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Information regarding transcriptome and metabolome has significantly contributed to

identifying potential therapeutic targets for the management of a variety of cancers.

Obesity has profound effects on both cancer cell transcriptome and metabolome

that can affect the outcome of cancer therapy. The information regarding the

potential effects of obesity on breast cancer (BC) transcriptome, metabolome, and its

integration to identify novel pathways related to disease progression are still elusive.

We assessed the whole blood transcriptome and serum metabolome, as circulating

metabolites, of obese BC patients compared them with non-obese BC patients. In

these patients’ samples, 186 significant differentially expressed genes (DEGs) were

identified, comprising 156 upregulated and 30 downregulated. The expressions of

these gene were confirmed by qRT-PCR. Furthermore, 96 deregulated metabolites

were identified as untargeted metabolomics in the same group of patients. These

detected DEGs and deregulated metabolites enriched in many cellular pathways.

Further investigation, by integration analysis between transcriptomics and metabolomics

data at the pathway levels, revealed seven unique enriched pathways in obese BC

patients when compared with non-obese BC patients, which may provide resistance

for BC cells to dodge the circulating immune cells in the blood. In conclusion,

this study provides information on the unique pathways altered at transcriptome

and metabolome levels in obese BC patients that could provide an important
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tool for researchers and contribute further to knowledge on the molecular interaction

between obesity and BC. Further studies are needed to confirm this and to elucidate

the exact underlying mechanism for the effects of obesity on the BC initiation

or/and progression.
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INTRODUCTION

Breast cancer (BC), the most common malignant tumor type,
was ranked top in incidence with high prevalence and mortality
among females in Saudi Arabia as well as worldwide (1–3).
BC is a molecularly heterogeneous, complex, and multifactorial
disease with different biological and clinical characteristics (4).
A number of BC-related etiological factors have been identified
as hereditary, genetic factors, environmental, and lifestyle risk
factors (5). Obesity poses a serious public health issue worldwide
(6). In Saudi Arabia, the prevalence of obesity is 28.7% with a
higher incidence among women (7). Obesity is one of the risk
factors associated with the development of many types of cancer
including BC. A number of studies, a few of them in Saudi
Arabia, have reported an association between obesity and BC
among postmenopausal women whereas the inverse relationship
was reported among premenopausal women, however, this
association remains unclear (8–13).

Obesity–BC molecular interaction could provide an
important tool for researchers, as it may help to identify and
discover new molecular fingerprints, as well as clarify molecular
mechanisms involved in screening and develop therapeutic
strategies for the management of BC. Notably, a few studies
have focused on the molecular interaction between obesity and
BC but this association still remains unclear. Recently, omics
techniques, such as transcriptomics and metabolomics, have
been widely used to improve understanding of the underlying
biological mechanisms and biomarkers identification (14).
Many studies utilized transcriptomics to investigate human
diseases at the molecular level and identify the variation in
transcriptomic profile in relation to diagnostic, treatment, or
management and that may help to understand the mechanisms
of disease initiation and progression (15–19). Moreover, many
transcriptomic studies have been based on the analysis of the
association between BC and obesity (18, 20). On the other
hand, metabolomic investigations have been widely utilized in
cancer metabolism and biomarkers identification to deduce
the onset and progression of cancer (21, 22). Increasingly,
studies now include measurements from multiple omics
techniques rather than the single omics technology of a set of
samples in early studies (14). There is currently very limited
published research that has investigated the integration between
deregulated transcriptomics and metabolomics data profiling in
BC blood liquid biopsy. Therefore, in our study, we performed
the integration between deregulated transcriptomics data and
metabolomics profiling in BC patients with obesity to provide
a better understanding of the biological status and shed new
insights into potential molecular mechanisms, the interactions

and biomarkers in the relationship between obesity and BC.
Pathways and network connections were carried out to further
explore the relationship between the selected metabolites and
candidate transcripts. This could give considerable importance
for the clinical management of BC patients and could provide
an important tool for researchers as well as to increasing the
knowledge on the molecular interaction between obesity and BC.

MATERIALS AND METHODS

Study Subjects
We summarized the study workflow for identification and
validation of signature RNAs and metabolites in obese BC
patients in Figure 1. The study includes 69 newly diagnosed
and before any treatment BC female subject who attended the
Unit of Mammogram, Department of Radiography at King
Abdulaziz University Hospital (KAUH), Jeddah, Saudi Arabia.
The Unit of Biomedical Ethics, Research Committee, approved
this study (Document number: HA-02-J-008). All BC patients
signed the consent form. The patients’ information was obtained
through a standard questionnaire and the anthropometric data
were collected using standard and well-established methods. The
clinicopathological characteristics were obtained in collaboration
with the Pathology Department at KAUH, Jeddah, Saudi Arabia.

The WHO recommendations (23) were used to classify BC
patients as obese [Body mass index (BMI) ≥ 30 kg/m2, n =

36] and non-obese, which include lean and overweight (BMI <

30 kg/m2, n = 33). From all patients’ cohort, RNA sequencing
(RNA-seq) was performed for only 10 non-obese with lowest
BMI and 11 obese BC patients with highest BMI. Then the
transcriptomics data were validated in all groups, non-obese (n
= 33) and obese (n = 36) BC patients. However, from the RNA
samples cohort, only six samples of each group were selected
for the metabolomics. These selections were based on BMI
differentiation as with the RNA-seq samples selection.

Blood and Serum Sample Collection and
Storage
Whole blood samples were collected in PAXgeneTM blood RNA
tubes (PreAnalytiX, Switzerland) as well as in BD VacutainerTM

venous blood collection tubes: SSTTM serum separation tubes
(Fisher Scientific, USA), according to the manufacturer’s
instructions. Serum samples were aliquots after separated from
the clotted blood. Blood samples in PAXgeneTM blood RNA tubes,
as well as aliquots serum samples, were stored at −80◦C until
used for transcriptome and metabolome analysis, respectively.
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FIGURE 1 | Flowchart of transcriptomics and metabolomics analysis in obese vs. non-obese BC patients. BC, Breast cancer; BMI, Body mass index; DEGs,

differentially expressed genes; GO, Gene ontology.

Transcriptome Analysis
RNA Extraction
Total RNA was isolated from whole blood using the PAXgeneTM

blood RNA kit (Qiagen, UK). The concentration and
purity of the extracted RNA were verified by DeNovix DS-
11 Spectrophotometer (DeNovix, USA) and Agilent 2100
bioanalyzer measurements (Agilent Technologies, USA). The
RNA samples were stored at−80◦C until used.

RNA Library Preparation, Sequencing, and

Differentially Expressed Genes Analysis
The next-generation sequencing technologies were used for
performed RNA-seq experiment to discover the amount of RNA
in a blood biological sample at a givenmoment by using theNext-
Seq 500 system (Illumina, Singapore) as described elsewhere (24).
Approximately 2 µg of total RNA was fragmented and end-
repaired using the Illumina directional protocol. Complementary
DNA (cDNA) sequencing libraries were constructed using
Illumina R©TruSeqTM stranded total RNA sample preparation
kit (Illumina, USA) according to the manufacturer’s instructions.
The concentration and purity of the cDNA libraries were
measured (RNA integrity number score > 7.0) using Agilent
2100 bioanalyzer (Agilent Technologies, USA). The libraries were
sequenced using the Next-Seq 500 platforms in single-end 150-bp

TABLE 1 | Baseline characteristics of studied BC patients in RNA-seq analysis.

Parameters Non-obese BC Obese BC p-value

N (%) 10 (47.62) 11 (52.38)

Age (years) 47.70 ± 2.16 49.09 ± 2.74 0.69

BMI (kg/m2) 22.10 ± 0.88 36.82 ± 1.87 <0.0001

Waist circumference (cm) 76.30 ±5.54 99.82 ± 3.61 0.0018

Hip circumference (cm) 90.20 ± 6.49 119.2 ± 3.92 0.0010

Data were presented as mean ± SEM. BMI, body mass index; N, number of samples.

mode (Illumina, Singapore) according to the manufacturer’s
protocol. The FASTX-Toolkit (25) was used to remove adaptor
sequences and to filtered low-quality base call and low-quality
reads. TopHat2 program (26) was used to mapping short filtered
sequencing reads to the human genome (UCSC) in order to
identify exon-exon splice junctions, and the quantified genes
expression level was done using Subreads package feature counts
(27). They were tested after calculating the library size and
appropriate data set dispersion depending on gene expression
values by using edgeR Bioconductor package (28). Differentially
expressed genes (DEGs) were presented as log fold change
(logFC) and p ≤ 0.05 was counted statistically significant.
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TABLE 2 | The total number of transcripts altered in obese BC compared with non-obese BC patients, the classification based on p-values.

All transcripts Upregulated transcripts Downregulated transcripts Non-change transcripts

p-value range Transcripts

number

LogFC range Transcripts

number

LogFC range Transcripts

number

LogFC range Transcripts

number

All 31,698 −5.53 to 6.98 19,105 0.01 to 6.98 12,341 −5.53 to −0.01 252

≤0.05 2,372 −5.53 to 6.98 1,737 0.30 to 6.98 635 −5.53 to −0.26 –

≤0.01 851 −5.53 to 6.98 664 0.41 to 6.98 187 −5.53 to −0.42 –

≤0.001 186 −5.53 to 6.98 156 0.62 to 6.98 30 −5.53 to −0.73 –

≤0.0001 31 −5.53 to 5.52 23 2.65 to 5.52 8 −5.53 to −0.95 –

LogFC rounded to two numbers after the decimal point. FC, fold change.

TABLE 3 | The most highly significantly DEGs in obese BC as compared with non-obese BC patients, ordered depending on LogFC.

Gene

symbol

Gene name Gene type LogFC p-value

1 ADCY1 Adenylate cyclase type 1 Coding 5.52 0.0001

2 ASPM Abnormal spindle-like microcephaly-associated protein Coding 4.33 <0.0001

3 E2F7 Transcription factor E2F7 Coding 4.18 0.0001

4 GALNT9 Polypeptide N-acetylgalactosaminyltransferase 9 Coding 4.10 0.0001

5 MYH10 Myosin-10 Coding 4.03 <0.0001

6 SEPT3 Neuronal-specific septin-3 Coding 3.90 0.0001

7 CDK1 Cyclin-dependent kinase 1 Coding 3.84 0.0001

8 AP001429.1 LncRNA-AP001429.1 Non-coding 3.74 <0.0001

9 IGFBP2 Insulin-like growth factor-binding protein 2 Coding 3.68 0.0001

10 BUB1B Mitotic checkpoint serine/threonine-protein kinase BUB1

beta

Coding 3.50 <0.0001

11 CENPF Centromere protein F Coding 3.49 <0.0001

12 OLFM4 Olfactomedin-4 Coding 3.47 <0.0001

13 TOP2A DNA topoisomerase 2-alpha Coding 3.44 <0.0001

14 TICRR Treslin Coding 3.42 0.0001

15 CEP55 Centrosomal protein of 55 kDa Coding 3.17 0.0001

16 UHRF1 ubiquitin like with PHD and ring finger domains 1 Coding 3.17 0.0001

17 SCN8A Sodium channel protein type 8 subunit alpha Coding 3.08 0.0001

18 SLCO4A1 Solute carrier organic anion transporter family member

4A1

Coding 3.02 <0.0001

19 CD109 CD109 antigen Coding 2.97 0.0001

20 BRCA2 Breast cancer type 2 susceptibility protein Coding 2.81 0.0001

21 MYB Transcriptional activator Myb Coding 2.74 0.0001

22 MKI67 Proliferation marker protein Ki-67 Coding 2.66 0.0001

23 ARHGEF10 Rho guanine nucleotide exchange factor 10 Coding 2.65 <0.0001

24 TIGD3 Tigger transposable element-derived protein 3 Coding −0.95 0.0001

25 TPST1 Tyrosylprotein sulfotransferase 1,-like Coding −1.32 <0.0001

26 VSIG4 V-set and immunoglobulin domain-containing protein 4 Coding −1.66 <0.0001

27 RNY1 RNA, Ro-Associated Y1 Non-coding −2.24 0.0001

28 IGLV1-47 Immunoglobulin lambda variable 1-47 Coding −2.75 <0.0001

29 IGKV1D-16 Immunoglobulin kappa variable 1D-16 Coding −2.77 0.0001

30 IGHV6-1 Immunoglobulin heavy variable 6-1 Coding −3.62 <0.0001

31 PGF Placenta growth factor Coding −5.53 <0.0001

LogFC rounded to two numbers after the decimal point. FC, Fold change.
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Gene Ontology and Pathway Analysis of

Transcriptomic Data
Gene ontology (GO) analysis (29) was carried out to determine
the functions of the DEGs identified. The highly significantly
DEGs (p ≤ 0.001) were uploaded into Enrichr tool (30)
for analysis and organized into groups basis of cellular
components, biological processes, and molecular functions.
The pathway enrichment analysis was also conducted for
the highly significantly DEGs to place these target genes
in the pathways according to the Kyoto encyclopedia of
genes and genomes database (KEGG) database (31) by used
Enrichr tool.

RNAs Co-expression and Interaction Network
The co-expression network of the most highly significant
DEGs (p ≤ 0.0001) was constructed to identify the potential
DEGs interaction by using GeneMANIA tool (32). A
co-expression network was constructed according to the
correlation analysis between the DEGs associated with obesity
and BC.

Validation of the Transcriptomic Data by Quantitative

Real-Time PCR
Total RNA (800 ng) was reverse transcribed using QuantiTect
reverse transcription kit (Qiagen, UK). The expression of a
selected gene(s) was measured in duplicate in a large cohort
of BC blood patients (33 non-obese and 36 obese BC patients)
by quantitative real-time PCR (qRT-PCR) using IQ SYBR green
mix (Bio-Rad, USA) and RPL11 as the internal control on
CFX ConnectTM real-time PCR detection system (Bio-Rad,
USA). The primers of selected genes were designed over two
different exons and the sequences are available upon request. No-
reverse transcriptase controls (NRCs) and no-template controls
(NTCs) were included for each primer pair. The relative
expression quantification was calculated depending on the
2−11ct methods (33).

Metabolome Analysis
Samples Preparation and Metabolite Extraction
Among the 21 BC patients that subjected in RNA-seq assay;
six obese BC and equal numbers of non-obese BC patients

FIGURE 2 | GO enrichment, pathway analysis, and co-expression network of the transcriptomic data. (A–C) GO analysis of DEGs that associated with biological

process, molecular function, and cellular component. (D) KEGG pathway analysis for DEGs. (E) Co-expression networks of DEGs. Dysregulated genes interacted with

46 total genes by 2,863 total links. The association sorted by combined score ranking. DEGs, differentially expressed RNAs; GO, gene ontology; KEGG, Kyoto

encyclopedia of genes and genomes database.
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FIGURE 3 | The OLFM4 expression level in the blood of obese BC compared

with non-obese BC patients in the sequencing and validation cohort. The gene

expression was detected by qRT-PCR and normalized by RPL11 expression;

***p < 0.0001.

were selected for metabolomics. Serum metabolites were
extracted and analyzed in triplicates, by liquid chromatography-
tandem mass spectrometry (LC-MS/MS), for untargeted
metabolomics detection. One-hundred microliters of serum used
for metabolites extraction by ice-cold Methanol: Acetonitrile:
water in a ratio of (2:1:1 volume/volume), that was added to
serum and mixture was vortexed, followed by incubation at
−20◦C for an hour, samples were then spun at 4◦C for 5min
at 8,000 rpm. Supernatants analyzed by LC-MS/MS. Each
sample (10 µL) was injected individually into Hypersail gold
high-performance liquid chromatography (HPLC) column
(150 × 4.6 mm, 5 µm) with a flow rate of 0.250 ml/min and
mobile phase A 0.1% formic acid in 99.9% acetonitrile formic
acid (0.1%, volume/volume) and mobile phase B is 0.1% formic
acid in MilliQ. Mass Spec parameter performed as an earlier
report (34). Raw data processed using the online XCMS database
(35). Isotopic peaks were integrated using the CAMERA (36).
Metabolites were searched using the METLIN database (37)
and the pathway analysis done with the help of MetaboAnalyst
3.0 (38).

Statistical Analysis
Statistical analyses using unpaired, two-tailed t-tests were
performed in GraphPad software Prism version 8.0.1 (GraphPad
Software, La Jolla California USA, www.graphpad.com). The data
were presented as a mean ± standard error of the mean (SEM).
The level of significance was given at p ≤ 0.05.

RESULTS

Transcripts Profiling Changes Between
Obese and Non-obese BC Patients
The RNA-seq study included 21 female patients newly diagnosed
with BC and before they underwent any treatment. The non-
obese and obese BC patients were significantly different in the
BMI, waist and hip circumference (Table 1). Conversely, non-
obese and obese BC patients did not show any significant
differences with general and clinicopathological characteristics
(Supplementary Tables S1, S2). The extracted RNA from whole
blood subjected for RNA-seq assay. The RNA-seq data detected
a total of 31,698 RNA transcripts; among them, a total
of 2,372 transcripts were found significantly dysregulated in
obese BC patients compared with non-obese BC patients, of
which 1,737 upregulated and 635 downregulated transcripts
(Table 2). Moreover, 186 DEGs at the highly significance
level (p ≤ 0.001) were identified, comprising 156 upregulated
and 30 downregulated transcripts (Supplementary Table S3),
furthermore, 31 DEGswere found as themost highly significantly
(p ≤ 0.0001), of which 23 upregulated and 8 downregulated
transcripts (Table 3). Among all identified DEGs; placenta
growth factor (PGF) was the most downregulated gene with a
logFC of −5.52, while adenylate cyclase type 1 (ADCY1) was the
most upregulated gene with a logFC of 5.52 in obese BC patients
compared with non-obese BC patients.

Gene Ontology Enrichment, Pathway
Analysis and RNA Co-expression Network
of Circulating Transcriptomic Data
GO enrichment and KEGG pathway analysis of the highly
significantly DEGs were performed to identify the gene
product enrichment in various GOs categories and determine
the DEGs functions. Deregulated genes were enriched in
234, 1,058, 126 targets in the GO molecular function, GO
biological process and GO cellular component, respectively. As
shown in Figures 2A–C, the highest enriched GO’s targeted
were associated with the mitotic sister chromatid segregation
(GO:0000070) in the GO biological process analysis. Meanwhile,
the majority of the transcripts were stimulated patched binding
(GO:0005113) in the GO molecular function analysis and
related to the condensed nuclear chromosome kinetochore
(GO:0000778) in the GO cellular component analysis. In the
KEGG pathway analysis, there were 125 pathways for which
the DEGs were enriched (Supplementary Table S4), the most
predominant pathways being the cell cycle, one carbon pool
by folate, progesterone-mediated oocyte maturation, vitamin B6
metabolism, homologous recombination, oocyte meiosis, p53
signaling pathway, Fanconi anemia pathway, cellular senescence,
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FIGURE 4 | Untargeted metabolomics of obese and non-obese BC patients. (A) Total ion chromatogram of two groups in triplicates. (B) Two dimensional PCA score

plot with experimental triplicate between samples. (C) Three-dimensional PLS-DA score plot between individual samples. (D) Significant metabolic features are

marked in respective retention time and spot size indicates its abundance. PCA, principal component analysis; PLS-DA, partial least squares–discriminant analysis;

OBS, obese BC.

and notch signaling pathway (Figure 2D). The co-expression
network was constructed to investigate the potential interaction
among DEGs in obese BC compared with the non-obese BC
patients. The DEGs interacted with 46 genes by 2,863 total links
(Figure 2E). Therefore, each DEG correlates with a large number
of mRNA targets, suggesting that the interconnection between
DEGs and mRNAs may related to obesity.

Validation of the Transcriptomic Data via
Investigated OLFM4 Expression Level in
Large BC Cohort
Based on our RNA-seq data, the olfactomedin-4 (OLFM4) was
chosen as it was among the most highly significant DEGs that
altered. In addition, previous studies suggested a role of OLFM4
in immune cells and associate with increased risk of human
cancers (39, 40). The expression level of OLFM4 was measured
in a large validation cohort of BC patients (36 obese BC vs. 33
non-obese BC). From our RNA-seq data, the OLFM4 had an
increased expression level in obese BC as compared with non-
obese BC patients (3.47-folds; p< 0.0001).Moreover, the OLFM4

was still highly significantly upregulated (10.74-folds; p< 0.0001)
in obese BC compared with non-obese BC patients in a large
validation cohort (Figure 3). Therefore, the validation results
showed concordance with the RNA-seq trend.

Untargeted Metabolomics of Circulating
Metabolites of Obese BC and Non-Obese
BC Patients
We performed the metabolic study in obese BC patients
and compared it with the non-obese BC, selected among the
same RNA-seq patients using untargeted LC-MS/MS-based
metabolomics. After analyzing the feature peaks, 173 features
were detected in ESI+ mode. Two-dimensional principal
component analysis (PCA) and three dimensional partial
least squares-discriminant analysis (PLS-DA) models score
plots of all samples showed no outliers in our study and
revealed a significant difference in metabolomics between
obese BC and non-obese BC samples (Figures 4A–D). We
identified 173 metabolites, of which, 100 were downregulated
while 73 metabolites were upregulated in obese BC compared
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FIGURE 5 | Correlation of the metabolomics data. (A) Each metabolite in the square represent the Spearman’s correlation coefficient between (r2) are calculated

between each metabolite across all metabolites. Metabolite order is determined as in hierarchical clustering. Self-correlations are identified in red. (B) HCA-heatmap

analysis showing positive (red) and negative (blue) comparison metabolites of obese BC (green) and non-obese BC (red) patients. P ≤ 0.05 for all the metabolites

OBS, obese BC.

with non-obese BC patients. Among these, 96 metabolites
were significantly different (Supplementary Table S5), with
36 upregulated and 60 downregulated metabolites. The
Spearman’s correlation coefficient of the metabolomics
data was evidenced by metabolites self-correlations
(Figure 5A). However, in the hierarchical cluster analysis
(HCA)-heatmap for the differential metabolites, the obese
BC samples clustered and separated from non-obese
BC (Figure 5B).

Pathway Enrichment Analysis of
Deregulated Circulating Metabolites
The differential metabolites between obese BC and non-
obese BC samples were used for pathway enrichment
analysis. A total of 56 metabolic pathways were shown to
be enriched in obese BC compared with non-obese BC patients
(Supplementary Figure S1 and Supplementary Table S6),
mainly involved in lipid, carbohydrate, and amino acid
metabolism. As well as oxidative phosphorylation, and
some other metabolic pathways, such as urea cycle,
ammonia recycling, vitamins metabolism, etc. (Figure 6),
which play important roles in ATP generation and
cancer cell proliferation and metastasis, therefore, some
can be utilized as novel therapeutic targets for cancer
therapy (41).

The most important upregulated functionally metabolites
were related to epigenetic as well as metabolic pathways that
are involved in energy metabolism and cell proliferation such as

amino acid and citric acid cycle. Furthermore, the upregulated
neurotransmitters metabolites as serotonin, histamine, and
acetylcholine may play a different role in the immune system
(Table 4).

Integration Analysis of Transcriptomic and
Metabolomic Data
To provide more comprehensive understanding for the
association between obesity and BC, the transcript–metabolite
interaction network was generated for DEGs and the deregulated
metabolites, in obese vs. non-obese BC samples. This provides
a visualization of the interactions between functionally related
metabolites and genes identified from transcriptomics and
metabolomics. The gene–metabolite interaction consists of
65 nodes connected via 91 edges (Figure 7A). Furthermore,
integration analysis at the pathway level was undertaken.
Seven pathways were enriched during the integration of
both transcriptomics and metabolomics data, that includes
glutathione metabolism, glycine and serine metabolism, valine,
leucine, and isoleucine degradation, purine metabolism,
pyrimidine metabolism, thyroid hormone synthesis, and
vitamin B6 metabolism (Figure 7B). The DEGs that relate to
the integration pathways including RRM2, PSAT1, ADCY1,
PAICS, TYMS, and BCAT1 were significantly upregulated,
whereas the GPX3 gene was significantly downregulated. While,
the differentially accumulated metabolites FAD, L-leucine,
and carbamoyl phosphate, were significantly downregulated,
whereas ornithine, dihydrouracil, and thymine metabolites,
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FIGURE 6 | The top 50 enriched pathway analysis of significant differential accumulated metabolites between obese and non-obese BC patients.

were significantly upregulated in obese compared to non-
obese BC samples (Supplementary Table S7). Overall, the
integration analysis successfully identified pathways and its
related metabolites that can widely affect the functions of
immune cells in obese BC patients.

DISCUSSION

Transcriptomics and metabolomics reflect changes in genotype
and phenotype, respectively and provide complementary
information about genetic alteration, protein synthesis,
metabolisms and cellular function (42, 43). Many studies
focused on the differential transcripts and metabolites and their
functional attributes to understanding the disease’s biological
interaction. It has been revealed that differentially expressed
genes that lead to bio-fluid metabolome change may significantly

contribute to the initiation and progression of many types
of diseases including obesity and BC (44–47). Currently, the
most widely techniques that are used to differentiation in
the transcriptomic and metabolomic profiles are RNA-seq,
LC-MS/MS, respectively (48, 49). Over the last few years, several
transcriptomic and metabolomic studies identified the variation
in transcripts and metabolites profiles related with diseases such
as obesity and BC compared with non-obese and healthy control
cases, respectively, to understand the mechanisms of disease
initiation and progression as well as to biomarker identification
to deduce the onset and progression of cancer (16, 20, 21, 50–55).
Furthermore, other studies have performed the integration
between transcriptomic and metabolomic data (14, 56–58).
Interestingly, the molecular mechanisms underlying the
association between obesity and BC risk are not well-understood
and still unclear (18). In an effort to reduce the knowledge gap, we
performed these experiments to clarify the potential relationship
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TABLE 4 | Metabolites identified in obese BC compared with non-obese BC

patients.

Category Compound Log2FC p-value

Metabolite

involved in

epigenetic

Ornithine 2.42 <0.0001

7-Methyladenine 2.40 <0.0001

2-Oxoarginine 1.74 <0.0001

Metabolite

involved in

citric acid

cycle

L-Carnitine 1.83 <0.0001

Glycerol 3-phosphate 2.38 <0.0001

L-2-Hydroxyglutaric

acid

0.71 0.0004

Pentanoyl-CoA −1.95 0.0001

Amino acid

metabolism

Ornithine 2.42 <0.0001

2-Oxoarginine 1.74 <0.0001

Serotonin 0.73 0.0003

Histamine 0.76 0.003

Tryptophan 0.42 0.024

L-Homoserine 0.44 0.038

D-Leucine 2.34 <0.0001

3-Hydroxyphenylacetic

acid

−4.97 <0.0001

Carbamoyl phosphate −1.36 0.0001

FAD −2.28 0.0002

Epinephrine −0.33 0.0003

Creatinine −0.40 0.01

Cholesterol

and fatty acid

metabolites

25-Hydroxycholesterol 2.31 <0.0001

Cholestenone −7.85 <0.0001

TG[16:0/14:1(9Z)/

18:4(6Z,9Z,12Z,15Z)]

−1.52 0.0006

Alpha-Linolenic acid −0.77 0.002

Hexanoyl-CoA −1.71 0.0004

Neurotransmitters Epinephrine −0.33 0.0003

Serotonin 0.73 0.0003

SM[d19:1/24:1(15Z)] 6.55 0.0008

Histamine 0.76 0.003

Acetylcholine 0.55 0.007

FC, fold change.

between obesity and BC by the integration of the peripheral
blood differential transcriptomic and metabolomic profiles at
the pathway level. Noteworthy, to the best of our knowledge, the
approach to our study between obese and non-obese BC patients
has not been previously applied. Furthermore, the outcomes of
the above-referred transcriptomics and metabolomics studies
deals with healthy non-obese cases vs. obese patients, as well as
with healthy control cases vs. BC patients were different from
our findings of transcriptomics and metabolomics investigation
as well as their integration, in obese compared with non-obese
BC patients.

In this study, during the comparison of gene expression levels
among obese and non-obese BC patients, we identified 2,272
significant DEGs, of which 1,737 transcripts were upregulated
and 635 transcripts were downregulated in obese BC. GO

analysis and co-expression networks of DEGs were performed
to delineates the molecular mechanism and identify interactions
among the discovered genes. Unique deregulated transcripts
were enriched in different cellular pathways such as: cell
cycle, one carbon pathway, homologous recombination cellular
senescence, P53, and notch signaling pathway, in obese BC
patients when compared with non-obese BC patients. Therefore,
DEGs might essentially contribute to the initiation and/or
development of obesity that may lead to BC initiation and/or
progresses. These findings were different from previously
reported studies; such as the Merdad et al., transcriptomics study
in the tissue of BC patients compared with normal controls that
observed downregulated genes associated with lipid metabolism
pathway (20). Additional to Sun et al., transcriptomics study
that reveled three deregulated long non-coding RNA (lncRNA)
(lncRNA-p5549, lncRNA-p21015, and lncRNA-p19461) in the
circulation of obese vs. non-obese individuals (51).

The expression pattern of OLFM4 has been differentially
reported among tissues type (59). According to the human
protein atlas, the OLFM4 was mainly expressed in the
gastrointestinal tract, bone marrow, and immune system.
Albuquerque et al. (60) demonstrated that OLFM4 was
upregulated in obese children. Moreover, OLFM4 was also highly
expressed in colon, breast, and lung cancerous tissues (61),
where it inhibits apoptosis and promotes cancer cell proliferation,
suggesting it may serve as a diagnostic marker or a therapeutic
target for human cancers (39). Our findings revealed that OLFM4
was upregulated in the blood of obese BC as compared with non-
obese BC patients. Therefore, the OLFM4 was upregulated in
blood immune cells in obesity with BC, suggesting that it may
play a unique role in immune cells and associated with increased
risk of BC (39, 40).

On the other hand, untargeted metabolome analysis
was performed in serum samples selected among the same
RNA-seq patient populations. We detected a total of 96
circulating metabolites deregulated in obese BC patients when
compared to non-obese BC patients, enriched in 56 metabolic
pathways, mainly involved in cellular functions regulation
and playing an important roles in ATP generation, cancer cell
proliferation, and metastasis, therefore, it can be used as novel
therapeutic agents for cancer therapy (41). Moreover, the most
important upregulated metabolites that act as epigenetic, play an
immunoregulatory role and involved in energy metabolism and
cell proliferation.

Finally, the integration analysis between transcriptomic
and metabolomic data at the pathway level provided a
visualization of the interactions between DEGs and differentially
metabolites. Collectively, deregulated obesity-associated genes
and metabolites involved in changes of pathways, effective cancer
cells metabolic programs, and increase BC risk (62). Data
integration revealed novel seven uniquely enriched pathways
in obese BC patients when compared with non-obese BC
patients. The glutathione metabolism as one of the integrated
metabolism, utilized FAD in the glutathione biosynthesis, which
promotes tumor progression, metastasis, and protects cancer
cells (63). Interestingly, downregulation of FAD metabolite
and glutathione peroxidase 3 (GPX3) was detected in obese
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FIGURE 7 | Integration of transcriptomic and metabolomic data. (A) The transcript–metabolite interaction network of the integration network consists of 65 nodes

connected through 91 edges. Nodes in orange indicated differential metabolites and nodes in gray indicated DEGs related to each metabolite. (B) Venn diagram of

the transcriptomic and metabolomic enriched pathway.

BC patients. GPX3 protein protects the cells against oxidative
damage, thereby the low expression of GPX3 was associated with
breast carcinogenesis (64). Free amino acids as glycine, serine,
and branched-chain amino acid (BCAA) were associated with
obesity and various types of cancer including BC. Glycine and
serine metabolism provides the essential precursors for proteins
and nucleic acid biosynthesis (65–67). The phosphoserine
aminotransferase 1 (PSAT1) and branched-chain amino acid
transaminase 1 (BCAT1) were upregulated in many carcinoma

tissues and associated with cell proliferation (67, 68). PSAT1
and BCAT1, which played an important enzymatic role in
serine metabolism and BCAA degradation, respectively, were
found to be upregulated in obese BC patients. Ribonucleotide
reductase regulatory subunit M2 (RRM2), an enzyme involved
in dNTP production, increased dNTP pools and related with
purine and pyrimidine metabolism (69) is tumorigenic and
upregulated in cancer cells (70), was also found to be upregulated.
The dysregulation of the purine metabolism pathway was
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also demonstrated in the integration of metabolomic and
transcriptomic data of BC patients compared with healthy
subjects, which might affect the BC progression (57). All these
findings, could enhance the integration between transcripts and
metabolomics and provided resistance for BC cell to dodge the
circulating immune cells of whole blood.

In conclusion, our results demonstrate alteration in pathways
at transcriptome andmetabolome level in obese BC patients. This
may suggest that obesity-associated transcripts and metabolites
reveals alteration in metabolic pathway networks and rewire
metabolic programs in cancer cells. This information could
provide an important tool in research and may add to the
knowledge on the molecular interaction between obesity and BC.

There are some limitations in this work, including a small
sample size in metabolomic analysis. In addition, the quantity
of blood RNA in samples depended mainly on the content of
white blood cells. Therefore, the volume of our blood samples
may contain limited amount of circulating RNAs. Further
control cross-sectional studies using healthy obese and non-
obese patients as well as increase in metabolomics sample size,
will be conducted in the near future. Finally, the identification
of OLFM4 expressing immune cells and the functional role of
OLFM4 in immune cells need further investigation.
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