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Alterations in extracellular matrix composition and organization are known to promote

tumor growth and metastatic progression in breast cancer through interactions with

tumor cells as well as stromal cell populations. Macrophages display a spectrum of

behaviors from tumor-suppressive to tumor-promoting, and their function is spatially

and temporally dependent upon integrated signals from the tumor microenvironment

including, but not limited to, cytokines, metabolites, and hypoxia. Through years of

investigation, the specific biochemical cues that recruit and activate tumor-promoting

macrophage functions within the tumor microenvironment are becoming clear. In

contrast, the impact of biomechanical stimuli on macrophage activation has been

largely underappreciated, however there is a growing body of evidence that physical

cues from the extracellular matrix can influence macrophage migration and behavior.

While the complex, heterogeneous nature of the extracellular matrix and the transient

nature of macrophage activation make studying macrophages in their native tumor

microenvironment challenging, this review highlights the importance of investigating how

the extracellular matrix directly and indirectly impacts tumor-associated macrophage

activation. Additionally, recent advances in investigating macrophages in the tumor

microenvironment and future directions regarding mechano-immunomodulation in

cancer will also be discussed.

Keywords: macrophage activation, breast cancer, extracellular matrix, tumor microenvironment, integrins,

collagen, mechanosensing

INTRODUCTION

Macrophages are an innate immune cell type found in all tissues of the body with multiple
functions. Tissue resident pools of macrophages arise from embryonic tissues during development,
and are critical for normal tissue morphogenesis (1). During homeostasis, tissue macrophages
are maintained primarily through local proliferation. In chronic inflammatory processes such
as cancer, hematopoietic derived monocytes circulate through the blood and infiltrate tissues
where they terminally differentiate into macrophages to, in part, replenish resident pools as
well as increase macrophage levels for the remediation of infection or structural damage (2).
Macrophages display a spectrum of opposing yet complementary behaviors depending on the
signals they receive from the local microenvironment (3). Traditionally, macrophage activation
has been characterized using a dichotomous spectrum, with the two extremes being “classically
activated” or pro-inflammatory macrophages and “alternatively activated” or pro-remodeling,
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immunosuppressive macrophages. Classically activated
macrophages (termed M1) phagocytize microbes and secrete
cytokines such as interleukin 6 (IL-6), TNF-α, and IL-1β, as well
as nitric oxide (NO) and reactive oxygen species during host
defense in response to stimulation by interferon-γ (IFN-γ) and
toll-like receptor ligands, including bacterial lipopolysaccharide
(LPS). Alternatively activated macrophages (termed M2) are
stimulated primarily by the Th2 cytokines IL-4 and IL-13
and facilitate extracellular matrix (ECM) remodeling, blood
vessel formation, and dampen immune activation by secreting
cytokines such as IL-10 and TGF-β (4, 5). In recent years it has
become apparent that the dichotomous M1/M2 model is an
oversimplification of the behavioral spectrum of macrophages,
with many unique transcriptional profiles being identified in
response to differing activation signals (6). As such, it is now
recommended to denote macrophage states by the activating
stimulus (e.g., MLPS+IFNγ or MIL4+IL13) (7). Macrophage
activation states have been characterized extensively in murine
and in vitro models. However, the exact genetic profiles and
functional outputs, such as NO production (8, 9), for example,
differ from human macrophage states and the relevance of
murine studies to human macrophage biology is still under
debate. Nonetheless, both major macrophage phenotypes
are required for maintaining tissue homeostasis, but each,
respectively, can play a role in the pathogenesis of diseases
including atherosclerosis and cancer (10).

MACROPHAGES AND THE
EXTRACELLULAR MATRIX IN CANCER

In cancer, macrophages infiltrate the tumor microenvironment
(TME) in response to tumor-secreted chemotactic signals
and exhibit a tumor-supportive phenotype similar to the M2
phenotype. High macrophage infiltration has been associated
with a poor prognosis and increased rates of metastasis in
several cancer types, as tumor-associated macrophages (TAMs)
can facilitate blood vessel formation to support expanding tumor
growth and aid tumor cell intravasation into vasculature (5, 11–
13). Much work has been done to characterize soluble factors
present in the TME that recruit and influence macrophage
behavior (14), however less is known about how the mechanical
properties of tumor ECM impact macrophage recruitment,
activation, and cytokine secretion.

Many cancers, including breast cancer, exhibit aberrant
deposition, and organization of extracellular matrix proteins
surrounding a tumor (15–18). The ECM is comprised of several
fibrous and non-fibrous proteins including collagens, laminins,
fibronectin, and others that are deposited and organized into a
stromal meshwork that supports cellular growth and migration.
Indeed, dense breast tissue is a strong and prevalent risk
factor for the development of invasive breast cancer and is
associated with excess collagen deposition and tissue stiffness
(19–23). Recent studies demonstrate that even in healthy
patients, mammographically dense tissue increases pro-tumor
inflammation and overall immune infiltration, including CD68+
macrophages and CD20+ B lymphocytes surrounding the

vasculature, whichmay be part of the underly mechanism driving
this risk of developing breast cancer (24). In breast cancer
patients, the reorganization of collagen that accompanies tumor
progression results in aligned fiber bundles at the tumor-stromal
boundary and, importantly, this signature of collagen predicts
disease outcome (18, 25). Along these lines, in invasive ductal
carcinoma biopsy tissue, the association of anti-inflammatory
CD163+ macrophages and aligned collagen fibers is predictive
of poor patient outcome (26). Macrophages have been shown to
play a role in matrix organization through the secretion of matrix
metalloproteinases to degrade and reorganize the matrix as well
as aid in tumor cell migration (27). Moreover, tumor associated
macrophages have been shown to facilitate the deposition of
aligned collagen fibers during tumor development (28, 29).

As monocytes circulate toward tumor signals they encounter
soluble plasma matrix proteins, such as fibronectin and
fibrinogen, known to be upregulated in breast cancer patients
and associated with poor prognosis (30, 31). The binding
of these ECM proteins to adhesion receptors on the surface
of macrophages promote inflammatory and tumor-promoting
macrophage activation (32–34) (Figure 1A). Within tumor
stroma, collagen along with fibronectin and laminin have been
shown to promote tumor cell proliferation, angiogenesis, and
dissemination (35, 36). Alterations in ECM organization and
composition in the tumor microenvironment result in increased
matrix stiffness, primarily localized to the invasive front of breast
tumors. These stiff regions are enriched in aligned collagen fibers,
tumor-activated macrophages (CD163+) and the activated form
of β1-integrin (23). Similarly, accelerated tumor progression
was accompanied by an overall increase in macrophages and
tumor cytokines, including CCL2, in a collagen-dense mammary
tumor model compared to controls (37, 38). Moreover, CCL2
recruits Tie2 expressingmacrophages to facilitate early tumor cell
dissemination (39). This process involves a mechanism by which
macrophages lead tumor cells through reciprocal chemokine
signaling along collagen coated substrates and toward vascular
endothelium in vitro. Importantly, the same mechanism of
macrophage-tumor cell migration has been observed in vivo,
where macrophage-tumor cell trafficking can be visualized along
collagen fibers (40, 41). Together, these studies suggest that
matrix stiffness increases CCL2 levels, which in turn recruits
specificmacrophage populations that interact with collagen fibers
and facilitate tumor cell dissemination. Thus, it is becoming clear
that macrophages are sensitive to changes in the ECM and their
mechanical environment, however the causal link between ECM
biophysical properties and the functional activation of TAMs
in vivo, in animal models as well as in humans, is still unclear.

MECHANICAL REGULATION OF
MACROPHAGE POLARIZATION

Growing appreciation for biophysical cues from the extracellular
matrix to drive cellular phenotypes has led to a large body of work
demonstrating that ECM topography, composition, stiffness, and
other mechanical loading modalities are capable of modulating
macrophage function in vitro. The field of macrophage
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FIGURE 1 | Schematic of biophysical cues from the ECM to activate integrin signaling on macrophages in the TME. (A) Inset depicts integrins on the surface of

monocytes within the lumen of a blood vessel. Integrin engagement activates monocytes in circulation and facilities transendothelial migration into the TME. (B)

Macrophage localized in a region of increasing matrix stiffness. Matrix stiffness results in integrin clustering and focal adhesion signaling. Downstream of integrins there

is an increase in the PI3K/Akt pathway to activate NF-kB transcriptional activity as well as actin/myosin generated cellular contractility leading to directional migration.

Further investigation is required to determine whether integrin signaling regulates other markers of macrophage activation.

mechanobiology has largely stemmed from the biomaterials
and implant fields. These fields have found that changing
surface topography by increasing surface roughness generally
results in increased macrophage adhesion and alterations in
cytokine secretion, but the mechanisms by which roughness
impacts macrophage responses depends on the method and the
macrophage cell types used for investigation (42–44). Other
studies have demonstrated that substrate stiffness, which is
associated with enhanced breast tumor progression, is another

mechanical aspect of the ECM that can influence macrophage
behavior (Figure 1). Increasing the stiffness of biologic and
engineered substrates resulted in increased migration of
unstimulated macrophages, and inflammatory macrophage
cytokine production (45, 46). However, it should be noted
that these increases are accompanied by altered integrin
expression levels as well as increased myeloid differentiation
response protein 88 (MyD88)-dependent NF-κB activation
through TLR activation, and that NF-κB has been shown
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to regulate anti-inflammatory gene expression as well (47).
Additionally, these effects are independent of collagen I and
laminin stimulation and may be the result of cytoskeletal
signaling rather than integrin engagement.

Changes in cell shape and the cytoskeleton are also frequently
observed with increasing substrate stiffness and can in themselves
alter macrophage activation. In general, M1 macrophages
are uniformly spread, with a circular morphology (45, 48).
Inflammatory activation is inhibited when bone marrow derived
macrophages (BMDMs) are confined to small pores rather than
allowed to spread freely, through a mechanism involving actin
dynamics and signaling through the MRTF-A-SRF complex
(49). However, elongation of macrophages produces a different
phenotype. Macrophages elongated on 2-D engineered nano-
substrates consistently correlates with anti-inflammatory gene
expression profiles across a variety of surfaces and cell lines at late
time points (>24 h) and when cells are allowed to spread along
wider grooves (>450 nm widths). Furthermore, macrophage
elongation increases expression of adhesion receptors, actin-
based contraction and enhances activation by IL-4/IL-13, while
preventing elongation attenuates these cytokines’ ability to
activate the macrophages (45, 48, 50, 51).

In many of these studies, it appears that mechanical stimuli
may work in conjunction with soluble factors to induce
macrophage activation. Nevertheless, mechanical stimulation
likely plays an equally important role in priming macrophages
to become activated toward a specific phenotype, however
the exact cellular mechanisms and intracellular signaling
pathways that mediate this still require further investigation.
Therapeutically, there is potential to modulate macrophage
behavior via mechanical regulation, however the application of
this knowledge in the context of cancer remains limited, as
more work is required to characterize the mechanical dynamics
present within the TME. Presently, there are few therapies
that directly target ECM stiffness or organization. Therefore,
understanding how the ECM can modulate the activity of soluble
signals on macrophages in the TME, through adhesion receptors
and the cytoskeleton for example, may provide insights into
improving existing therapies that target cytokine and growth
factor signaling.

INTEGRIN ADHESION SIGNALING IN
MACROPHAGE ACTIVATION

Overview
As previously eluded to, mechanical cues from the ECM
can be detected by macrophages through the integrin family
of heterodimeric adhesion receptors, and many integrins are
differentially expressed by classically and alternatively activated
macrophages (45). Integrins consist of an alpha and beta subunit.
Each alpha and beta combination has a unique binding affinity
for certain matrix proteins, however each integrin often has
multiple ECM ligands. Upon ligand binding, integrins transduce
signals inside of the cell via adapter proteins such as focal
adhesion kinase (FAK), talin, vinculin, and others that couple
integrins to the cytoskeleton (outside-in signaling) (52). Changes

in cytoskeletal organization have a direct impact on several
transcription factors, includingMRTF-A, YAP and NF-κB, which
facilitate changes in gene transcription that are potentially related
to macrophage function. Several integrins are expressed by
macrophages (Table 1), the most common being the β2 family
of integrins which are unique to leukocytes. Although integrin
signaling has traditionally been overlooked when investigating
macrophage activation, several studies have demonstrated that
integrin-ECM adhesion initiates signaling pathways that can in
fact influence macrophage activation. Based on these studies the
concept emerges that biophysical cues from the ECM regulate
macrophage activation, in part, through integrin engagement and
signaling (Figure 1).

Effects of Integrin Activation on
Macrophages
The αMβ2 integrin (also commonly referred to as CD11b/CD18
and Mac-1, among others) is the most promiscuous integrin of
the β2 integrin family. It is also the most studied of the integrins
expressed by macrophages, however its impact on macrophage
activation remains disputed. In Itgam−/− (αM deficient) mice,
tumor growth and immunosuppressive cytokine mRNA levels
are enhanced relative to wild type mice, whereas constitutive
activation of the αM integrin by a point mutation knock
in (C57BL/6 ITGA-M I332G) inhibits tumor growth, despite
increased IL-6 mRNA levels (83). In contrast, Han et al. argue
that inflammatory cytokines are upregulated in Itgam−/− mice
(relative to Itgam+/− control mice) when challenged with TLR
ligands (84). However, this increase is measured from serum
and global knockout of αM likely impacts other immune cell
types, such as dendritic and natural killer cells, which could
contribute to this finding. αMβ2 expression is upregulated in
stiff, photo-induced cross-linked fibrin gels (45) and by the
inflammatory stimuli LPS/ IFN-γ. Its expression is also inhibited
by TGF-β, a protein that is abundant in the TME and may
contribute to tumor-directed immune suppression (83). On the
other hand, work by the Xuetao Cao group has shown that TLR-
mediated αMβ2 activation, that leads to downstream Src and
Syk activation, is capable of promoting alternative activation in
murine macrophages via a IL-4-STAT6-Jak1 and MyD88-TRIF-
Cbl-b mediated mechanism, respectively (84, 85). Additionally,
lysyl oxidase (LOX)-mediated collagen crosslinking within the
primary and pre-metastatic TME aids in the retention of myeloid
cells expressing the αMβ2 integrin. The αMβ2+ macrophages
secrete MMPs to continue to reorganize the ECM, further
contributing to increased macrophage levels in primary and
metastatic breast tumors (23, 86, 87).

In addition to αMβ2, collagen specific adhesion receptors
have also been shown to mediate macrophage activation. The
importance of macrophage adhesion to collagen is underscored
by the fact that the ECM in human primary breast cancers
contains higher levels of collagen (I, III, IV, XIII) compared
to normal breast tissue (88, 89). The α2β1 integrin mediates
macrophage migration and adhesion to type 1 collagen. A
study by Cha et al. showed that α2β1, vinculin, PTK2, and
the alternatively activated macrophage-associated marker CD206
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TABLE 1 | Integrins expressed on the surface of murine macrophages.

Integrin ECM Ligands Other ligands Main functions References

β2 Family αLβ2

CD11a/CD18

LFA-1

None. ICAM-1 ICAM-3 ICAM-2 ICAM-5

JAM-1

Endothelial transmigration

Intercellular adhesion

(53–56)

αMβ2

CD11b/CD18

Mac-1 CR3

Fibronectin Vitronectin

Fibrinogen Laminins Collagens

Cyr61

ICAM-1

ICAM-2

ICAM-3

iC3b

Thrombospondin

CD23

NIF

LPS

[for complete list please see (57)]

Migration

Complement Receptor Type 3

Phagocytosis

Trans-endothelial extravasation

(57–60)

αXβ2

CD11c/CD18

P150,95

CR4

Fibrinogen ICAM-1

ICAM-4

CD23

LPS

Thy-1

iC3b

Plasminogen

Complement Receptor Type 4

Intercellular adhesion

Fibrinogen adhesion

(60–67)

αDβ2

CD11d/CD18

Fibronectin Vitronectin

Fibrinogen

Cyr61

ICAM-3

Plasminogen

P2-C

Migration

Cell adhesion

(68–70)

β1 Family α2β1

VLA-2

CD49b/CD29

Collagens Laminins Echovirus 1 Migration

Cell adhesion

(71–73)

α4β1

VLA-4

Fibronectin

EMILIN1

VCAM-1 Migration

Intercellular adhesion

(71, 74, 75)

α5β1

VLA-5

Fibronectin RGD Sequences Fibronectin receptor

Migration

(71, 76, 77)

α6Aβ1

VLA-6

Laminin (not in macrophages,

however)

Fibronectin

– Adhesion (71, 78)

β3 Family αVβ3

CD51/CD63

Vitronectin

Fibrinogen

VWF

Thrombospondin

RGD Sequences

Vitronectin receptor

Adhesion

(58, 77, 79)

β5 Family αVβ5 Vitronectin

(Fibrinogen and

Fibronectin, minimally)

MFG-E8 Phagocytosis

Debris clearance

(80–82)

Integrin names are listed using α and β chain nomenclature with commonly used alternative names listed underneath.

are significantly upregulated by macrophages differentiated from
THP-1 monocytes on hydrogels that allow for cell adhesion.
Furthermore, this adhesion-mediated signaling augments the
effects of IL-4 treatment. When α2β1 ligand binding is blocked
with a neutralizing antibody, CD206 expression is significantly
downregulated and cannot not be induced by the addition of
IL-4, demonstrating that α2β1 engagement is important for
alternative activation (90). Independent of soluble factors, it has
also been shown that macrophages are able to sense mechanical
deformations of the ECM from fibroblast contractions, and that
these deformations alone are able to induce α2β1 mediated
macrophagemigration toward the fibroblasts (91). High numbers
of cancer-associated fibroblasts are often observed in tumors,
suggesting that cellular contractions from cancer-associated
fibroblasts may dramatically deform the ECM to potentially aid
the recruitment of α2β1-expressing TAMs locally. Moreover,
scavenger receptor A (SR-A) and CD36 mediate macrophage

adhesion to modified or denatured forms of type I and IV
collagen, which are often found in inflammatory conditions (92–
94). CD36 is upregulated in alternatively activated macrophages
(95), and SR-A is upregulated by macrophages when co-cultured
with cancer cells (96). Interestingly, SR-A expressing TAMs
colocalize in the stroma of tumors with FAP+ cancer associated
fibroblasts that cleave collagen fibers to enhance TAM retention
via SR-A mediated adhesion (94). SR-A-mediated macrophage
adhesion plays an important role in cancer, as demonstrated by
the prevention of ovarian cancer progression inmice treated with
SR-A inhibitors (96, 97).

Several other ECMprotein ligands bind integrins expressed by
macrophages. The β3 integrin is required for macrophage trans-
endothelial migration on the ECM protein vitronectin. In human
peripheral monocyte derived macrophages, ligand binding to
αVβ3 integrins activates a PI3-K/Akt signaling cascade resulting
in NF-κB mediated gene expression and pro-inflammatory
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cytokine secretion. Interestingly, this pathway is synergistically
enhanced by LPS/TNF-α stimulation (98). In contrast, in murine
BMDMs β3 expression was seen to be significantly higher
in MIL4+IL13 macrophages compared to MLPS+IFNγ, and its
knockdown resulted in increased TNF-α secretion relative to the
non-treated control (45). Additionally, the β4 laminin binding
integrin is upregulated on the surface of TAMs in triple negative
breast cancer. In combination with TGF-β signaling, ligand
binding to β4 leads to increased integrin clustering and adhesion
to lymphovasculature, which aids tumor cell dissemination (99).

Integrins are critical for cellular migration, and while
macrophages are capable of utilizing both amoeboid and
mesenchymal modes of migration, certain integrins may enhance
macrophage migration in parallel with chemotactic signals.
Macrophages can sense increases in fibronectin within the TME
via the α5β1 integrin (58). β1 binding to fibronectin can couple
with CSF1R, a master regulator of macrophage function and
survival, on the plasma membrane leading to CSF1R-mediated
phosphorylation via SFK/FAK (100). CSF1R has been strongly
implicated in the recruitment and regulation of tumor promoting
activities of TAMs (101), and is necessary for macrophage
migration on fibronectin (100). Some have suggested that
inflammatory signaling is required to prime integrins into the
active state, allowing for increased ligand binding and signal
transduction responsible for gene transcription, and interactions
between adhesion and cytokine receptors lends strength to this
argument (58).

STUDYING MACROPHAGES IN VIVO

Challenges
Many challenges still exist when investigating macrophage
biology, both in vitro and in vivo. The inconsistent findings from
many of the studies discussed here can potentially be attributed to
differences in cell lines, surface chemistries, time points analyzed,
and other variables, but nonetheless emphasize the important
fact that commonly used macrophage cell lines and primary cells
exhibit differing responses to identical stimuli, often making in
vitro findings difficult to compare. This is true for bothmurine (4,
102, 103) and human (104, 105) cell sources. Additionally, there
are many differences between human and murine macrophage
biology, from surface marker expression to metabolic states, that
can result in stark differences in functional output (106–108).
Species specificity of macrophage cell types and the presence or
absence of serum factors from humans vs. other species used in
in vitro studies may also limit the applicability to human biology
and therapeutic strategies. Thus, further studies are required to
delineate murine and human macrophage responses, not only in
mechanical studies.

Additional challenges exist when identifying the activation
state of a macrophage, especially in vivo. Traditionally,
phenotypes are identified using immunohistochemistry and
transcriptional profiling, however these techniques require
multiple markers to confirm an activation state and are most
useful in in vitro or ex vivo studies at end stage time points.
There is a great need for techniques to identify phenotypes
through protein expression in vivo. While the use of genetically

encoded fluorescent proteins to readout macrophage activation
is possible, the use of multiple markers to confirm macrophage
identity and the unintended effects of introducing exogenous
proteins limits feasibility. Another area of concern, particularly
in studies investigating mechanical regulation of macrophages is
the fact that macrophages respond differently to substrates in 2-D
compared to 3-D. Currently, most studies are performed using
2-D methods to investigate migration and activation. There is a
great need for more studies investigating macrophages in 3-D,
especially in the context of cancer, as it is more representative of
the environment macrophages naturally reside in. It is imperative
to improve methods of investigating macrophages in their native
environments so as to minimize variances that arise from culture
and experimental conditions, and to best elucidate the impact of
the ECM on macrophages.

Current Approaches
In order to observe macrophages in the tumor
microenvironment, the field has recently turned to optical
approaches such as positron emission tomography (PET), for
example [reviewed extensively in (109)]. Rostam et al. have
proposed image-based machine learning to identify phenotypes
based on cellular morphology which, as described earlier, may
provide some indication of phenotype (110). The availability
of 3-D culture platforms to investigate macrophage–tumor
cell interactions provide a tool kit to identify macrophage
phenotype in more in vivo-like microenvironments (111–113).
Using these platforms, one can take advantage of pharmacologic
and optogenetic approaches to manipulate adhesion receptor
activation and downstream signaling pathways involved
in macrophage responses to biophysical cues from the
ECM (114–116).

In addition to PET and single-photon emission computed
tomography (SPECT) (109), another technique, intravital
imaging, utilizes small implanted imaging windows paired with
confocal or multiphoton microscopy to visualize the spatial
organization of tumor and stromal cell populations (117, 118).
Cell-type-specific expression of proteins that are genetically fused
with fluorescent tags, such as GFP or mCherry, as well as
the endogenously fluorescent metabolic cofactors FAD+ and
NADH (119) can be used to identify macrophage, tumor,
and other cell types in the mouse (Figure 2). This technique
has facilitated direct observation of macrophages interacting
with and assisting tumor cells to intravasate into nearby
vasculature, as well as tumor cell extravasation at distant
metastatic sites (121, 122). While this approach provides detailed
spatial and temporal resolution of cells in the TME, there
is still a lack of validated signatures to fully identify and
characterize macrophage phenotypes in vivo. One emerging
signature of macrophage activation is the use of fluorescence
lifetime. Fluorescence Lifetime Imaging Microscopy (FLIM)
reports the time a fluorophore remains in the excited state
before transitioning back to ground state, and differences in
fluorescent lifetimes of NADH and FAD+ can indicate whether
the cofactors are free or protein bound. Changes in the relative
concentrations of bound vs. free NADH and FAD+ can provide
information on metabolic states at the single cell level (123,
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FIGURE 2 | Intravital imaging of mammary carcinoma in a MMTV-PyMT mouse. 2-photon scanning laser microscopy allows for the in vivo observation of tumor cells

(high in NADH intensity, 780 nm excitation), collagen fibers through second harmonic generation (890 nm excitation), and (A) Macrophages expressing the fluorescent

mCherry protein under the CSF1-R promotor (C57BL/6-Tg(Csf1r-HBEGF/mCherry)1Mnz/J X B6.129P2-Lyz2tm1(cre)Ifo/J) (120) (1050nm excitation). (B) FADHI cells

which depict primarily macrophage stromal cells (119). (C) NADH fluorescence lifetime overlay on mask of mCherry+ cells (color map of NADH τm lifetime). (D) Insets

depict mcherry+ macrophages, which are FAD bright, spatially localized in the collagen rich stroma or within the tumor mass. Arrow indicates a macrophage spread in

a collagen abundant region of the tumor stroma. Dashed outline depicts a macrophage elongated in an aligned region of collagen fibers at the boundary of a tumor

nest.

124). Within the TME, Szulczewski et al. demonstrated that
stromal macrophages have a distinct NADH FLIM signature,
allowing them to be distinguished from tumor cells (119).
Along these lines, Alfonso-Garcia et al. show stark differences
in the NADH fluorescence lifetime signatures in MLPS+IFNγ

and MIL4+IL13 induced BMDMs in vitro (125), thus warranting
further investigation into the use of FLIM to identify macrophage
activation in vitro and in vivo. In addition to endogenous and
genetically expressed fluorescence, ported mammary imaging
windows that feature a needle inserted through the window base
have been used to inject fluorescently conjugated antibodies.
This methodology provides an opportunity for real-time
visualization of the localization and relative abundance of cell
type specific proteins, such as macrophage activation markers
and integrins.

CONCLUSION

Taming tumor-associated macrophages has been a long-time
goal for cancer therapy, and much work remains to fully

understand the crosstalk between macrophages and the
tumor microenvironment. While a causal mechanistic link
between biomechanical properties of the ECM and macrophage
activation has yet to be fully established in vivo, here we highlight
studies that investigate the relationship and crosstalk between
biophysical properties of the ECM and macrophage activation.
Further investigation into downstream signaling pathways
activated by integrin ligand binding and mechanical stimuli
is necessary to identify potential therapeutic interventions to
shift TAMs away from a tumor promoting phenotype. One
expanding area is the use of metabolic reprogramming to
shift macrophage phenotypes. Classically and alternatively
activated macrophages favor differing metabolic mechanisms,
and differences in the fluorescence lifetime signatures of
metabolic cofactors lends support to the use of metabolism
as a phenotypic marker. Moreover, integrin activation
through the α2β1 integrin can induce activation the PI3K-
Akt pathway (126), and macrophage metabolism is strongly
regulated by PI3k-Akt-mTOR signaling which can prime
macrophages toward either activation state depending on
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confounding biochemical stimuli in the TME such as hypoxia
or IL-4 (127). Metabolism provides an attractive target for
manipulation, as it is highly sensitive and fast responding
to changes inside and outside the cell, critical characteristics
for macrophages to alter their activation in an inducible and
reversible manner.
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