-THERAPY IN MPM

Two types of second-generation DC-therapy have been tested in
clinical trials in MPM patients. Autologous moDCs transfected
withmessenger RNA (mRNA) encoding forWT1 and autologous
moDCs loaded with autologous/allogeneic tumor lysate.

WT1-Targeted DC-Therapy
MoDCs transfected with WT1 encoding mRNA have resulted
in promising clinical responses in MPM patients, but also in
other malignancies. Prolonged stabilization of disease was noted
in MPM patients, with OS (from start of chemotherapy) of 35.7
months (54, 55). This study was followed up by a phase I/II
trial (MESODEC) in which treatment-naïve patients received
WT1-targeting DC-therapy during chemotherapy, followed by
pleurectomy/decortication (P/D) in the case of a resectable tumor
(NCT02649829). The primary objective of this trial (recruiting
since 2017 and enrolling 20 patients) is to assess the feasibility of
WT1-targeting DC-therapy in combination with chemotherapy.

Tumor Lysate Loaded DC-Therapy
Two clinical trials that applied DC-therapy that consists of
autologous moDCs loaded with autologous tumor lysate have
been reported in MPM (56, 57). In the first Phase I clinical
trial, ten MPM patients were treated with at least 3 biweekly
DC vaccinations. Tumor lysate was prepared from single cell
suspensions of tumor cell lines generated from tumor tissue
and/or pleural effusions. Three patients had a PR, one had
stable disease (SD) and six had progressive disease (PD). Median
OS from time of diagnosis was 19 months (57). To improve
the efficacy of DC-therapy in a sequential trial, ten MPM
patients were treated with a combination of moDCs loaded
with autologous tumor lysate and low-dose cyclophosphamide
treatment, a chemotherapy that at low concentration specifically
targets regulatory T-cells (Tregs) that favor anti-tumor immune
responses (40, 58–60). At first radiological evaluation after
treatment, one patient had a CR, four had SD and two had
PD. Radiological response assessment was impossible in three
patients as they had received additional P/D (56). Grade III/IV
toxicities did not occur. Moreover, cyclophosphamide treatment
indeed selectively depleted Tregs and the frequency of naïve
Tregs prior to treatment was positively correlated toOS (61). Two
patients were still alive 6 years after diagnosis.

Unfortunately, using autologous tumor material as a source
for tumor lysate is not feasible for a large number of patients
in a phase II trial, because of the varying quality and/or lack of
tumor material. Loading moDCs with allogeneic tumor lysate,
serving as an “of-the-shelf ” source for antigen-loading material,
was compared to autologous tumor lysate-loadedmoDC-therapy
in mice, and induced similar protection against tumor outgrowth
(62). To create allogeneic tumor lysate for clinical trials, cell
lines were generated of pleural fluid of 5 MPM patients with
different histological subtypes and varying antigen expression.
An allogeneic tumor lysate was derived from these cell lines that
contained a broad spectrum of TAAs. Two out of nine MPM
patients treated with allogeneic tumor lysate-loaded moDCs
(MesoPher) in a phase I dose-escalation trial had a PR and two
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patients are still alive 4 years after start of treatment. Grade
III/IV toxicities were not reported (63). This phase I clinical
study is followed up by an international, randomized, open-
label, multicenter phase III trial (DENIM-trial), that will evaluate
the efficacy of autologous moDCs loaded with allogeneic tumor
lysate in MPM patients. Recruitment started in June 2018 and
the first results are expected in 2021 (64). An overview of finished
and ongoing clinical trials investigating DC-therapy in MPM is
provided in Table 1.

Combination Treatment DC-Therapy
Multiple reviews have discussed strategies to combine DC-
therapy with other therapeutic agents, such as low-dose
chemotherapy to deplete specific immune cell subsets,
radiotherapy to induce an abscopal effect or therapies that
target specific immune cell subtypes or enzymes (40, 41). CI-
treatment is thought to not only complement DC-therapy but
work synergistically with DC-therapy. Mice treated with DC-
therapy had more tumor-specific CD8+ TILs than mice treated
with placebo (65). Moreover, most of these TILs expressed high
levels of PD1 on the cell surface, indicating their susceptibility
for reinvigoration by CI treatment (65). The increase of TILs
induced by DC-therapy may improve the current response
rates of CI-treatment in MPM. Moreover, TILs induced by
DC-therapy, that are hampered by inhibitory signaling may be
reinvigorated. Based on this rationale, nine MPM patients who
received autologous DC therapy in our center were sequentially
treated with CIs. Three patients had a PR, five had SD and the
median OS was 17.5 months from start of CI treatment (66).
This data suggests a synergistic effect between DC-therapy and
CIs in MPM that warrants further research.

CAR T-CELL THERAPY

The hypothesis for adoptive T-cell therapy is to introduce tumor-
specific T-cells that directly target the tumor cells. The first
step toward CAR T-cell therapy was the use of autologous
TILs that were expanded in vitro and reinjected after one
dose of cyclophosphamide and in combination with IL-2 to
treat metastatic melanoma. Objective regression was observed
in 11 out of 20 patients with a mean response duration of 5.6
months (2–13 months) (67). Unfortunately, the reproducibility
and quality of these TILs could not be guaranteed due to
interpatient differences of TILs (68). To avoid the need of
TILs, T-cells can be genetically modified to express a T-cell
receptor (TCR) that targets tumor-specific antigens. Although
promising radiological responses were observed using these
transgenic TCR T-cells, clinical use was still restricted to (Human
Leukocyte Antigen A2) HLA-A2 patients (69). In an effort to
enhance the efficacy of transgenic TCR T-cells and make target-
antigen recognition independent of (Major Histocompatibility
Complex) MHC, a CAR instead of a TCR was developed
(70). A CAR classically consists of an extracellular part with
an antigen-recognition domain, a transmembrane domain and
an intracellular domain that contains three immune receptor
tyrosine-based activation motifs (ITAMs). CAR constructs
are transfected into (autologous) T-cells via mRNA or viral T
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transduction (71). Historically, five generations of CAR T-cell
therapy are distinguished. The most crucial adjustments that
separate different generations concern the characteristics of the
intracellular domain, which can contain, apart from the three
ITAMs, one or two co-stimulatory molecules, such as CD28 or
4-1BB, and an inducible expression cassette for a protein, as IL-
12 or a cytokine receptor, such as IL-2R (72, 73). Currently, two
second generation CAR T-cell therapies targeting CD19 have
been approved for the treatment of hematological malignancies
(74). Although the clinical outcomes for CAR T-cell therapy in
treatment-resistant hematological malignancies are impressive
with complete response rates varying from 40 to 60%, these
responses are not found for solid tumors. Also, CAR T-cell
therapy induces severe treatment-related toxicities varying from
49 to 73% (75–77). Cytokine release syndrome (CRS) and
neurological events are the most frequent severe treatment-
related adverse events. CRS results from an immense release
of cytokines from immunotherapy-targeted immune cells and
cancer cells. The severity of CRS is dependent on the dosage
of CAR T-cells, amount of tumor burden and level of IL-
6. Blocking the IL-6 receptor with tocilizumab or neutralizing
IL-6 through binding with a mAb siltuximab reduces CRS
severity (74). The mechanism driving neurotoxicity, CAR T-
cell Related Encephalopathy Syndrome (CRES), is still unknown.
Locoregional admission of CAR T-cell therapy could reduce
toxicity, however for hematological malignancies this is not
an option.

Challenges for CAR T-Cell Therapy in Solid
Tumors
CAR T-cell therapy encounters many challenges in solid tumors,
such as migration of the CAR T-cells to the tumor, infiltration
into the tumor, survival within the immunosuppressive TME
as well as the lack of specific targetable tumor-specific antigens
(78, 79). In B-cell driven malignancies, CD19 is a perfect target
because it is expressed on all tumor cells (80, 81). Finding
the perfect tumor-specific antigen to target in solid tumors is
challenging due to heterogeneous expression of these tumor
antigens. The lack of specific tumor antigens can also lead to
severe “on target, off tumor” toxicity, caused by destruction
of non-malignant cells expressing the antigen CAR T-cells are
directed against (79). To migrate to and infiltrate the TME,
CAR T-cells need to be equipped with appropriate tumor
homing chemokine receptors and tumor endothelium degrading
enzymes. Additionally, chemokines can be injected into the
tumor that attract CAR T-cells. Another possibility to circumvent
migration difficulties and even avoid development of systemic
toxicities is locoregional administration of CAR T-cell therapy,
but this is technically not achievable for all solid tumors. The
stromal cells that are associated with nearly all epithelioid solid
tumors form a physical barrier and severely hamper immune
cell infiltration (79). A promising approach to attack the stromal
component of the TME, is the development of CAR T-cells
targeting (fibroblast activation protein) FAP which is expressed
on various stromal cell types (82). Targeting the stromal cells by
the FAP-specific CAR T-cells will allow and lead to infiltration

of the tumor by TILs. Furthermore, as the target is expressed
on non-malignant cells and not the malignant cells, this also
reduces the risk of immunoediting and tumor escape. The
immunosuppressive environment generated by the TME also
affects the cytolytic activity of CAR T-cells and leads to CAR
T-cell exhaustion. Secretion of inflammatory cytokines by CAR
T-cells could counteract this immunosuppressive environment.
Another possibility to directly circumvent exhaustion is to
combine CAR T-cell therapy with CI treatment. Recently, CAR
T-cells have been genetically modified with silenced PD-(L)1
coinhibitory signaling by the expression of a dominant negative
PD1 receptor (DNPD-1R) that lacks an intracellular signaling
domain. Although many challenges remain in the treatment of
solid tumors with CART-cell therapy, current understanding and
recent developments show great potential. Many of these new
approaches are currently investigated in MPM.

Systemic and Locoregional CAR-T Cell
Therapy in MPM
The choice of targetable tumor-antigen is crucial in the
development of CAR-T cell therapy for MPM. Several tumor-
antigen targets, such as MSLN, WT-1, FAP and the antigens of
the ErbB family are evaluated for their applicability for CAR
T-cell therapy in MPM. CAR T-cells targeting MSLN, FAP or
WT-1 are already investigated in clinical trials, summarized
in Table 2. Second generation CD28 FAP CAR T-cells have
been evaluated in a phase I trial. Patients with metastatic
MPM treated with these CAR T-cells developed no treatment
related toxicities. Radiological responses were not reported, but
2 out of 3 patients were still alive with a median follow up of
18 months. Recently, Haas et al. showed that treatment with
second generation, 4-1BB MSLN CAR T-cells as monotherapy
or in combination with low-dose cyclophosphamide was well-
tolerated in patients with MPM, ovarian carcinoma and
pancreatic ductal carcinoma (84). One case of dose limiting
toxicity (grade 4 sepsis) was reported without the use of
cyclophosphamide. No radiological responses were seen and 11
out of 15 patients had SD as best overall response. Moreover,
the persistence of CAR T-cells in the peripheral blood was
<28 days after injection. Apart from the known hurdles for
CAR T-cell therapy in solid tumors, a potential reason for the
minimal persistence and clinical efficacy might be a consequence
of the murine-derived CAR that was used. A new phase 1
trial has started evaluating a fully human CAR T-cell (Table 1,
NCT03054298). CAR T-cells targeting the ErbB family antigens,
T1E28z CAR T-cells showed promising results both in vitro
and in mouse models, which needs to be validated in a clinical
studies (86–88).

Currently methods to improve migration to the tumor site
are heavily studied in mouse models. Herein, MSLN CAR
T-cells that expressed a tumor homing chemokine receptor
CCR2 showed improved tumor infiltration (89). Moreover,
in an orthotopic mouse model of MPM, migration toward
the tumor was circumvented by intra-pleural administration
of second generation, CD28-costimulated MSLN CAR T-
cells and led to a larger reduction of pleural an metastatic
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TABLE 2 | Ongoing and completed trials for T-cell therapy in mesothelioma.

NCT nr. Study type Antigen Stimulatory

signal

Additional therapy Current

status

Delivery

method

Cancer type n Outcome References

NCT01722149 Phase 1 FAP CD28 Neoadjuvant

chemotherapy

Completed,

no results

posted

i.p. MPM 3* Pos: tAE: none (82)

NCT01355965 Phase 1 MSLN 4-1BB ns Completed,

no results

posted

i.v. MPM, pancreatic

cancer

18* Pos:

(only reported outcomes of 2 patients):

tAE: none

(83)

NCT01583686 Phase 1/2 MSLN ns Fludarabine,

cyclophosphamide,

aldesleukin

Terminated i.v. MSLN expressing

tumors

15* Terminated due to slow accrual (14/15

patients had a BOR of PD)

-

NCT02159716 Phase 1 MSLN 4-1BB Cyclophosphamide Completed,

no results

posted

i.v. MPM, pancreatic

cancer and

ovarian cancer

15* Pos:

tAE: 1 grade IV tox

11SD, 4PD

(84)

NCT02580747 Phase 1 MSLN ns ns Unknown ns MSLN expressing

tumors

20 -

NCT02930993 Phase 1 MSLN ns Cyclophosphamide Unknown i.v. MSLN expressing

tumors

20 -

NCT03638206 Phase 1 MSLN ns Fludarabine,

cyclophosphamide

Recruiting ns MPM ns -

NCT03054298 Phase 1 MSLN ns cyclophosphamide Recruiting i.v./i.p. MSLN expressing

tumors

30 -

NCT02408016 Phase 1 WT-1 ns Cyclophosphamide,

surgery

IL-2

Active, not

recruiting

i.v. MPM/NSCLC 20 -

NCT03615313 Phase 1/2 MSLN PD-1 excreting

CAR T cells

Fludarabine,

cyclophosphamide

Recruiting i.v. MSLN expressing

tumors

50 -

NCT02414269 Phase 1/2 MSLN CD28 Cyclophosphamide,

pembrolizumab

Recruiting i.p. MPM 179

21***

Pos:

tAE: no grade III/IV tox

2 CR, 5 PR, 4 SD, 10 PD

(85)

NCT03907852 Phase 1/2 MSLN TRuC (novel T cell

engenering

platform)

Cyclophosphamide,

pembrolizumab,

fudarabine

Recruiting ns MSLN expressing

tumors

70 -

NCT03925893 Phase 2 - TIL Fludarabine,

cyclophosphamide,

aldesleukin

Recruiting i.v. Solid tumors 10 -

NCT02414945 Phase 1/2 - TIL Fludarabine,

cyclophosphmide, IL-2

Recruiting i.v. MPM 10 -

FAP, fibroblast activation protein; MSLN, mesothelin; WT-1, Wilms Tumor 1; MPM, malignant pleural mesothelioma; n, expected number of patients; *actual enrollment; ***21 patients were enrolled in the phase I trial which was reported

at the AACR 2019; TRuC, T Cell Receptor Fusion Constructs; ns, not specified; TILs, tumor infiltrating lymphocytes; tAE, treatment related adverse event; i.p., intrapleural; i.v., intravenous; pos, positive; BOR, best overall response; PD,

progressive disease; tox, toxicity; SD, stable disease; CR, complete response; PR, partial response.
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tumor load as compared to intravenous administration (90).
Moreover, the intra-pleural treatment dose was 30-fold lower
than the intravenous administered dose and elicited no grade
III/IV toxicities.

In a clinical setting, no’on-target, off-tumor’ effects were seen
when 21 patients with malignant pleural disease were treated
with CD28-costimulated MSLN CAR-T cells intrapleurally (85,
90, 91). In this study 19 out of 21 patients had MPM, of whom
13 were subsequently treated with pembrolizumab (anti-PD1). In
total two patients had a CR, five had PR and four had SD as best
overall response (85). Just as for DC therapy, Combining CAR T-
cell therapy with anti-PD1 treatment showed promising clinical
results. In a MPM mouse model, combined treatment of anti-
PD1 mAb with CAR T-cell therapy improved treatment efficacy.
CAR T-cell exhaustion can also be prevented by genetically
modifying the CAR T-cells to express a dominant negative PD1
receptor (DNPD-1R) that lacks an intracellular signaling domain,
avoiding the need for CI treatment and their related toxicities
(92). A trial with CAR T-cells with a DNPD1R is expected to start
in 2020 (93).

CONCLUSIONS

MPM remains a treatment-recalcitrant tumor with few registered
treatment options. CI treatment failed to improve clinical
outcome which might correlate with the low number of

TILs in MPM. Cancer vaccines, DC-therapy and CAR T-cell
therapy all induce a tumor directed immune response and
increase the number of tumor-specific T-cells. Both cellular
therapies and cancer vaccines face many challenges such as,
migration of therapy-induced T-cells to the tumor, infiltration
into the tumor, survival within the immunosuppressive TME and
finding an optimal targeting approach. Improvement of cancer
vaccines and cellular therapies and multimodal approaches
that circumvent and overcome these difficulties should be
investigated thoroughly. As both cancer vaccines and cellular
therapies aim to induce infiltration of tumor-specific T cells
into the TME, CI treatment serves as an ideal therapeutic
option to block inhibitory signaling and reinvigorate TILs
leading to enhancement of both treatments. In conclusion,
additional research is needed to investigate and compare
effectivity of cancer vaccines and cellular therapies for a cold
tumor like MPM. Evaluating and influencing characteristics of
the TME in MPM that withhold T-cell infiltration or impair

cytotoxic T-cell function, is warranted to create a holistic
treatment approach.
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