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The growth and metastasis of malignant tumors benefit from the formation of blood

vessels within the tumor area. There, new vessels originate from angiogenesis (the

sprouting of pre-existing neighboring vessels) and/or vasculogenesis (the mobilization of

bone marrow-derived endothelial cell precursors which incorporate in tumor vasculature

and then differentiate into mature endothelial cells). These events are induced by soluble

molecules (the angiogenic factors) and modulated by endothelial cell interactions with the

perivascular matrix. Given angiogenesis/vasculogenesis relevance to tumor progression,

anti-angiogenic drugs are often employed to buttress surgery, chemotherapy or radiation

therapy in the treatment of a wide variety of cancers. Most of the anti-angiogenic

drugs have been developed to functionally impair the angiogenic vascular endothelial

growth factor: however, this leaves other angiogenic factors unaffected, hence leading

to drug resistance and escape. Other anti-angiogenic strategies have exploited classical

inhibitors of enzymes remodeling the perivascular matrix. Disappointingly, these inhibitors

have been found toxic and/or ineffective in clinical trials, even though they block

angiogenesis in pre-clinical models. These findings are stimulating the identification of

other anti-angiogenic compounds. In this regard, it is noteworthy that drugs utilized

for a long time to counteract human immune deficiency virus (HIV) can directly and

effectively hamper molecular pathways leading to blood vessel formation. In this review

the mechanisms leading to angiogenesis and vasculogenesis, and their susceptibility to

anti-HIV drugs will be discussed.

Keywords: tumor vasculature, angiogenesis, vasculogenesis, HIV-protease inhibitors, HIV-reverse transcriptase

inhibitors, CXCR4 antagonists, AKT

INTRODUCTION

Human Immunodeficiency Virus (HIV) is the etiologic agent of Acquired Immune Deficiency
Syndrome (AIDS), a deadly disease characterized by a profound upheaval of the immune system
and the consequent increased risk of developing infectious illnesses and tumors (1).

HIV life cycle is mediated by cellular and viral proteins: among the latter, the reverse
transcriptase, integrase and aspartyl protease enzymes are key for HIV replication and
infectivity (2).

Briefly, HIV infection begins when the gp120 protein of the viral envelope binds to the
CD4 receptor on T cell surface (2). This is followed by gp120 interaction with a co-receptor
(most often a chemokine receptor), and HIV entry into the cell (2). Thereafter, the HIV reverse
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transcriptase copies the viral RNA genome into the viral DNA,
which is integrated into host cell genome by the HIV integrase,
and then transcribed intomessenger RNA (2). Subsequently, HIV
transcripts are translated into HIV envelope proteins and the
fused precursors of HIV capsid and polymerase proteins: this
gives rise to the production of immature, non-infectious viral
particles that “bud” from infected cells (2). Finally, the HIV
aspartyl protease cleaves the fused capsid-polymerase proteins
into the functional polypeptides, and HIV matures becoming
infectious (2).

Survival of HIV-positive individuals has been greatly extended
by the combined Anti-Retroviral Therapy (cART), which has
rendered HIV infection a chronic disease (3).

cART results from the mix of drugs inhibiting the HIV reverse
transcriptase, integrase or aspartyl protease (3).

In particular, HIV-reverse transcriptase inhibitors halt the
synthesis of viral DNA (3), and are available in three forms:
(a) nucleoside analog reverse transcriptase inhibitors, which
are modified deoxynucleotides analogs competing with natural
deoxynucleotides for incorporation in the HIV DNA that is
being synthesized; (b) nucleotide analog reverse transcriptase
inhibitors, that are phosphonate deoxynucleotides analogs again
competing the incorporation of natural deoxynucleotides in the
forming HIV DNA; (c) non-nucleoside reverse transcriptase
inhibitors, which bind to the allosteric sites of HIV-reverse
transcriptase, thereby hampering its function (Table 1) (3).
Nowadays, a HIV-reverse transcriptase inhibitors-based cART
containing the nucleotide analog tenofovir, the nucleoside analog
emtricitabine and the non-nucleoside efavirenz is recommended
as first-line treatment of HIV infection (6).

Among the antagonists of HIV integrase, the integrase strand
transfer inhibitors impair HIV replication by preventing the
insertion of HIV DNA into the host cell genome (Table 1): these
drugs are in established use, especially in patients who have
acquired resistance to other cART components (3).

For their part, HIV-protease inhibitors block the active
site of HIV aspartyl protease, thus impeding the processing
of HIV capsid-polymerase polyproteins and, consequently, the
generation of mature, infectious HIV particles (4) (Table 1).
To date, 10 HIV-protease inhibitors have been approved for
therapeutic use in humans: saquinavir, indinavir, ritonavir,
nelfinavir, lopinavir, amprenavir and its derivate fosamprenavir,
atazanavir, tipranavir, and darunavir: all of them (but tipranavir)
mimic HIV protease substrate (4). At the present time, darunavir
or atazanavir are themost usedHIV-protease inhibitors: whereas,
saquinavir and indinavir are no longer employed because of their
low solubility, and ritonavir is used only to increase the half-life of
other HIV-protease inhibitors, due to its capability of inhibiting
cytochrome P450 3A4 (4).

Abbreviations: AIDS, Acquired Immune Deficiency Syndrome; cART, combined

Anti-Retroviral Therapy; CXCL12, CXC chemokine ligand 12; CXCR4, CXC

chemokine receptor 4; eNOS, endothelial nitric oxide synthase; HIF, hypoxia

inducible transcription factor; HIV, human immunodeficiency virus; MAPK/ERK,

mitogen-activated protein kinases/extracellular-signal-regulated kinases;

MMP, matrix metalloproteinase; NF-kB, Nuclear Factor-kappa B; PI3K/AKT,

phosphoinositide3-kinase/protein kinases B; TIMP, tissue inhibitor of matrix

metalloproteinase; VEGF, vascular endothelial growth factor.

TABLE 1 | Anti-HIV drugs approved for clinical use, and their mechanism of

action.

Class Names Mechanism of action

Nucleoside analog of

HIV-reverse

transcriptase inibitors

Zidovudine, stavudine,

lamivudine, abacavir,

emtricitabine

Compete with natural

deoxynucleotides for

incorporation in the

forming HIV DNA (3)

Nucleotide analog of

HIV-reverse

transcriptase inibitors

Tenofovir, adefovir Compete with natural

deoxynucleotides for

incorporation in the

forming HIV DNA (3)

Non-nucleoside

HIV-reverse

transcriptase inhibitors

Efavirenz, nevirapine,

delavirdine, etravirine,

rilpivirine, doravirine

Hamper the function of

HIV-reverse

transcriptase by binding

to its allosteric sites (3)

Integrase strand transfer

inhibitors

Raltegravir, eviltegravir,

dolutegravir

Bind to the active site of

HIV integrase, thereby

inhibiting its function (3)

HIV-protease inhibitors Saquinavir, indinavir,

ritonavir, nelfinavir,

amprenavir, atazanavir,

darunavir

Mimic the substrate of

HIV protease (4)

CXCR4 antagonists AMD3100 Compete either HIV or

CXCL12 binding to

CXCR4 (5)

Here are listed the names, class and mechanism of action of anti-HIV drugs approved for

clinical use. In square brackets are references with specific information.

Consistent with chemokine receptor capability of working
as HIV co-receptors, the CXC chemokine receptor 4 (CXCR4)
antagonist AMD3100 efficiently reduces virus entry into target
cells (Table 1), and it is then administered to HIV-positive
individuals (5).

As such, these therapeutic regimens efficiently suppress HIV
replication, thus improving the patients’ immune functions (3).

Strikingly, results from epidemiological studies indicate
that treatment of HIV-infected individuals with HIV-protease
inhibitors and/or HIV-reverse transcriptase inhibitors has also
reduced the incidence and/or clinical progression of AIDS-
defining tumors such as Kaposi’s sarcoma, non-Hodgkin
lymphoma or uterine cervical carcinoma (7, 8). Moreover,
chemokine receptor antagonists have been reported to be
effective in the treatment of non-AIDS defining hematological
malignancies affecting HIV-infected patients (9).

Definitely, the anti-tumor effects of cART are helped by
the capability that this therapeutic regimen has to promote
immune reconstitution by suppressing HIV replication (7, 8).
Nevertheless, drugs present in cART and employed in the
treatment of HIV-positive, immune-deficient patients have been
found to exert anti-tumor activities also in HIV-negative,
immune-competent individuals (7, 8, 10–22). Moreover, the
HIV-protease inhibitors, HIV-reverse transcriptase inhibitors or
chemokine receptor antagonists have been shown to directly
impair the survival, growth, invasion and/or locomotion
of tumor cells in HIV-free pre-clinical models (23–39).
Interestingly, in some cancer cell types the cytostatic effect of
HIV-protease inhibitors or HIV-reverse transcriptase inhibitors
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has been accompanied by the induction of cell differentiation
and, eventually, by the acquisition of an immunogenic phenotype
(7, 30, 31, 40). In addition, the inhibitors of HIV protease or
reverse transcriptase and the antagonists of chemokine receptors
have been reported to sensitize cancer cells to anti-tumor
chemotherapeutics or ionizing radiations both in vitro and in vivo
(32, 41–48).

In contrast, it is not currently known whether the inhibitors of
HIV-integrase possess direct anti-tumor activities. Furthermore,
the impact that these drugs may have on cancer incidence or
progression has not been clearly established (49, 50).

The mechanisms responsible for the anti-tumor activities of
HIV protease inhibitors, HIV reverse transcriptase inhibitors or
chemokine receptor antagonists include the block of signaling
pathways, transcription factors, enzymes, cytokines or growth
factors which are deeply involved in tumor development and/or
progression (23–39, 41–48).

Noteworthy, many the abovementioned molecules or
mechanisms are employed by endothelial or stromal cells to
generate blood vessels (51). Consistently, the inhibitors of
HIV protease or reverse transcriptase and the antagonists of
chemokine receptors have also been shown to counteract tumor
vascularization in a variety of pre-clinical models.

In particular, results from early animal studies have indicated
that the HIV protease inhibitors indinavir or saquinavir can
directly block angiogenesis, that is the sprouting of new blood
vessels from pre-existing ones (52). Later, also other HIV protease
inhibitors including ritonavir, nelfinavir or amprenavir have
been found capable of inhibiting angiogenesis in vivo (53, 54),
and the anti-angiogenic effect of indinavir or saquinavir has
been confirmed in mouse xenografts of highly prevalent human
tumors (27). In the meantime, in vitro work has unraveled some
of the molecular mechanisms responsible for the anti-angiogenic
effect of HIV-protease inhibitors (55–59).

Studies evaluating the impact of HIV-reverse transcriptase
inhibitors on angiogenesis aremore recent than those concerning
HIV-protease inhibitors. Results from those studies indicate
that HIV-reverse transcriptase inhibitors including zidovudine,
stavudine, efavirenz, lamivudine, emtricitabine, abacavir
or tenofovir hamper endothelial cell survival, growth and
locomotion in vitro and angiogenesis in vivo (60–63).

At variance with the inhibitors of the HIV protease or reverse
transcriptase, the effect that HIV integrase inhibitors could have
on angiogenesis has not yet been evaluated.

The discovery of the anti-angiogenic activity of chemokine
receptor antagonists is quite novel. In particular, studies on
this topic mostly refer to CXCR4 that, in addition to work as
a co-receptor for HIV entry into target cells (5), is bound by
the pro-angiogenic CXC chemokine ligand 12 (CXCL12) (64,
65). Consistent with the fact that both CXCR4 and CXCL12
are highly expressed in tumor tissues where their interaction
plays a major role in the formation of new vessels, the CXCR4
antagonist AMD3100, which is employed in anti-HIV therapies,
can counteract angiogenesis either in vitro or in animal models of
human tumors (64–67).

Given that newly formed blood vessels nourish the growing
cancer mass and furnish a portal for its metastasis, the

anti-angiogenic properties of anti-HIV drugs constituting cART
are likely to strongly contribute to the anti-tumor activity of this
curative procedure (7, 8, 62, 68).

This considered, the present review is focused on the
cellular events or molecular pathways which make HIV-protease
inhibitors, HIV-reverse transcriptase inhibitors or CXCR4
antagonists capable of impairing the formation of new vessels
that accompanies and favors tumor progression.

EFFECT OF HIV-PROTEASE INHIBITORS
OR HIV-REVERSE TRANSCRIPTASE
INHIBITORS ON PRO-ANGIOGENIC
SIGNALING PATHWAYS

In the adult organism, endothelial cells lining the blood vessel
lumen have a low proliferative rate: this is due to their tight
intercellular junctions or anchorage to the basement membrane,
and to the cytostatic stimulus they receive from vascular smooth
muscle cells or pericytes surrounding the vessel externally
(69, 70). Under these condition, endothelial cells can remain
quiescent for years.

However, upon tissue hypoxia or damage and inflammation,
endothelial cells are activated and new vessels are eventually
formed. In most cases, this occurs through angiogenesis, a
multi-step process affecting pre-existing neighbor vessels: there,
vascular smooth muscle cells are detached and endothelial cells
degrade the basement membrane, migrate in the perivascular
space and proliferate, forming cellular cords that will ultimately
differentiate into hollow tubes (69, 70).

Hypoxia and inflammation can occur at the same time in
tumors. In particular, as the tumor grows, cells located in its
central regions become distant to the neighboring vessels, being
deprived of oxygen or nutrients, and undergo necrosis (69).

Necrotic tumor cells release the high-motility-group-box
1 nuclear protein, which induces the Nuclear Factor-kappa
B (NF-kB) transcription factor to activate the expression of
inflammatory chemokines (71) (Figure 1). The latter, in turn,
recruit to the tumor site macrophages and leukocytes releasing
pro-angiogenic factors (69). In this regard, it has to be highlighted
that HIV-protease inhibitors including lopinavir, nelfinavir or
ritonavir can impair NF-kB activation in endothelial cells
(72) (Figure 1, Table 2). Moreover, saquinavir, indinavir and
atazanavir are capable of inhibiting both the expression of high-
mobility-group-box 1 protein and the activation of NF-kB (73,
76, 98) (Table 2). In contrast, the HIV-reverse transcriptase
inhibitors tenofovir and zidovudine have no effect on NF-kB
activity (101), while efavirenz even increases it (102) (Table 3).

In tumor central areas also the hypoxia inducible transcription
factor (HIF)-1 is activated, directly promoting the expression
of angiogenic factors (69, 112) (Figure 1). While HIV-reverse
transcriptase inhibitor impact on HIF-1 is currently uncharted,
the HIV-protease inhibitors amprenavir, nelfinavir, saquinavir or
ritonavir are known to down-regulate HIF-1 expression in both
normal and tumor cells (54, 55, 59) (Figure 1, Table 2).

Vascular endothelial growth factor (VEGF)-A, basic
fibroblast growth factor, platelet derived growth factor-BB
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FIGURE 1 | The impact of anti-HIV drugs on the molecular pathways of angiogenesis. In the rectangles are shown the main signaling pathways and molecules leading

to new blood vessel formation; in ellipses and pentagons are reported the antagonist and agonist effects, respectively, that anti-HIV drugs exert on the angiogenic

molecules or pathways. Ritonavir has been selected among the HIV-protease inhibitors, while zidovudine is the representative of the HIV-reverse transcriptase

inhibitors, because both of these drugs are endowed with several anti-angiogenic activities. The chemokine receptor antagonist AMD3100 has been mentioned since

it is currently employed in either anti-HIV or anti-cancer therapy. AMD, AMD3100; AZT, zidovudine; FAO, fatty acids oxidation; HIF, hypoxia-inducible factor; HMGB,

high mobility group box; MMP, matrix metalloproteinase; mTOR, mammalian-target-of-rapamycin; NF-kB, nuclear factor-kappa B; NO, nitric oxide; pAKT,

phosphorylated protein kinase B; pERK, phosphorylated extracellular-signal-regulated kinases; RTV, ritonavir; TIMP, tissue inhibitor of matrix metalloproteinase; VEGF,

vascular endothelial growth factor; VEGFR2, type 2 vascular endothelial growth factor receptor.

and angiopoietin−1 and−2 are among the angiogenic factors
produced by cancer cells, stromal cells or tumor-infiltrating
immune cells upon HIF or NF-kB activation (69). By promoting
vasodilatation and vascular smooth muscle cell detachment,
angiopoietin-2 triggers the initiation of angiogenesis; whereas,
angiopoietin-1 or platelet derived growth factor-BB mediates
its termination, and VEGF-A or basic fibroblast growth factor
promotes all the steps of the angiogenic process (69). Actually,
the principal mediator of tumor angiogenesis is VEGF-A, which
is produced either in inflammatory-driven or ischemia-induced
angiogenesis, since it has response elements for both NF-kB
and HIF-1 in its promoter region (69) (Figure 1). Consistent
with their inhibitory effect on HIF-1 and NF-kB, the HIV-
protease inhibitors ritonavir, nelfinavir or amprenavir reduces
VEGF production (54, 55, 59, 77), while indinavir cannot (113)
(Figure 1, Table 2).

Angiogenic factors exert their actions by binding to
specific receptors whose intracellular domain contains a
tyrosine kinase that auto-phosphorylates upon ligand binding
(114). The most important receptor in angiogenesis is the
type 2 VEGF receptor (114): noteworthy, HIV-reverse
transcriptase inhibitors including zidovudine, tenofovir and
lamivudine block the activation of either type 2 VEGF receptor

or basic fibroblast growth factor receptor in endothelial
cells (62) (Figure 1, Table 3).

The binding of an angiogenic factor to its receptor activates
signaling pathways such as the mitogen-activated protein kinases
(MAPK)/extracellular-signal-regulated kinases (ERK) and/or the
phosphoinositide 3 kinase (PI3K)/ protein kinase B (AKT) (114)
(Figure 1).

Activation of the MAPK/ERK pathway leads to endothelial
cell proliferation (115). The HIV-reverse transcriptase
inhibitors zidovudine, lamivudine or tenofovir weaken ERK
phosphorylation promoted in endothelial cells by VEGF-A (62)
(Figure 1); whereas, efavirenz activates MAPK in endothelial
cells (102) (Table 3).

The HIV-protease inhibitors ritonavir, saquinavir, lopinavir
or indinavir have definitely proven to counteract this
signaling pathway (74, 77, 96), while nelfinavir inhibits it
in some cell types but not in others (89, 90) (Figure 1,
Table 2).

The AKT cascade is activated by PI3K, an enzyme having
different isoforms of whom p110α is selectively required for
angiogenesis (112).

PI3K generates the phosphatidylinositol (3,4,5)triphosphate
which recruits AKT to the cellular membrane: there, the
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TABLE 2 | Anti-angiogenic effect of HIV-protease inhibitors: molecular targets.

HIV protease

inhibitor

Mechanism(s) of action and

molecular targets

Experimental models

Indinavir Effect on angiogenic molecules:

NF-kB, HMGB-1, MAPK or MMP

inhibition. eNOS shutdown in

some cell types but not in others.

No effect on VEGF, AKT, mTOR or

GLUT-1.

Pre-clinical (in vitro and in

vivo) and clinical

(27, 52, 57, 73–75)

Effect on anti-angiogenic

molecules: TIMP up-regulation

Saquinavir Effect on angiogenic molecules:

NF-kB, HIF-1, MAPK, AKT, eNOS

or MMP inhibition. Increase in

mTOR.

Pre-clinical (in vitro and in

vivo) and clinical

(11, 27–29, 52, 72, 76–80)

Effect on anti-angiogenic

molecules: no effect on TIMPs

Ritonavir Effect on angiogenic molecules:

NF-kB, HIF-1, VEGF, MAPK, AKT,

eNOS, mTOR, MMP, GLUT-1 or

FAO inhibition.

Pre-clinical (in vitro and

in vivo) and clinical (23, 28,

29, 53, 59, 72, 77, 79–88)

Effect on anti-angiogenic

molecules: TIMP up-regulation

Nelfinavir Effect on angiogenic molecules:

NF-kB, HIF-1, VEGF, AKT, eNOS,

or mTOR inhibition. MMP or

MAPK inhibition in some cell

types, but not in others. No effect

on FAO.

Pre-clinical (in vitro and

in vivo) and clinical

(23, 54, 55, 72, 75, 77,

80, 86, 89–95)

Effect on anti-angiogenic

molecules: TIMP up-regulation

Lopinavir Effect on angiogenic molecules:

NF-kB, MAPK, AKT, eNOS, MMP,

or FAO inhibition. No effect on

mTOR.

Pre-clinical (in vitro and

in vivo)

(12, 25, 58, 83, 96, 97)

Effect on anti-angiogenic

molecules: no effect on TIMPs

Atazanavir Effect on angiogenic molecules:

NF-kB, HMGB-1, eNOS or FAO

inhibition. No effect on MAPK or

GLUT-1.

Pre-clinical (in vitro)

(58, 88, 98)

Effect on anti-angiogenic

molecules: unknown

Amprenavir Effect on angiogenic molecules:

HIF-1, VEGF, AKT, MMP, or eNOS

inhibition. No effect

on NF-kB.

Pre-clinical (in vitro and in

vivo) and clinical

(54, 79, 99)

Effect on anti-angiogenic

molecules: unknown

Darunavir Effect on angiogenic molecules:

MMP or FAO inhibition. No effect

on NF-kB, AKT, or eNOS.

Pre-clinical (in vitro)

(88, 100)

Effect on anti-angiogenic

molecules: unknown

Here are summarized the effects that HIV-protease inhibitors approved for clinical use

have on molecules triggering or arresting angiogenesis. AKT, protein kinase B; eNOS,

endothelial nitric oxide synthase; FAO, fatty acids oxidation; GLUT, glucose transporter;

HIF, hypoxia inducible transcription factor; HMGB, high-motility-group-box; MAPK,

mitogen-activated protein kinase; MMP, matrix metalloproteinase; mTOR, mammalian-

target-of-rapamycin; NF-kB, Nuclear Factor-kappa B; TIMP, tissue inhibitor of matrix

metalloproteinase; VEGF, vascular endothelial growth factor. In square brackets are

references with specific information.

phosphoinositide dependent kinase-1 activates AKT by
phosphorylating its kinase domain (112).

While the HIV-reverse transcriptase inhibitors zidovudine,
tenofovir and lamivudine depress VEGF-promoted AKT
phosphorylation in endothelial cells (62) (Figure 1, Table 3),
the HIV-protease inhibitors nelfinavir, lopinavir and ritonavir
decrease both total and phosphorylated AKT levels (54, 55, 81–
83, 90–93, 116) (Figure 1, Table 2). Noteworthy, nelfinavir,
saquinavir and amprenavir inhibit AKT phosphorylation also
in leukocytes of treated individuals (78). In contrast, the HIV-
protease inhibitor indinavir and the HIV-reverse transcriptase
inhibitors nevirapine or efavirenz have no significant effect on
AKT (83, 109, 117) (Tables 2, 3). Notwithstanding, and also in
spite of its capability of promoting the activation of either NF-kB
or MAPK (102), efavirenz possesses anti-angiogenic activities:
in particular, this HIV-reverse transcriptase inhibitor has been
found to counteract endothelial cell viability and growth via an
increase in oxidative stress (61).

Results from in vitro experiments indicate that the HIV
protease inhibitor nelfinavir can impair AKT phosphorylation
without increasing the expression or activity of AKT negative
regulators such as phosphatase-and-tensin-homolog or the
protein-phosphatase-2A (94, 95). Interestingly, when combined
with the anti-diabetes drug metformin, nelfinavir reduces
PI3Kp110α protein levels in tumor cells (118).

AKT phosphorylation promotes endothelial cell expression
of endothelial nitric oxide synthase (eNOS), this leading to
the production and release of nitric oxide (112) (Figure 1).
The latter is then taken up by nearby pericytes or vascular
smooth muscle cells promoting vasodilatation, an early step
of angiogenesis (112). Extracellular nitric oxide also enters
macrophages, increasing VEGF production by these cells (69).
Consistent with their inhibitory effect on AKT, the HIV-protease
inhibitors nelfinavir or ritonavir (and saquinavir, lopinavir,

atazanavir, or amprenavir likewise) reduces eNOS expression
and nitric oxide production in both endothelial and vascular

smooth muscle cells (58, 79, 84, 119) (Figure 1, Table 2). As for

HIV-protease inhibitors, the HIV-reverse transcriptase inhibitors

zidovudine or lamivudine hinders eNOS, while stavudine has

no effect (103) (Figure 1, Table 3). In contrast, emtricitabine,

tenofovir or efavirenz stimulate eNOS (6) (Table 3).

Another downstream target of AKT important for
angiogenesis is the mammalian-target-of-rapamycin (mTOR), a
serine/threonine protein kinase which positively regulates HIF-
1α protein (112) (Figure 1). Again in accord with their inhibitory
effect on AKT, either nelfinavir or ritonavir can hamper mTOR
activity in normal or cancer cells (23, 74, 85, 86, 91, 120–122)
(Figure 1, Table 2).

IMPACT OF THE HIV-PROTEASE
INHIBITORS OR HIV-REVERSE
TRANSCRIPTASE INHIBITORS ON THE
SEQUENTIAL PHASES OF ANGIOGENESIS

Angiogenesis is initiated by VEGF-A and angiopoietin-2 which,
by activating AKT and MAPK, induce endothelial cells to secrete
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TABLE 3 | Effects of HIV-reverse transcriptase inhibitors or AMD3100 on angiogenesis regulators.

Drug Class Mechanism(s) of action and molecular targets Experimental models

Zidovudine Nucleoside analog RTI Effect on angiogenic molecules: VEGFR2, FGFR,

MAPK, AKT or eNOS shutdown. MMP down-regulation

in some cell types but not in ECs. No effect on NF-kB.

Stimulation of glycolysis and FAO.

Pre-clinical (in vitro and in vivo) and clinical

(62, 101, 103–107)

Effect on anti-angiogenic events: increase in EC

apoptosis

Lamivudine Nucleoside analog RTI Effect on angiogenic molecules: VEGFR2, FGFR,

MAPK, AKT, or eNOS shutdown. MMP up-regulation.

Pre-clinical (in vitro and in vivo) (60, 62, 103, 108)

Effect on anti-angiogenic events: increase in EC

apoptosis, TIMP down-regulation

Stavudine Nucleoside analog RTI Effect on angiogenic molecules: increase in FAO. No

effect on AKT.

Pre-clinical (in vitro) (60, 103, 107)

Effect on anti-angiogenic events: unknown

Emtricitabine Nucleoside analog RTI Effect on angiogenic molecules: eNOS stimulation. Pre-clinical (in vitro and in vivo) (6, 63)

Efavirenz Non-nucleoside RTI Effect on angiogenic molecules: NF-kB, MAPK, or

eNOS activation. Increase in glycolysis and vessel

permeability. No effect on AKT.

Pre-clinical (in vitro and in vivo)

(6, 61, 102, 109, 110)

Effect on anti-angiogenic events: increase in EC

apoptosis

Nevirapine Non-nucleoside Effect on angiogenic molecules: no effect on AKT. Pre-clinical (in vitro) (83)

Tenofovir Nucleotide analog RTI Effect on angiogenic molecules: VEGFR2, FGFR,

MAPK, or AKT shutdown. No effect on NF-kB. eNOS

stimulation.

Pre-clinical (in vitro and in vivo) (6, 62, 63, 101)

AMD3100 CXCR4 antagonist Effect on angiogenic molecules: NF-kB, MAPK, AKT,

MMP, or VEGF down-regulation.

Pre-clinical (in vitro and in vivo) (64, 67, 68, 111)

Here are summarized the effects that anti-HIV compounds approved for clinical use, including the HIV-reverse transcriptase inhibitors or the CXCR4 antagonist AMD3100, have

on molecules triggering or arresting angiogenesis. AKT, protein kinases B; EC, endothelial cell; eNOS, endothelial nitric oxide synthase; FAO, fatty acids oxidation; FGFR, fibroblast

growth factor receptor; MAPK, mitogen-activated protein kinase; MMP, matrix metalloproteinase; NF-kB, Nuclear Factor-kappa B; RTI, reverse transcriptase inhibitors; TIMP, tissue

inhibitor of matrix metalloproteinase; VEGF, vascular endothelial growth factor; VEGFR2, type 2 vascular endothelial growth factor receptor. In square brackets are references with

specific information.

proteolytic enzymes such as the matrix metalloproteinases
(MMPs): the latter detach vascular smooth muscle cells or
pericytes from the vessels, cleave endothelial cell-endothelial
cell adhesions and degrade the vascular basement membrane,
releasing angiogenic molecules which are tethered therein (114,
115) (Figure 2).

Among MMPs, MMP-2 and MMP-9 levels are positively
correlated to tumor vessel density (123). Either enzymes are
synthesized as zymogens: pro-MMP-2 is activated on endothelial
cell surface by membrane type 1-MMP, while pro-MMP-9
is turned-on by plasmin, outside the producing cells (123).
Noteworthy, the HIV-protease inhibitor indinavir blocks MMP-
2 activation in endothelial cells via a reduction of membrane
type 1-MMP expression: this is due to indinavir capability of
inhibiting the binding of the Specificity Protein-1 transcription
factor to the promoter region ofmembrane type 1-mmp gene (57).
About MMP-9, HIV-protease inhibitors including darunavir,
lopinavir, saquinavir, and ritonavir directly down-regulate its
expression in normal or tumor cells and in treated patients
(28, 29, 80, 97, 100, 124) (Figure 1, Table 2). In particular, by
inhibiting AKT phosphorylation, saquinavir or ritonavir impairs
the activation of Fra-1, a transcription factor inducing MMP-9
expression (29).

In addition to be controlled at the transcriptional level and
by zymogen activation, the function of MMPs is modulated

by endogenous inhibitors, the so called Tissue Inhibitors of
MMPs (TIMPs): in particular, the ratio between MMPs and
TIMPs rules the intensity of vascular basement membrane
or perivascular matrix degradation, thereby deeply influencing
the angiogenic process (125). Noteworthy, the HIV-protease
inhibitors nelfinavir, indinavir and ritonavir augment the levels
of anti-angiogenic TIMPs either in vitro or in treated individuals
(75, 124) (Figure 1, Table 2). This important finding is in
agreement with the results from pre-clinical studies conducted
with other antagonists of the MAPK/ERK or PI3K/AKT pathway
(126, 127).

Definitely, the inhibitory effect on MMP activity provides a
molecular explanation for indinavir, saquinavir, or amprenavir
capability of impairing angiogenesis and tumor growth in HIV-
free animal models (27, 52, 57, 99).

Concerning HIV-reverse transcriptase inhibitors, zidovudine
down-regulates MMPs in astrocytes or microglia cells (104), but
not in endothelial cells (105) (Figure 1); whereas, lamivudine
increases MMP and decreases TIMP serum levels in treated
individuals (108) (Table 3).

Following the degradation of the blood vessel basement
membrane, endothelial cells migrate into the perivascular
extracellular matrix in response to VEGF-A and other angiogenic
factors (69, 123) (Figure 2). The locomotion of endothelial cells
depends on their adhesion to extracellular matrix molecules
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FIGURE 2 | The sequential phases of angiogenesis. BM, basement membrane; DRN, deoxyribonucleotides; EC, endothelial cell; ECM, extracellular matrix; FAO, fatty

acids oxidation; VSMC, vascular smooth muscle cells.

such as collagen-I and fibronectin, which trigger endothelial
cell survival and proliferation by binding to integrin receptors
expressed on the surface of these cells (69). Interestingly,
indinavir impairs cellular adhesion onto fibronectin (128),
while nelfinavir or atazanavir reduce collagen deposition in the
extracellular matrix (98, 129).

When exposed to high VEGF-A levels, endothelial cells
remodel their actin cytoskeleton acquiring a migratory
phenotype characterized by filopodia or lamellipodia (70).

This differentiation process requires high levels of ATP which
are produced via the up-regulation of endothelial cell glycolytic
activity (70) (Figure 2). Specifically, by activating AKT, VEGF
increases the expression of either glucose transporter-1, which
promotes glucose entry into endothelial cells, or glycolytic
enzymes, including lactate dehydrogenase A (70). Most of the
glucose entering endothelial cells is then converted into lactate
which, in turn, stabilizes HIF-1α, this increasing VEGF synthesis
by endothelial cells and promoting their migration (70). Of
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interest, the HIV-protease inhibitor ritonavir potently reduces
glucose transporter-1 activity and glycolysis (87) (Figure 1,
Table 2). In contrast, the HIV-reverse transcriptase inhibitors
efavirenz or zidovudine stimulates glycolysis and increases
lactate levels (106, 110) (Figure 1, Table 3).

Upon VEGF binding to type 2 VEGF receptor, migratory
endothelial cells secrete the Delta-like ligand 4 which binds to
the Notch receptor on the surface of neighboring endothelial
cells: the latter then proliferate, maintaining connectivity with
migratory endothelial cells (69). In proliferating endothelial
cells, the production of deoxyribonucleotides required for DNA
synthesis is sustained by the oxidation of fatty acids (70)
(Figure 2). Noteworthy, fatty acids oxidation is blocked by
the HIV-protease inhibitors ritonavir, atazanavir, lopinavir or
darunavir, and augmented by the HIV-reverse transcriptase
inhibitors zidovudine and stavudine (88, 107) (Figure 1,
Tables 2, 3).

Angiogenesis is terminated when newly formed vessels
meet and fuse, giving rise to a hollowed duct which allows
blood flow (69) (Figure 2). Thereafter, endothelial cells stabilize
the vessels by synthesizing a new basement membrane and
releasing platelet-derived growth factor-BB which, in turn,
recruits mural vascular smooth muscle cells and pericytes (69)
(Figure 2).

In this regard, it has to be highlighted that tumor
vessels display a poor vascular smooth muscle cell coverage,
and that tumor endothelial cells are more responsive to
growth/chemotactic factors, and more resistant to apoptosis
than normal endothelial cells (70, 114, 130). Tumors are
consequently provided with overgrowing, highly permeable,
dilated and tortuous vessels (70, 130). As this can compromise
either the arrival of chemotherapeutics to the tumor site or
the efficacy of anti-cancer radiotherapy (130–132), novel anti-
angiogenesis strategies are aimed at remodeling the tumor
vasculature to a more normal (and functional) phenotype. In
this regard, atazanavir capability of down-regulating the oxygen-
sensor-prolyl-hydroxylase-domain-protein 2 (98) suggests that
this HIV-protease inhibitor could normalize tumor vessels. In
fact, a decrease in prolyl-hydroxylase-domain-protein 2 switches
tumor endothelial cell phenotype from migratory/proliferative
to quiescent (130). In contrast, the HIV-protease inhibitors
amprenavir, nelfinavir and ritonavir inhibit glycogen-synthase-
kinase 3β (119, 133), an enzyme that favors the differentiation
of tumor endothelial cells into normal endothelial cells (134).
Moreover, ritonavir also hinders the growth and migration
of vascular smooth muscle cells promoted by platelet-derived
growth factor-BB (135).

Regarding HIV-reverse transcriptase inhibitors, efavirenz
increases vessel permeability by altering endothelial cell-
endothelial cell junctions (102).

In conclusion, results from the reviewed literature
indicate that both HIV-protease inhibitors and HIV-reverse
transcriptase inhibitors mainly hamper the initial steps of
angiogenesis. However, one should consider that a block
of endothelial cell invasion such that caused by HIV-
protease inhibitors is enough to halt the whole angiogenic
process (57, 114).

IMPACT OF HIV-PROTEASE INHIBITORS
AND CHEMOKINE RECEPTOR
ANTAGONISTS ON VASCULOGENESIS

The formation of tumor-associated vessels is facilitated and
accelerated by vasculogenesis, a process which generally takes
place during embryo life, involving the endothelial cell
precursors: the latter are bone-marrow resident immature cells
which, as for mature endothelial cells express both the type 2
VEGF receptor and the chemokine receptor CXCR4 (68, 136).

In tumor tissues, the activation of HIF-1 induces cancer
cells, endothelial cells and fibroblasts to produce and release
the angiogenic VEGF and CXCL12 (68, 69, 136) (Figure 3). In
this context, nitric oxide bolsters VEGF production and release
by endothelial cells (69) (Figure 3). Then, VEGF and CXCL12
reach the bone marrow and bind to type 2 VEGF receptor and
CXCR4, respectively, on the surface of endothelial cell precursors
(68, 69, 136) (Figure 3). Either the VEGF/type 2 VEGF receptor
or the CXCL12/ CXCR4 axis triggers MAPK or AKT, sustaining
the survival of endothelial cell precursors and activating MMP-9
production by those immature cells (68, 69, 136, 137) (Figure 3).
MMP-9, in turn, mobilizes endothelial cell precursors from the
bone marrow into the circulation, allowing them to reach the
tumor (136) (Figure 3). There, because of the prolonged AKT
activation triggered by VEGF, basic fibroblast growth factor
and integrin-mediated adhesion onto tumor extracellular matrix,
endothelial cell precursors differentiate into mature endothelial
cells, then incorporating into tumor vessels (136) (Figure 3).

Consistent with CXCR4 role in the mobilization and survival
of endothelial cell precursors, AMD3100, an antagonist of this
receptor administered to HIV-infected individuals, effectively
impairs tumor vasculogenesis in pre-clinical models (68, 111).
Moreover, as activation of the CXCL12/CXCR4 axis stimulates
VEGF and MMP production in mature endothelial cells (138),
CXCR4 antagonists also inhibit tumor angiogenesis in animal
models of human tumors (68).

Certainly, HIV-protease inhibitors possess all the features
useful to counter tumor vasculogenesis, since they down-
regulate HIF-1, AKT, MAPK, eNOS, VEGF and MMP (Figure 1,
Table 2). Moreover, because of their inhibitory effect on
glycogen-synthase-kinase 3β (119, 133), the HIV-protease
inhibitors amprenavir, nelfinavir or ritonavir could hinder
the differentiation of endothelial cell precursors into mature
endothelial cells (139).

Concerning HIV-reverse transcriptase inhibitors, those
stimulating eNOS activity, glycolysis and/or fatty acids
oxidation (6, 106, 107, 110) (Figure 1, Table 3) could favor
tumor-associated vasculogenesis. Future work will verify
this possibility.

CLINICAL ASSESSMENT OF THE
ANTI-TUMOR ACTIVITY OF ANTI-HIV
DRUGS

Based on the results of pre-clinical and epidemiological studies,
clinical trials have evaluated the effects of HIV-protease
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FIGURE 3 | The molecular pathways and sequential phases of vasculogenesis. AKT, protein kinase B; CXCL12, CXC chemokine ligand 12; CXCR4, CXC chemokine

receptor 4; EC, endothelial cell; ECP, endothelial cell precursor; eNOS, endothelial nitric oxide synthase; ERK, extracellular-signal-regulated kinases; HIF,

hypoxia-inducible factor; MMP, matrix metalloproteinase; NO, nitric oxide; VEGF, vascular endothelial growth factor; VEGFR2, type 2 vascular endothelial growth factor

receptor.

inhibitors, HIV-reverse transcriptase inhibitors or chemokine
receptor antagonists (alone or combined with standard anti-
tumor chemotherapy and/or radiotherapy) against a variety
of tumors.

Results from medical tests performed in either HIV-positive
or HIV-negative patients, indicate that HIV-protease inhibitor
mono-therapy is effective against early-stage tumors including
the angiogenic phase of Kaposi’s sarcoma (10, 140, 141) and the
pre-invasive stage of uterine cervical carcinoma (11) (Table 4). In
contrast, when HIV-protease inhibitors are administered alone,
they are not active against highly progressed tumors such as
invasive uterine cervical carcinoma (8) and recurrent gliomas or
adenoid cystic carcinomas (157, 158).

Concerning the combination of HIV-protease inhibitors and
classical anti-cancer radiotherapy and/or chemotherapy, the
great majority of clinical trials has been performed for nelfinavir.
Results from these trials indicate that, in addition to be safe and
well-tolerated, combination therapy with nelfinavir is associated
with the regression of rectal or pancreatic carcinoma (Table 4),
this being accompanied by the “normalization” of the aberrant
tumor vasculature (12, 13). In addition, nelfinavir has also been
reported to overcome the resistance of multiple myeloma to
proteasome inhibitors (14) (Table 4).

Regarding ritonavir-based or saquinavir-based combinatory
therapies, the inhibitory effect that these HIV-protease inhibitors
exert on cytochrome P450 has been shown to impair the
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TABLE 4 | Clinical outcomes and toxicities of anti-HIV drugs endowed with anti-tumor activities.

Drug Class Positive outcomes Toxicities

Nelfinavir HIV-PI Colorectal or pancreas carcinoma, multiple myeloma (12–14) Nausea, diarrhea, rash, changes in body fat distribution, hyperlipidemia,

insulin resistance (4, 142, 143)

Indinavir HIV-PI Kaposi’s sarcoma (7, 10) Nausea, vomiting, diarrhea, abdominal pain, kidney stones (4, 142, 143)

Ritonavir HIV-PI Kaposis’s sarcoma, uterine CIN, multiple myeloma

(11, 15, 140)

Nausea, vomiting, diarrhea, abdominal pain, hyperlipidemia, insulin

resistance (4, 142, 143)

Lopinavir HIV-PI Uterine CIN (11) Nausea, vomiting, diarrhea, tendinopathy, insulin resistance (4, 142, 143)

Efavirenz HIV-RTI Prostate carcinoma (16) Headache, nausea, rash, neuropsychiatric disorders, seizures (3, 144)

Zidovudine HIV-RTI Kaposi’s sarcoma, T cell leukemia/lymphoma, EBV-related

lymphoma, Castleman disease (17–20, 145, 146)

Headache, nausea, vomiting, neutropenia, anemia, hepatotoxicity,

myopathy (147)

Tenofovir HIV-RTI Hepatocellular carcinoma (21, 148) Headache, nausea, diarrhea, rash, nephrotoxicity (3, 149)

Lamivudine HIV-RTI Hepatocellular carcinoma (21, 150, 151) Headache, nausea, vomiting, diarrhea, neutropenia, anemia, myopathy

(3, 152)

AMD3100 CXCR4 antagonist Acute myeloid leukemia (9, 153–155) Headache, nausea, vomiting, diarrhea (156)

Here are summarized the positive clinical oncological outcomes and the toxicities of the inhibitors of HIV protease or reverse transcriptase, and the AMD3100 antagonist of CXCR4,

employed in either HIV-positive or HIV-negative patients. CIN, cervical intraepithelial neoplasia; EBV, Epstein-Barr virus; HIV-PI, HIV-protease inhibitor; HIV-RTI, HIV-reverse transcriptase

inhibitor; NSCLC, non-small cells lung carcinoma. In square brackets are references with specific information.

clearance of anti-cancer chemotherapeutics: this has led to severe
toxicities in some clinical trials (159–161), but not in others (15).

Concerning the toxicity that HIV-protease inhibitors have in
themselves, results from large observational studies conducted
on HIV-infected subjects, indicate that HIV-protease inhibitor-
based cART elevates cholesterol, triglycerides and glucose plasma
levels (142, 143). These side effects have occurredmostly with first
generation HIV-protease inhibitors such as ritonavir, nelfinavir
or lopinavir (Table 4), which increase lipemia by inhibiting
adiponectin expression, and/or cause insulin resistance via an
impairment of glucose transporter-4 activity (4). In contrast,
second generation HIV-protease inhibitors including darunavir
and atazanavir display only minor toxicities and have no effect
on lipemia or insulin sensitivity (4).

Regarding the HIV-reverse transcriptase inhibitors, most of
the clinical trials have been performed for zidovudine. Results
indicate that when combined with antivirals (e.g., interferon
α or valgaciclovir) or cytotoxic drugs (e.g., bleomycin or
methotrexate), zidovudine is effective against HIV-associated
Kaposi’s sarcoma (145), T cell leukemia (17, 18, 20), Epstein-Barr
virus related-lymphomas (19) or Castleman lymphoproliferative
disease (146) (Table 4). Other clinical studies have shown
that hepatitis B virus-infected cancer patients have a reduced
incidence of hepatocellular carcinoma when they undergo
prophylactic treatment with HIV reverse transcriptase inhibitors
including lamivudine, entecavir or tenofovir (21, 148, 150, 151)
(Table 4). Finally, high plasma concentrations of efavirenz have
been reported to slow the progression of prostate carcinoma (16)
(Table 4).

However, in the majority of the abovementioned diseases, the
anti-tumor activity of HIV-reverse transcriptase inhibitors is not
likely to depend on the impairment of angiogenesis, but rather
on the capability that these anti-HIV drugs have to hamper the
replication of tumorigenic viruses (17–21, 145, 146, 148, 150,
151).

Observational studies have shown that the most common
adverse effects which can occur in HIV-infected patients taking

HIV-reverse transcriptase inhibitors include headache, nausea,
vomiting, diarrhea and/or rash (147, 149, 152) (Table 4). In
addition, long-term use or high-dose treatment with HIV-
reverse transcriptase inhibitors is associated with severe, therapy-
limiting side effects such as anemia, neutropenia, myopathy,
impaired liver function or nephrotoxicity (147, 149, 152)
(Table 4). Furthermore, some of the efavirenz-treated patients
have experienced neuropsychiatric disorders and/or seizures
(144) (Table 4).

About the use of chemokine receptor antagonists in cancer
patients, the CXCR4 antagonist AMD3100 is the only one
approved for clinical use: at the present time, the drug is
being employed mostly in order to mobilize hematopoietic stem
cells from the bone marrow, hence allowing their autologous
transplantation in patients affected by non-Hodgkin lymphoma
or multiple myeloma (153, 154). In addition, AMD3100 has
recently been used to mobilize bone marrow-resident leukemic
cells into the blood flow, this leading to the sensitization of
leukemic cells to cytotoxic drugs (155) (Table 4). Interestingly,
results from pre-clinical studies support AMD3100 combination
with radio/chemotherapy to counteract lymph node or distant
metastases of solid tumors (38, 48, 162, 163). This strategy is also
sustained by observational studies (164, 165).

Headache, nausea, vomiting, diarrhea or muscle/bone pains
are relatively frequent in patients treated with AMD3100
(Table 4): however, in most cases these adverse effects are mild
and transient (156).

CLASSICAL ANTI-ANGIOGENIC DRUGS:
THE VEGF ANTAGONISTS

Combining angiogenesis antagonists with standard anti-tumor
therapies has ameliorated the prognosis of a variety of human
tumors (70).

In particular, inhibitors of the VEGF pathway have provided
survival benefits to cancer patients (114).
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TABLE 5 | Indications and toxicities of anti-VEGF compounds approved for clinical use.

Drug Mechanism of action Indication(s) Toxicities

BEVACIZUMAB Humanized antibody which

binds to VEGF-A, preventing its

binding to VEGF receptor (166)

Mesothelioma, NSCLC, or colorectal,

ovarian, cervical, renal carcinoma

(166, 170–174)

Hypertension, neutropenia, proteinuria, rash, bleeding,

thromboembolism, fistula (69, 175–178)

AFLIBERCEPT Recombinant fusion protein that

sequesters VEGF (168)

Colorectal carcinoma (168) Hypertension, neutropenia, lymphopenia,

thrombocytopenia, thromboembolism (69, 179)

RAMUCIRUMAB Anti-VEGFR2 antibody which

competes VEGF binding (167)

NSCLC, or colorectal, esophageal, gastric

carcinoma (167, 180, 181)

Hypertension, neutropenia, anemia, thrombocytopenia,

proteinuria, bleeding, gastrointestinal perforation,

wound healing complications (69, 175, 176, 178, 182)

SUNITINIB Small peptide that prevents ATP

binding to VEGFR2 (169)

NSCLC, or colorectal, pancreas, renal

carcinoma (169)

Hypertension, neutropenia, thrombocytopenia, rash,

gastrointestinal perforation (69, 176, 178, 183, 184)

Here are summarized the mechanism of action, the oncological indications and the toxicities of the inhibitors of the vascular endothelial growth factor pathway approved for clinical use.

ATP, adenosine triphosphate; NSCLC, non-small cells lung carcinoma; VEGF, vascular endothelial growth factor; VEGFR2, type 2 vascular endothelial growth factor receptor. In square

brackets are references with specific information.

At the present time, the VEGF antagonists which have
been approved for clinical use include: (a) BEVACIZUMAB,
a recombinant humanized monoclonal antibody which binds
to VEGF-A and prevents its interaction with the type 2
VEGF receptor (166); (b) RAMUCIRUMAB, a blocking
antibody directed against type-2 VEGF receptor that
impedes its binding by VEGF (167); (c) AFLIBERCEPT, a
human recombinant fusion protein that acts as a soluble
decoy receptor sequestering various members of the VEGF
family (168); (d) the inhibitors of receptor kinase activity,
small molecules which pass through the cell membrane
and prevent ATP binding to type-2 VEGF receptor (169)
(Table 5).

Results from clinical trials combining VEGF pathway
inhibitors and standard anti-tumor cytotoxic drugs indicate that
BEVACIZUMAB augments overall survival and/or progression-
free survival in patients affected by mesothelioma, non-small
cell lung cancer or colon, renal, ovarian or uterine cervical
carcinoma (166, 170–174), while RAMUCIRUMAB provides
survival benefits in individuals with gastric cancer, non-small cell
lung cancer or colon carcinoma (167, 180, 181) (Table 5). For
their part, either AFLIBERCEPT or the receptor kinase inhibitors
SUNITINIB and PAZOPANIB are effective against colorectal
carcinoma (168, 169) (Table 5).

However, long-term use of VEGF antagonists can
lead to side effects including bone marrow toxicity (this
resulting in neutropenia and, eventually, lymphopenia,
thrombocythemia and/or anemia), hypertension, proteinuria,
liver malfunction, diarrhea, gastrointestinal perforations,
reduced wound healing, disturbances in blood clotting, skin
rash or discoloration, hyponatremia and/or hyperglycemia
(69, 175–179, 182–184) (Table 5). Moreover, VEGF inhibitors
trigger hypoxia, which exacerbates tumor aggressiveness
(70). In addition, treated patients can develop drug
resistance over time: this occurs via the up-regulation of
the angiogenic basic fibroblast growth factor, angiopoietin-2 or
CXCL12 (68).

Altogether, these clinical findings are stimulating the
continual search for other antagonists of angiogenesis.

CONCLUSIONS AND PERSPECTIVES

Cancer growth and dissemination are favored and sustained by
the formation of new blood vessels within the tumor area (69, 70,
114). Consistently, compounds counteracting the development of
tumor vasculature can limit or slow cancer clinical progression
(69, 70, 114).

In this regard, antagonists of the highly angiogenic VEGF have
been found effective against different types of human tumors
(166–174, 180, 181) (Table 5).

However, the finding that patients treated with these drugs
can undergo severe adverse effects (69, 70, 175–179, 182–184)
(Table 5), and/or develop drug resistance (68), is prompting
the identification of anti-angiogenesis drugs alternative to
VEGF antagonists.

In this context, it has to reminded that clinical trials assessing
the anti-tumor efficacy of synthetic MMP inhibitors impairing
tumor angiogenesis in pre-clinical models have failed: this has
been due to the poor solubility, lack of specificity and/or
inefficacy of the drugs (123).

In view of chemokine role in inflammation-driven,
pathological angiogenesis, antagonists of the chemokine
receptors are currently being evaluated for their efficacy
in countering tumor growth and metastases (69). Indeed,
drugs targeting single chemokine receptors have been found
effective against hematological malignancies (9, 153, 154).
Moreover, CXCR4 antagonists have been shown to
reduce tumor angiogenesis in animal models of human
tumors (68). However, one should consider that a given
chemokine can bind to different receptors, which are all
capable of triggering the AKT-MMP pathway starting
angiogenesis (136). In this regard, HIV-protease inhibitors
effectively inhibit the AKT-MMP as well as other pathways
which lead to both new blood vessel formation (Figure 1,
Table 2) and cancer cell survival, growth or locomotion
(7, 8).

In contrast, based on the reviewed literature, the
anti-angiogenic actions of HIV-reverse transcriptase
inhibitors appear limited: in fact, these drugs hamper some
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pro-angiogenic pathways, while favoring others (Figure 1,
Table 3).

Among HIV-protease inhibitors, ritonavir and nelfinavir have
proven to be particularly effective in inhibiting tumor-associated
new blood vessel formation (Figure 1, Table 2). Repositioning
of these anti-HIV drugs in cancer therapy has been feasible, as
they are employed since many years, and their pharmacokinetic
and tissue distribution are well known (4). Actually, clinical
trials combining ritonavir or nelfinavir with standard anti-cancer
therapeutics have given good results (13–15). However, as for
other first-generation HIV-protease inhibitors, either nelfinavir
or ritonavir increases lipid and glucose plasma levels in treated
patients (4, 142, 143). Though novel HIV-protease inhibitors
such as darunavir and atazanavir do not affect lipemia or
glycemia (4), information on their anti-angiogenic activities is
narrow (Table 2).

Therefore, added work should dissect darunavir or
atazanavir impact on angiogenesis, and then design and test
atazanavir, darunavir, ritonavir or nelfinavir analogs endowed
with selective anti-angiogenic effects. To this end, further
molecular modeling approaches and protein-ligand studies
are needed in order to identify more precisely the targets of
HIV-protease inhibitors.

Finally, given that inflammation plays a major role in new
blood vessel formation (69, 70), additional clinical investigations
should evaluate whether the anti-angiogenic effect of anti-
HIV drugs could be potentiated by anti-inflammatory drugs,
including cyclooxygenase 2 inhibitors which have been shown to
promote tumor vessel normalization in pre-clinical models (185).
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