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Tumors may consist of billions of cells, which in malignant cases disseminate and

form distant metastases. The large number of tumor cells formed by the high number

of cell divisions during tumor progression creates a heterogeneous set of genetically

diverse tumor cell clones. For cancer therapy this poses unique challenges, as distinct

clones have to be targeted in different tissue locations. Recent research has led to the

development of specific inhibitors of defined targets in cellular signaling cascades which

promise more effective and more tumor-specific therapy approaches. Many of these

molecular targeted therapy (MTT) compounds have already been translated into clinics or

are currently being tested in clinical studies. However, the outgrowth of tumor cell clones

resistant to such inhibitors is a drawback that affects specific inhibitors in a similar way as

classical cytotoxic chemotherapeutics, because additionally acquired genetic alterations

can enable tumor cells to circumvent the particular regulators of cellular signaling being

targeted. Thus, it might be desirable to reduce genetic heterogeneity prior to molecular

targeting, which could reduce the statistical chance of tumor relapse initiated by resistant

clones. One way to achieve this is employing unspecific methods to remove as much

tumor material as possible before MTT, e.g., by tumor debulking (TD). Currently, this

is successfully applied in the clinical treatment of ovarian cancer. We believe that TD

followed by treatment with a combination of molecular targeted drugs, optimally guided

by biomarkers, might advance survival of patients suffering from various cancer types.

Keywords: precision oncology, molecular targeting, clonal heterogeneity, therapy resistance, cancer therapy,

cancer genetics

INTRODUCTION

Cancer is a life-threatening disease and in western populations, about every third person
is projected to suffer from cancer between birth and the age of 74 (1). Between different
types of cancer and even among tumors of the same kind in different patients, strong
variation can be observed in cell biology and genetics, so that the success of treatment
approaches can be unpredictable and some patients fail to respond while others show full
remission of the disease. Unraveling oncogenic cell signaling pathways and the underlying
genetic alterations has led to the development of specific inhibitors of oncogenic signaling
and the establishment of markers that indicate therapy success or failure. Despite initial
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success with molecular targeted drugs inhibiting oncoproteins or
their downstream signaling molecules, resistance is frequently
observed (2), as has been well-described for example in
non-small-cell lung cancer (NSCLC) (3–5). Thus, advancing
treatment regimens in a way to overcome drug resistance
reliably is a substantial goal of cancer researchers and clinicians.
Decades ago, it became apparent that single drugs or treatments
against cancer are less efficient than combined approaches (6–
8). Especially for many advanced tumor diseases, it will not be
sufficient to use single agents in order to achieve substantial
benefit for patients, as in the context of a large tumor burden the
intratumoral heterogeneity recurrently creates resistant clones
that can reestablish the disease after initial remission (9–11). It is
much more promising to hit the neoplastic cells therapeutically
from as many different sides as possible, so that the chance of
combined resistance against all treatment approaches is reduced
(12–14). Here, we discuss tumor debulking (TD) as a method
to reduce clonal heterogeneity, which could synergize with the
combined application of molecular targeted drugs.

TUMOR SIZE AND CLONAL
HETEROGENEITY

Tumors in the human body vary strongly in their size, reaching
from microscopic lesions to tens of kilograms of tissue. Tumor
size has important implications for the genetic heterogeneity
within the tumor, as an increase in the amount of neoplastic tissue
requires cell divisions. Every new tumor cell, which acquires
additional genetic hits and thus becomes genetically distinct from
its parental cell, is seen as a new tumor cell clone (15). As tumor
size and thus the contained number of cells expands, more and
more genetically distinct clones are created. This happens in a
statistical manner, as a given number of cell divisions at a given
mutation rate has to result in a given average number of new
mutations (16). However, this system is more complicated, as
distinct tumor cell clones vary in their fitness and proliferation
rate due to their distinct genetic conformation affecting tumor
cell biology, and their location within the tumor resulting in
a different access to oxygen and nutrients. This way, specific
clones expand whereas others persist or become lost- a classical
selection process of randomly created individuals by their natural
characteristics known as “clonal evolution” [reviewed in (17)].
Moreover, cells that acquire new genetic alterations driving them
to disseminate from the primary tumor and migrate to other
tissue locations form distant metastases. Thus, in metastases,
clonal evolution continues from the genetic conformation of
the disseminated clone of the primary tumor and it has been
possible for scientists to track how tumor cell clones have spread
to different sites sequentially and which genetic changes were
acquired along themetastatic path (18). This suggests that distant
metastases tendentially have a higher mutational burden than the
primary tumor.

New genetic alterations in subclones not only drive the
metastatic spread, but also can confer drug resistance, e.g., by
inhibiting cell death or activating cell signaling downstream of
the targeted effectors (19, 20) [reviewed in (21, 22)]. Interestingly,

especially small clones (under 10% of the tumor mass) frequently
harbor treatment-resistant mutations and were observed more
often in tumors with a slower growth rate (23). Thus, clonal
heterogeneity within human tumors depends on a complex
relation of tumor volume, growth rate, and time.

MOLECULAR TARGETED THERAPIES FOR
PRECISION ONCOLOGY

Standard treatment against most tumor diseases in clinics
is mainly composed of surgery, radiotherapy and classical
cytotoxic chemotherapy. Standard chemotherapeutic drugs
inhibit cell division or damage DNA generally, which harms
both normal and cancerous tissues. This causes side effects,
mainly tissue defects, affecting quality of live and live-
threatening secondary cancers (24). Large cohorts of new
information on cancer genetics in the recent two decades have
enabled the development of new tumor-specific approaches
that inhibit key oncogenic signaling pathways. These so called
“molecular targeted therapies1” (MTTs) include but are not
limited to epidermal growth factor receptor (EGFR) monoclonal
antibodies (e.g., cetuximab, panitumumab, zalutumumab, and
nimotuzumab), EGFR tyrosine kinase (TK)-inhibitors (e.g.,
gefitinib, erlotinib, lapatinib, afatinib, and dacomitinib), vascular
endothelial growth factor (VEGF) inhibitors (e.g., bevacizumab),
or VEGF receptor (VEGFR) inhibitors (e.g., sorafenib, sunitinib,
and vandetanib). Moreover, inhibitors of the PI3K/AKT/mTOR
pathway, which is frequently aberrantly activated in various
malignancies (e.g., rapamycin, temsirolimus, everolimus), have
been developed recently (25). New cancer-targeting compounds
also include specific inhibitors of the cell cycle [e.g., cyclin-
dependent kinase (CDK)-inhibitors; reviewed in (26)] or
inhibitors of epigenetic regulators of cell differentiation and
proliferation [e.g., inhibitors of enzymes modifying DNA or
histones by methylation/acetylation; reviewed in (27, 28)].
Moreover, PD-1/PD-L1 inhibitors in immunotherapy work as
immune checkpoint inhibitors (ICIs) that target the tumor cells’
ability to evade immune recognition and recently were described
to be the preferable treatment option for a subset of patients with
advanced or metastatic tumors (29).

As every individual tumor differs in its genetic alterations,
therapies can be tailored to each patient’s genetic alterations,
which can cause a unique set of vulnerabilities against
specific drugs/compounds. This strategy is called “precision
oncology” [reviewed in (30)]. Recently, clinical oncologists have
examined the relationship between the number of mutations
detectable in a tumor disease and the number of mutations
that indicate a vulnerability of the tumor toward a specific
drug as a prognostic factor (31). This investigation has
demonstrated that a patient‘s prognosis is more favorable,
the more mutations carried by the individual tumor can be
treated by specific drugs. This strikingly demonstrates the
advantages of personalized treatment strategies over standard
therapies based on general guidelines. However, the selection

1https://www.cancer.gov/about-cancer/treatment/types/targeted-therapies/

targeted-therapies-fact-sheet
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FIGURE 1 | Clonal evolution leads to acquired combined drug resistance. As the tumor grows over time, new genetic alterations lead to the formation of distinct

clones (indicated by distinct colors), each representing a subpopulation of the tumor mass. Clones vary in their topology within the tumor and their biology, ultimately

leading to the formation of metastatic clones which initiate metastases at different locations. Moreover, new genetic hits lead to drug resistance against single drugs.

As the tumor disease progresses, further individual clones can acquire a combined resistance against several drugs. As the genetic diversity statistically correlates

with tumor volume, larger metastases (Top Right) are genetically more diverse than smaller metastases (Left Right). Within metastases the clonal evolution

continues from the metastatic clone of the primary tumor, leading to a higher mutational burden.

of molecular targeted drugs solely based on genetic alterations
outside their established indications was shown to be ineffective
in many cases and led to the conclusion that biomarkers
for MTT efficiency have to be established further before
individually matched MTT can become standard care (32–
34). Thus, the presence of specific mutations verified as
biomarkers in one tumor type might not work equivalently in
another. For example, BRAF-inhibitors alone work efficiently
in BRAF-V600E-positive melanomas as discussed below, but
not in BRAF-V600E-positive colon cancer (35). Despite that
overall conclusion, there are examples of genetic biomarkers
that work universally. For instance, tropomyosin receptor
kinase (TRK)-inhibitor larotrectinib inhibits all kinds of TRK-
fusion-positive tumors in children and adults (36). As the
DNA-sequencing technology further advances, it is highly
probable that substantially more genetic markers will be
described in the near future, so that precision oncology-
based approaches might upgrade traditional treatment regimens
in mid-term.

DRUG SPECIFICITY AND RESISTANCE

An important challenge for the clinical use of chemotherapeutics
and new targeted drugs is the resistance of tumor cells.
Tumor cells can be inherently resistant or acquire resistance.
Even after a drug initially caused effective remission, single
resistant tumor cell clones can survive and reestablish the
tumor which then will be entirely resistant toward repeated
treatment with the same drug. This phenomenon was observed
recurrently [reviewed in (37)], especially when a single drug
is used to treat a highly malignant type of cancer in an
advanced stage. One reason for drug resistance is that above
a certain tumor size, there will be clones that have the

matching genetic alterations to resist the given drug (Figure 1).
The important influence of resistant subclones on MTT has
previously been discussed (38). How likely a cell can acquire
resistance mainly depends on the drug‘s chemical structure,
mode-of-action, and the target specificity (21, 39). It is
obvious that a more specific drug which exclusively blocks
one target protein, e.g., a single kinase, will be easier to
resist than a compound with a broader impact, e.g., inhibiting
all kinases, shutting down mitochondrial energy production,
or blocking mRNA translation. Tumor cells can bypass a
defined point in cellular signaling, e.g., by acquiring new
mutations that activate downstream effectors. For this reason,
resistance against single inhibitors used for MTT approaches
can be observed frequently (4, 39). Even though it has been
demonstrated that combined treatment with separate inhibitors
can overcome tumor cell resistance (37, 40–42), a combined
acquired resistance against severalMTT drugs has been described
as well (14).

TUMOR DEBULKING TO SUPPORT
PRECISION ONCOLOGY

As outlined above, clonal heterogeneity is positively linked to
tumor burden and increases the chance of drug resistance.
This indicates that reduction of tumor volume will elevate the
likelihood of successful drug treatment. Clonal heterogeneity
also plays an important role in acquired resistance against
immunotherapy [reviewed in (43)]. However, as various cell
types in the microenvironment participate in the complex
interaction between tumor cells and the immune system,
resistance against this kind of therapy is influenced by
many more determinants [reviewed in (44)]. As TD surgery

Frontiers in Oncology | www.frontiersin.org 3 June 2020 | Volume 10 | Article 801

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Oppel et al. Molecular Targeting and Tumor Debulking

FIGURE 2 | Example for surgery to reduce clonal heterogeneity synergizes with subsequent combined molecular targeting. A tumor body consists of a genetically

heterogeneous set of tumor cell clones with a differential drug resistance spectrum. Upon partial removal of the tumor body, the number of tumor cell clones is

reduced, so that a combined treatment with drugs A and B can eliminate the remaining tumor cells. This demonstrates how TD can facilitate subsequent molecular

targeting even when residual tumor tissue remains.

can reduce clonal heterogeneity by removing large tumor
bodies, but cannot eliminate dispersed tumor cells, and
MTT can target dispersed cells, but might find resistant
clones in large tumor bodies, both treatments could work
synergistically together when TD is performed prior to MTT
(Figure 2).

Both treatments are already applied to treat ovarian
cancer (OC) (45) and metastatic renal cell carcinoma
(mRCC) (46). In OC targeted therapy, the VEGF-inhibitor
bevacizumab or the VEGFR-inhibitors pazopanib (47) and
cediranib (48) are used to inhibit angiogenesis. Similarly,
PARP inhibitors are used to inhibit DNA-repair in tumor
cells combined with chemotherapy which leads to the death
of tumor cells (49, 50). Moreover, OC patients frequently
undergo TD, as this has been shown to prolong the survival
of OC patients if the residual nodules are <0.5 cm in size
(51). For example, bevacizumab was shown to efficiently
increase patient survival after TD surgery (45). In patients
with mRCC, immunotherapy was shown to be much
more effective in combination with TD than when applied
alone (52).

Besides OC and mRCC, there is preclinical data indicating
potential for the use of TD with MTT or chemotherapy in
other tumor types as well. In a mouse model of malignant
mesothelioma, TD was found to support anti-tumor memory
when it was combined with chemotherapy and adjuvant
immunotherapy (53, 54). In particular, one study demonstrated
that a partial TD induced a long-term anti-tumor memory which
was not observed when a complete resection was performed

(53). Moreover, a partial tumor removal stimulated an anti-
tumor immune reaction in a mouse model of NSCLC and
it was shown that the excision of one tumor body increased
the efficiency of anti-PD1 immunotherapy in another tumor
location within the same individual (55). The reason for this
might be the release of tumor antigens stimulating the immune
system due to the destruction of tumor material along surgery
and the decreased release of immunosuppressive cytokines
from the reduced tumor tissue burden. This indicates that
TD could be beneficial in combination with immunotherapy
in different tumor types, even if a large proportion of the
tumor burden remains. In addition to immunotherapy, TD
was successfully combined with a cisplatin-loaded polymer
platform in a mouse model of head and neck squamous cell
carcinoma (56).

These examples indicate that TD could support therapy
against a variety of cancer types. NSCLC, for example, is a
cancer type with many molecular targeted drugs available in
clinical practice. MTT for NSCLC includes drugs blocking
receptor tyrosine kinases (RTKs) like EGFR, hepatocyte growth
factor receptor (HGFR), and anaplastic lymphoma kinase (ALK),
as these oncoproteins are frequently aberrantly activated. As
described above, resistance against these new approaches in
NSCLC therapy is frequently observed (3–5) and thus new
strategies to overcome resistance are needed. Surgery is regularly
used for locoregionally advanced lung cancers, but usually not
combined with MTT in clinical routine even if clear biomarkers
for targeted drugs are detected. Beneficial results in applying
MTT after NSCLC surgery have been observed in initial clinical

Frontiers in Oncology | www.frontiersin.org 4 June 2020 | Volume 10 | Article 801

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Oppel et al. Molecular Targeting and Tumor Debulking

trials [reviewed in (57)]. In a single-arm phase II trial, the
EGFR-inhibitor erlotinib was applied in patients with stage IA-
IIIA NSCLC with EGFR-mutation after surgery, which resulted
in an increased 2-year survival and a block of recurrence
during the period of drug application, so that recurrence was
delayed in most cases until treatment was discontinued (58).
However, this indicates that erlotinib was not sufficient to kill
all remaining tumor cells, but inhibited the surviving fraction
to repopulate the tumor while being administered. Using an
even more effective MTT, e.g., a combination of several targeted
drugs, TD could support MTT against NSCLCs, maybe even
in advanced stages, and minimize the chance of relapse by
reducing the number of potentially resistant tumor cells. This
could be further tested in clinical trials with combinations of
targeted drugs, dividing patients with NSCLC who have an
indication for MTT into two groups. One group would receive
MTT in the conventional way, whereas the patients in the
second group undergo TD prior to drug administration. By
setting the proportion of residual tumor material after debulking
in correlation to the therapy success, this study could reveal
how reasonable an incomplete tumor resection is for this
tumor type.

PERSONALIZED APPLICATION OF TUMOR
DEBULKING

As TD represents an unspecific mechanical method, the
reduction of genetically distinct tumor cell clones by TD could
significantly support all therapy approaches, which are limited
in their efficacy by tumor cell resistance mediated by genetic
variation within the tumor. If this is true, TD will support
MTT regardless of the specific drug’s mode-of-action by lowering
the chance of resistance. Newer MTT approaches consider the
genetics of individual tumor diseases and match molecular
targeted drugs to the genetic profile of the tumor (31). This
indicates that if it was possible to measure the effect that TD
has on genetic heterogeneity, e.g., using a liquid biopsy or similar
procedures, the MTT design could be created after TD to benefit
maximally from the improved tumor genetics. Liquid biopsies
are designed to detect circulating tumors cells, circulating tumor
DNA (ctDNA), and other tumor-derived components in a
patient’s blood sample (59). In a clinical study ctDNA detection
rates of >75% were observed for many cancer types, with ∼50–
75% even in cases with localized disease (60). Interestingly,
the authors detected driver mutations in the KRAS oncogene
in ctDNA as well as mutations related to the development of
resistance toward EGFR blockade in 23 of 24 patients that initially
responded but later relapsed. This indicates that liquid biopsy is
a sensitive method for analyzing the tumor genome and tailoring
MTT to each patient individually. Liquid biopsy might even
enable a comparison of the tumor genome before and after
TD, so that the impact of TD on clonal heterogeneity could
be monitored.

Of course, the application of TD in order to decrease clonal
heterogeneity would make sense especially if promising MTT
options can be identified for the particular patient. An example

of a highly potent MTT is BRAF-inhibition in melanoma
which initially works highly effectively and can eradicate even
large tumors, but in most cases induces resistance due to
alternative activation of MAPK/Erk signaling or activation
of PI3K/Akt signaling [reviewed in (61)]. Even combined
inhibition of BRAF and MEK was followed by relapse, despite a
significantly longer survival compared to single BRAF-inhibitor
treatment (62). This indicated that effective treatment, even in
combination, most frequently faces resistant tumor cell clones
in advanced diseases. Thus, TD prior to BRAF/MEK-inhibitor
application might be effective in melanoma treatment. This
hypothesis is supported by a clinical phase III trial that reported
a significantly decreased recurrence of completely resected,
stage III melanoma with BRAF-V600E or -V600K mutations
treated with a combination of BRAF and MEK inhibitors after
surgery (63).

Due to higher tumor volumes and the resulting higher genetic
heterogeneity, advanced stage tumor patients might benefit more
likely from TD (29). However, surgery-related mortality and
morbidity have to be considered to estimate for every patient
individually whether the expected benefits of the planned MTT
are high enough to justify the operation risks and negative impact
on life quality. In the scenario when TD is not possible to
perform due to excessive risks, MTT might be combined with
other treatments like chemotherapy, radiotherapy, hyperthermia,
or others to achieve a cytoreductive effect that will reduce the
chance of resistance against MTT. However, in our view, TD is
not primarily supposed to change how MTT is performed, but
rather support it whenever possible. Hence, TD to support MTT
must be performed as intensely as reasonably safe.

CONCLUSIONS

Preclinical and clinical studies indicate that TD might
cooperate well with MTT approaches. Immunotherapy
approaches in particular have been shown to benefit from
tumor resection in a large variety of tumor types. The
reduction of as many genetically distinct tumor cell clones
as possible could be used to reduce the ability of tumors
to resist MTT for precision oncology. In order to create
synergy effects, unspecific non-mutagenic treatment options
like TD should precede genetics-guided combined molecular
targeting for a variety of tumor types. Depending on the
individual patient’s characteristics, tumor type, stage, and
genetic profile, oncologists could design a personalized
strategy to support specific treatment options like MTT
with cytoreductive methods like TD to outsmart the tumor’s
intrinsic compulsion to resistance. In future, clinical treatment
guidelines might be adapted this way to facilitate an effective
patient-specific MTT.
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