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Metastasis, the spread of cancer cells from a primary tumor to a secondary site,

represents one of the hallmarks of malignancies and the leading cause of cancer-related

death. The process of metastasis is a result of the interaction of genetic heterogeneity,

abnormal metabolism, and tumor microenvironments. On the other hand, metabolic

reprogramming, another malignancy hallmark, refers to the ability of cancer cells to

alter metabolic and nutrient acquisition modes in order to support the energy demands

for accomplishing the rapid growth, dissemination, and colonization. Cancer cells

remodel metabolic patterns to supplement nutrients for their metastasis and also

undergo metabolic adjustments at different stages of metastasis. Genes and signaling

pathways involved in tumor metabolic reprogramming crosstalk with those participating

in metastasis. Non-coding RNAs are a group of RNAmolecules that do not code proteins

but have pivotal biological functions. Some of microRNAs and lncRNAs, which are the

two most extensively studied non-coding RNAs, have been identified to participate in

regulating metabolic remodeling of glucose, lipid, glutamine, oxidative phosphorylation,

and mitochondrial respiration, as well as the process of metastasis involving cell motility,

transit in the circulation and growth at a new site. This article reviews recent progress on

non-coding RNAs operating in the crosstalk between tumor metabolic reprogramming

and metastasis, particularly those influencing metastasis through regulating metabolism,

and the underlying mechanisms of how they exert their regulatory functions.
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INTRODUCTION

Metastasis is one of the important cancer hallmarks (1), and a complex multistep process involving
intracellular and intercellular signal transduction cascades and comprising the proliferation of
primary tumor cells, endovascular intervention, the formation of pre-metastatic niches, and
subsequent dissemination of cancer cells or micro-metastases into distant organs (2, 3). Metastasis
contributes largely to the mortality for many major cancer types, and exploring the underlying
mechanisms is of great significance for seeking effective treatments and improving the prognosis of
cancer patients.
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Metabolism transforms the absorbed nutrients into small
molecule metabolites to sustain the stability of homeostasis,
generate bioenergy and regulate cell signaling pathways and
physiological activities (4). Metabolic reprogramming is a
malignancy hallmark, which refers to the ability of cancer cells
to adjust metabolic and nutrient acquisition modes to support
their rapid growth, dissemination, and other characteristics
(5). The metabolites, such as glucose, amino acids, nucleic
acids, and lipids, are remodeled in tumors (Figure 1). Cancer
metastasis usually accompanies metabolic reprogramming, and
this metabolic change has been recognized at different stages of
metastasis (6, 7). Non-coding RNAs (ncRNAs), particularly long-
chain non-coding RNA (lncRNA) and microRNA (miRNA),
play important roles in regulating metabolic remodeling and the
metastasis of cancer cells (8–11). This article aims to discuss
the recent progress of how lncRNAs and miRNAs orchestrate
in the crosstalk between cancer metabolic reprogramming and
metastasis, particularly those influencing metastasis through
regulating metabolism-related genes and signaling pathways.

METABOLIC REPROGRAMMING AND
CANCER METASTASIS

In the 1920s, Warburg observed a special phenomenon that
even in aerobic conditions, cancer cells tend to favor metabolism
relying on glycolysis rather than the much more efficient
oxidative phosphorylation pathway, which is the preference
of most normal cells (12, 13). As a result, tumor cells have
significantly increased glucose uptake and secretion of lactate,
which is converted from pyruvate, the last product of glycolysis
(14). This process, now known as the Warburg effect or aerobic
glycolysis, marks the start of a new era for studying tumorigenesis
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and cancer progression in terms of metabolism. Gene mutations,
deletions, and translocations have an impact on various signal
pathways in cancer cells, and themain oncogenic signal pathways
will finally converge to metabolism (15, 16). Metabolites by
cancer cells not only supply materials for their proliferation
and metastasis but also provide sustaining signals to meet their
survival needs in tumor-specific microenvironments (1, 17, 18).
In addition, cancer cells affect the metabolism of distant organs,
where they metastasize, to facilitate their implantation and
growth (19). On the other hand, metastatic cancer cells are also
affected by themetabolic alterations of invaded organs and tissues
(20, 21).

Tumor cells are characterized by high aerobic glycolysis and
high oxidative stress (16). Studies have found that the Warburg
effect inhibits anoikis and promotes tumor metastasis (22, 23).
Meanwhile, aerobic glycolysis increases glucose consumption,
reduces the generation of excessive reactive oxygen species
(ROS), and enhances the antioxidant capacity of tumor cells,
which obtain the ability to resist anoikis and metastasize (22).
Despite the Warburg effect, oxidative metabolism is also a major
source of adenosine triphosphate (ATP) in some tumors (24, 25).
Mitochondrial oxidative metabolism produces ROS including
the hydroxyl (HO−) free radicals, superoxide (O−

2 ) and non-
radical molecules such as hydrogen peroxide (H2O2) (26). Low
or moderate levels of ROS in tumor cells can activate a series
of signaling pathways, causing genomic DNA mutations and
promoting tumor formation and progression; but high levels of
ROS can lead to the death of neoplasm cells (27). The roles of
ROS in tumor metastasis remain controversial among different
studies. One study shows that antioxidants can promote tumor
metastasis (28). Melanoma metastatic cells express higher levels
of lactic acid transporter and absorb more lactic acid, enabling
them to producemore antioxidants and survive in the blood (29).
On the other hand, some studies demonstrate that antioxidants
inhibit tumor metastasis, suggesting that ROS may promote the
dissemination of tumor cells (30). H2O2 has also been shown
to promote tumor metastasis by inhibiting anoikis of detached
cancer cells (31).

ROLES OF NCRNAS IN CANCER

Although the number of ncRNAs in the human genome is
unknown, recent studies suggest that thousands of ncRNAs exist
in the body. At present, a dozen of abundant and functionally
important types of ncRNAs have been discovered, among which
miRNA and lncRNA are the two most extensively studied.
Because they do not encode proteins, ncRNAs were initially
considered to lack biological functions. However, it’s now clear
and well accepted that ncRNAs affect the development and
progression ofmanymalignancies by regulating the proliferation,
apoptosis, differentiation, and metastasis of cancer cells (32)
(Figure 2). Accumulating evidence also indicates a link between
ncRNAs and metabolic changes in cancer (33, 34) (Table 1).
NcRNAs are shown to regulate key metabolic enzymes and
signaling pathways involved in metabolic reprogramming,
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FIGURE 1 | The biochemistry of metabolism in cancer cells. “→” indicates positive regulation or activation. Key enzymes in energy metabolism are marked as red

color. G6PD, glucose 6-phosphate dehydrogenase; GLS, glutaminase; GLUT, glucose transporter; GT, glutamine transporter; HK, hexokinase; LDH, lactate

dehydrogenase; MCT, Monocarboxylate transporter; PDH, pyruvate dehydrogenase; PFK, phosphofructokinase; PHGHD, D-3-phosphoglycerate dehydrogenase;

PKM2, pyruvate kinase M2; TCA, tricarboxylic acid cycle.

resulting in tumorigenesis, cancer progression and metastasis
(60, 61).

NCRNAS IN METABOLIC
REPROGRAMMING AND CANCER
METASTASIS

Glucose Metabolism
Cancer cells have significantly enhanced glycolysis during the
metastatic process and the glucose supply is dramatically reduced
in solid tumors (12, 13). The intermediate metabolites generated
in glycolysis are important synthetic materials for tumor growth
(62). The acidic and hypoxic microenvironment (TME) inside
solid tumors promotes invasion and immune escape (63,
64) by regulating the function and subcellular localization of
cytoskeleton proteins, thus promotes the invasion and metastasis
of tumor cells through protonation of critical pH-sensitive
residues (65, 66). In addition, aerobic glycolysis reduces the

oxidative metabolism of glucose, making cancer cells resistant
to anoikis and promoting the survival of circulating tumor
cells (67).

The first step in glycolysis is the phosphorylation of glucose
to form glucose 6-phosphate by a family of enzymes called
hexokinases (HKs), which are key glycolytic enzymes to control
the rate of glucose metabolism and highly expressed HKs
maintain a speedy glycolytic rate in tumor tissues, helping the
metastasis of cancer cells (68). HK2 can regulate the expression
of matrix metalloproteinase (MMP)-9, SRY-box transcription
factor (SOX)-9 and non-processed pseudogene (NANOG) and
facilitate the metastasis of ovarian cancer cells (69). Lower
expression of miR-139-5p correlates with a worse prognosis of
hepatocellular carcinoma (HCC) and overexpressed miR-139-5p
restrains aerobic glycolysis, suppressing the metastasis of HCC
cells (11). In a mechanism exploration, miR-139-5p regulates
the expression of HK1 and 6-phosphofructo-2-kinase/fructose-
2,6-biphosphatase (PFKFB) 3 by directly targeting ETS
proto-oncogene 1 (ETS1), a transcription factor binding to the
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FIGURE 2 | The mechanisms of ncRNAs involved in cancer metastasis. EMT,

epithelial-mesenchymal transition.

promoters of HK1 and PFKFB3 genes, while ETS1 silencing
induces the expression of miR-139-5p via a post-transcriptional
regulation mode involving Drosha (11). Knockdown of
lncRNA-TUG1 induces a marked inhibition of cell migration,
invasion, and glycolysis by suppressing miR-455-3p, which is
transcriptionally repressed by p21 and directly targets the 3′-UTR
of adenosine monophosphate-activated protein kinase subunit
β2 (AMPKβ2), thus the lncRNA TUG1/miR-455-3p/AMPKβ2
axis regulates the metastasis and glycolysis of HCC cells through
the regulation of HK2 (40). LncRNA PVT1 is upregulated in
gallbladder cancer (GBC) tissues and negatively associated with
the overall survival of patients. Knockdown of lncRNA PVT1
inhibits the metastasis of GBC cells by regulating aerobic glucose
metabolism via modulating HK2 expression by competitively
binding to endogenous miR-143 as a competing endogenous
RNA (ceRNA) (41).

Pyruvate kinase M2 (PKM2) is an alternatively spliced
variant of pyruvate kinase that is preferentially expressed
during embryonic development and in many types of cancer
cells. PKM2 alters the final rate-limiting step of glycolysis,
resulting in a cancer-specific Warburg effect, thus determining
the efficiency of glucose utilization and the production of
lactic acid (70). The direct interaction of PKM2 in the
nucleus with TGF (transforming growth factor)-β-induced factor
homeobox 2 (TGIF2), leading to the recruitment of histone
deacetylase 3 to the E-cadherin promoter sequence, with
subsequent deacetylation of histone H3 and suppression of E-
cadherin transcription, thus promoting the process of epithelial-
mesenchymal transition (EMT) in colon cancer cells (71). MiR-
let-7a inhibits the migration of cervical cancer cells through
downregulating PKM2 (72). Breast cancer cells secret miR-122-
carrying vesicles into circulation to facilitate their metastasis

by increasing nutrient availability in pre-metastatic niches in
distant organs including brains and lungs. Mechanistically, the
cancer-cell-derived miR-122 suppresses glucose uptake by niche
cells via downregulating the glycolytic enzyme pyruvate kinase
(19). LncRNA FEZF1-AS1 is one of the most highly expressed
lncRNAs in colorectal cancer (CRC) and exerts a promoting
function on the metastasis of CRC cells. FEZF1-AS1 binds to and
stabilizes the PKM2 protein, thereby activating the STAT3 (signal
transducer and activator of transcription 3) signaling pathway
and increasing aerobic glycolysis (42).

Glucose transporter (GLUT) is a transmembrane glycoprotein
distributed on the cell membrane and mainly carry out
transmembrane transport of glucose, thus represents a key
factor for cancer cells to take up glucose. High expression
of GLUT1 promotes the transport and absorption of glucose,
providing abundant materials for glycolysis, thereby enhancing
the metastasis of cancer cells (73). GLUT1 gene expression
is associated with the invasiveness and MMP-2 activity in
pancreatic cancer (74). MiRNAs mediate fine-tuning of genes
including GLUTs involved in cancer metabolism to support the
biosynthetic and energy requirements for themetastasis of cancer
cells (75). MiR-122 secreted by breast cancer cells restricts the
expression of GLUT1 in non-cancerous brain astrocytes and
lung fibroblasts, allowing cancer cells to obtain sufficient glucose
supply during the processes of lung and brain metastases (19).
LncRNA lnc-p23154 is shown to be associated with themetastasis
of oral squamous cell carcinoma (OSCC) and promotes OSCC
cell migration and invasion by suppressing the expression of
GLUT1 via its negative effects on miR-378a-3p, which has an
inhibitory effect on the expression of GLUT1 (43).

Lactate dehydrogenase A (LDHA) is another important
rate-limiting enzyme in glucose metabolism by catalyzing the
interconversion of pyruvate and lactate. The phosphorylation
of LDHA at Y10 is positively correlated with the progression
of metastatic breast cancer (76). LDHA can promote the
process of EMT by activating EMT-related proteins and
facilitate the metastasis of lung adenocarcinoma (77). In
breast cancer cells, miR-30a-5p suppresses LDHA expression
by directly targeting its 3′-UTR, thus inhibits glycolysis by
decreasing glucose uptake, lactate production, ATP generation,
and extracellular acidification rate, and increasing oxygen
consumption. As a result, glycolysis regulated by miR-30a-
5p plays a critical role in the metastasis of breast cancer
cells (38). Lnc-IGFBP4-1 promotes the metastasis of lung
cancer cells through a possible mechanism of metabolic
reprogramming by enhancing the expression of LDH and ATP
production (44).

In addition to the above glycolytic enzymes, other kinases
in glycolysis are also regulated by ncRNAs. The high level of
glucose uptake and aerobic glycolysis stimulates the hexosamine
biosynthetic flux, leading to an increased level of UDP-
β-DN-acetylglucosamine (UDP-GlcNAc), which is the final
product of hexosamine biosynthesis (78, 79) and catalyzed
by O-GlcNAcylation transferase (OGT) (80). OGT is post-
transcriptionally inhibited by miRNA-101 and upregulated OGT
increases O-GlcNAcylation level and promotes the metastasis
of CRC cells (81). MiR-551a and miR-483 suppress hepatic
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TABLE 1 | NcRNAs involved in regulating tumor metabolism.

NcRNAs Targets Actions Tumor types References

Glucose metabolism

MiRNAs miR-199a-5p HK2 Down HCC (35)

miR-139-5p ETS1 Down HCC (11)

miR-122 PK, GLUT1 Up Breast cancer (19)

miR-122 Aldolase A Down HCC (36)

miR-125b HK2, et al. Down CLL (37)

miR-30a-5p LDH Down Breast cancer (38)

miR-483, miR-551a CKB Down CC (21)

miR-361-5p FGFR1 Down Breast cancer (39)

LncRNAs TUG1 miR-455-3p Up HCC (40)

PVT1 miR-143 Up Gallbladder cancer (41)

FEZF1-AS1 PKM2 Up CRC (42)

lnc-p23154 miR-378a-3p Up OSCC (43)

lnc-IGFBP4-1 LDH Up LC (44)

SAMMSON P32 Interact Melanoma (45)

MALAT1 TCF7L2 Up HCC (46)

LINC00092 PFKFB2 Up OC (47)

Lipids metabolism

MiRNAs miR-18a-5p SREBP1 Down Breast cancer (48)

miR-661 StarD10, Nectin-1 Up Breast cancer (49)

miR-195 ACC, FASN Down Breast cancer (50)

miR-409-3p FABP4 Down OC (51)

miR-22 ACLY Down Breast cancer (52)

miR-133b PPARγ Down Gastric cancer (53)

LncRNAs HULC miR-9 Up HCC (54)

Glutamine metabolism

MiRNAs miR-181d CRY2, FBXL3 Up CRC (55)

miR-23b Proline oxidase Up Prostate cancer (56)

LncRNAs GLS-AS GLS Down PC (10)

OIP5-AS1 miR-217 Up Melanoma (57)

XLOC_006390 c-Myc Up PC (58)

UCA1 miR-16 UP Bladder cancer (59)

Up/Down indicates that ncRNAs upregulate or downregulate the expression of target genes. ACC, acetyl-CoA carboxylase; ACLY, adenosine triphosphate citrate lyase; CC, colon

cancer; CKB, creatine kinase, brain-type; CLL, chronic lymphocytic leukemia; CRC, colorectal cancer; CRY2, cryptochrome circadian regulator 2; ETS1, E26 transformation-specific

1; FABP4, fatty acid binding protein 4; FASN, fatty acid synthase; FBXL3, F-box and leucine rich repeat protein 3; FGFR1, fibroblast growth factor receptor; GLS, Glutaminase;

GLUT1, glucose transporter 1; HCC, hepatocellular carcinoma; HK2, hexokinase 2; LC, lung cancer; LDH, lactate dehydrogenase; OC, ovarian cancer; OSCC, oral squamous cell

carcinoma; PC, pancreatic cancer; PFKFB2, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 2; PK, pyruvate kinase; PKM2: pyruvate kinase isozymes M2; PPARγ, peroxisome

proliferator-activated receptor-γ; SREBP1, sterol regulatory element binding transcription protein 1; TCF7L2, transcription factor 7-like 2.

colonization and metastasis of CRC cells by convergently
dysregulating creatine kinase brain-type (CKB), which is released
into the extracellular microenvironments by hypoxic metastatic
cells and catalyzes the production of phosphocreatine that
helps to generate ATP and fuel metastatic cells (21). In
ovarian cancer, the chemokine CXCL14 (C-X-C motif ligand
14)-high expressed cancer-associated fibroblasts mediate the
upregulation of lncRNA LINC00092, which downregulates
PFKFB2 (6-phosphofructo-2-kinase/fructose-2,6-biphosphatase
2), a glycolytic enzyme involved in synthesis and degradation
of fructose-2,6-bisphosphate, thereby promoting metastasis by
altering glycolysis (47). MiR-361-5p inhibits the glycolysis and
invasion of breast cancer cells by respectively targeting MMP-
1 and fibroblast growth factor receptor 1 (FGFR1), which is a

promoter of glycolytic enzyme and a suppresser of OXPHOS
(oxidative phosphorylation) (39).

Mitochondrial Respiration and Oxidative
Phosphorylation
Tumor cells employ glycolysis as the main energy supply
method even in oxygen-rich environments due to their impaired
mitochondrial function, along with the reductive carboxylation
of glutamine to malate (12). Hypoxia and reduced mitochondrial
capacity promote cancer cell dependence on glycolysis for ATP
production that is supported by cytosolic reductive metabolism,
while preventing this metabolic adaptation can increase the
accumulation of ROS and a reduction of metastatic capacity
of cancer cells (82). In addition, the metabolic interaction
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between cancer cell mitochondrial respiration and catabolism
in carcinoma-associated fibroblasts enhances the growth and
metastasis of cancer cells (83). The expression of miR-485 is
downregulated in breast cancer tissues and the overexpression
of its both mature forms, miR-485-3p and miR-485-5p, restrains
mitochondrial respiration and suppresses the metastasis of breast
cancer cells by downregulating peroxisome proliferator-activated
receptor-gamma coactivator (PGC)−1α (84).

It is well known that OXPHOS produces more ATP than
glycolysis under the same condition (13). Studies used to suggest
that OXPHOS plays a minor role in the energy metabolism
of tumor cells due to their deficient mitochondrial functions.
However, a study shows that 80% of the energy generated by
MCF-7 breast cancer cells in vitro is derived from mitochondrial
OXPHOS and only 20% from glycolysis (25). Another study
also finds that genes involved in OXPHOS are significantly
upregulated in breast, leukemia, lung, lymphoma and ovarian
cancers (85). Therefore, tumor cells may use aerobic glycolysis
for energy and glycolyticmetabolites are transferred into anabolic
pathways to support malignancy, but this process may be
suspended during cancer cell metastasis. In support, it is shown
that aggressive cancer cells favor OXPHOS for energy supply
(86). Although the dispute exists, it seems that OXPHOS is also
an important metabolic pattern of tumor cells (87).

It is unclear how primary and metastatic tumors select
different metabolic pathways, glycolysis or OXPHOS, for their
energy supply. However, it is acceptable that glycolysis is more
remarkable in aggressive and fast-growing tumors, and different
types of cancer may have different metabolism pathways. A
subset of glioma cells relies on glycolysis while the others in the
same tumor depend on OXPHOS for energy supply, indicating a
characteristic of metabolic heterogeneity (88). A genetic analysis
shows that breast cancer cells utilizing glycolysis as the main
energy metabolic method prefer to metastasize to the liver, but
cells adopting OXPHOS as the principal metabolic pathway are
more likely to metastasize to bone and lungs, and pyruvate
dehydrogenase kinase-1 (PDK1) is required for liver metastasis
(89). Despite metabolic heterogeneity that exists in the same
tumor and metabolic types affect the organs where tumor cells
metastasize, little information is available regarding the influence
of ncRNAs onOXPHOS. A study suggests thatmiR-155 andmiR-
210 derived from melanoma exosomes promote glycolysis and
inhibit OXPHOS in tumor cells and contribute to the creation of
a pre-metastatic niche (90).

Lipid Metabolism
Lipid anabolism is an important indicator of abnormal tumor
metabolism because lipids provide components of biofilms
and regulate fluidity and lipid molecule signal transduction of
cytomembranes, and thus participates in the metastasis of cancer
cells (91, 92). Under metabolic stress, tumor cells strengthen
the coupling of fatty acid anabolism and catabolism to establish
a fatty acid circulation network to promote their growth and
metastasis (93).

In amousemodel with subcutaneous osteosarcoma, the serum
metabolic profiling reveals an increase of key metabolites in
glycolysis and tricarboxylic acid cycle (TCA); while in mice with

lungmetastasis, serummetabolic profile shows a decrease ofmost
metabolites, except for cholesterol and free fatty acids, suggesting
that elevated lipid metabolism may be associated with tumor
metastasis (94). Sterol regulatory element-binding transcription
protein 1 (SREBP1), a candidate target of miR-18a-5p, is the
master transcription factor that controls lipid metabolism; and
miR-18a-5p can suppress the invasion and migration of breast
cancer cells by regulating SREBP1 (48). MiR-661 is required for
the efficient invasion of breast cancer cells by destabilizing StAR-
related lipid transfer protein 10 and the cell-cell adhesion protein
Nectin-1, leading to the downregulation of epithelial markers
(49). Acetyl-CoA carboxylase (ACC), fatty acid synthase (FASN)
and 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGR) are
potential targets of miR-195, whose ectopic expression regulates
cellular triglyceride and cholesterol levels, leading to decreased
proliferation and metastasis of breast cancer cells (50). Hypoxia
decreases the expression of miR-409-3p, a regulator of FABP4
(fatty acid binding protein 4), which increases the metastatic
potential of ovarian cancer cells (51).

Fatty acid anabolism requires the activation of ACC,
adenosine triphosphate citrate lyase (ACLY) and FASN (93),
which are upregulated in aggressive tumors and associated with
a poor prognosis (95, 96). ACLY participates in the de novo
synthesis of fatty acids by converting citrate into oxaloacetate
and cytosolic acetyl-CoA. In gastric cancer, highly expressed
ACLY is closely related to advanced stages and lymph metastasis
(97). ACLY regulates low molecular weight isoform of cyclin
E (LMW-E), which can also enhance the enzyme activity of
ACLY in a positive feedback way, promoting the formation of
lipid droplets and the metastasis of breast cancer cells (98).
ACLY stabilizes CTNNB1 (beta-catenin 1) protein and enhances
its transcriptional activity, thus promoting the migration and
invasion of colon cancer cells (99).MiR-22 restricts themetastasis
of breast cancer cells by inhibiting the expression of ACLY
(52). Overexpression of miR-133b in gastric cancer increases the
levels of nuclear PPAR-γ, which decreases the transcriptional
activity of ACLY, and then represses the invasion of cells (53).
ACC is a rate-limiting enzyme for fatty acid synthesis, which
catalyzes acetyl-CoA to formmalonyl-CoA (100). ACC1 is highly
modulated by phosphorylation and allosteric regulation and
plays a key role in promoting a speedy adaptation to novel
microenvironments (101). In HCC, highly expressed ACC1 is
closely related to poor differentiation, vascular invasion, and
poor prognosis, and has been regarded as a biomarker for early
diagnosis (102). Contradictorily, ACC1 inhibition is shown to
promote the metastasis of breast cancer cells (103), indicating the
roles of ACC1 may be cancer type-dependent. Acyl-CoA oxidase
1 (ACOX1) is a key enzyme of the fatty acid oxidation pathway
and its overexpression alleviates the migration and invasion of
colorectal cancer (104). The class III deacetylase sirtuin 1 (SIRT1)
prevents the trans-activation effect of activator protein (AP-1)
on miR-15b-5p by deacetylation of AP-1, then upregulates the
expression of ACOX1, which act as a direct target for miR-15b-
5p (104).

Fatty acid catabolism also plays a role in the process of cancer
metastasis. Monoacylglycerol lipase, functioning with hormone-
sensitive lipase (LIPE) to hydrolyze intracellular triglyceride
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stores to fatty acids and glycerol, is highly expressed in prostate
cancer and is related to the EMT process (105). Phospholipase
D (PLD), an enzyme that hydrolyzes phosphatidylcholine to
produce the signal molecule phosphatidic acid and soluble
choline, promotes the metastasis of cancer cells (106). Adipocytes
are the carrier of energy, sources of hormones and cytokines,
and a crucial component of tumor microenvironments, and also
facilitate tumor metastasis. For instance, melanoma cells have a
higher level of fatty acid oxidation after they absorb fatty acid
oxidase enzymes in exosomes secreted by adipose cells (107).
However, the roles of ncRNAs in fatty acid catabolism and
adipocytes remain to be clarified.

Glutamine Metabolism
Cancer cells have shown increased glutamine uptake and
catabolism. Glutaminase (GLS) catalyzes glutamine into
glutamate, which is subsequently catalyzed by glutamate
dehydrogenase (GDH) to form α-ketoglutarate, finally entering
the TCA as an important energy source. Although glutamine
is a non-essential amino acid, it is indispensable in specific
conditions and its metabolism has important biological
significance for cancer cells. Glutamine can increase the
expression of hypoxia-inducible factor (HIF)-1α, enhance the
pro-autophagic effect of its target BNIP3 (BCL2/adenovirus
E1B 19kDa interacting protein 3), and promote the metastasis
of melanoma cells (108). Metabolite fumarate, an intermediate
product of glutamine metabolism, reduces the level of ROS
and maintains the balance of redox by activating glutathione
peroxidase, and thus promoting the metastasis of cancer cells
(109). C-Myc is an oncogenic transcription factor and promotes
glutamine catabolism to fuel the growth of cancer cells by
upregulating GLS and suppresses proline oxidase primarily
through upregulating miR-23b (56). LncRNA GLS-AS regulates
a feedback loop of glutaminase and c-Myc, thus being involved
in the metastasis and representing a therapeutic target for
the metabolic reprogramming of pancreatic cancer cells (10).
MicroRNA-133a-3p targets GABARAPL1 (gamma-aminobutyric
acid receptor-associated protein-like 1) to inhibit autophagy-
mediated glutaminolysis, thereby inhibiting metastasis of gastric
cancer (110).

NCRNAS AND METABOLIC SIGNALING
PATHWAYS

As discussed above, ncRNAs participate in the metastasis-related
metabolic reprogramming by regulating individual genes. In
the following paragraphs, we discuss how dysregulated ncRNAs
modulate the key metabolic signaling pathways to affect the
metastasis of cancer cells (Figure 3).

Hypoxia-Inducible Pathways
Hypoxic microenvironments are very frequently observed in
almost all the solid tumors, have an impact on cell biological
behaviors and extracellular matrix remodeling, increase
metastatic capacities and contribute greatly to therapy resistance
(111). Under aerobic conditions, tumor cells have a high rate
of glucose-dependent metabolism (112), while in hypoxic
microenvironments they have to adjust themselves to lower

oxygen situations by changing the metabolic pattern, resulting
in the suppression of anti-cancer immunity and high potential
capacities of invasion and migration (113). HIFs are the master
driving forces of the cellular adaption to hypoxia and well-known
transcription factors by regulating a vast array of genes involved
in angiogenesis and metastasis, and in particular, GLUTs and
glycolytic enzymes including HK2, 6-phosphofructokinase,
and LDHA are regulated by HIFs (111). The expression and
stabilization of HIFs are controlled by mRNAs. For example,
miR-365 directly targets homeobox A9 (HOXA9) by binding to
3′-UTR region, and the downregulation of HOXA9 increases
the expression of HIF-1α and its downstream glycolytic genes
HK2, GLUT1, and PDK1, promoting glycolysis and metastasis
of cutaneous squamous cell carcinoma (114). The knockdown
of miR-592 in HCC cells strengthens glycolysis by enhancing
WSB1-induced HIF-1α stability and promotes HCC cell
migration in vitro (115).

LKB1-AMP Activated Protein Kinase
Pathway
AMPK (5′ adenosine monophosphate-activated protein kinase)
is a critical sensor to maintain cellular energy homeostasis.
AMPK phosphorylates ACC1 and SREBP1 to inhibit the
synthesis of fatty acids, cholesterol, and triglycerides, and activate
fatty acid uptake. It also stimulates glycolysis by activating
phosphorylation of PFKFB3 and glycogen phosphorylase (116).
Downregulating AMPK shows a promoting effect on the growth
and biosynthesis of cancer cells (117), and many types of
cancer cells have a shortage of AMPK to maintain their
glycolytic phenotypes (16). Activating AMPK is required for an
increased AMP/ATP ratio and switching the oxidative metabolic
to glycolytic phenotypes (116). Liver kinase B1 (LKB1) is a
tumor suppressor that locates at the upstream of AMPK and
can repress ATP depletion by phosphorylating and activating
AMPK when cellular ATP levels are limited (118). Under tumor
microenvironments, miR-7 inhibits autophagy by upregulating
the LKB1-AMPK signaling pathway, leading to a reduced
intracellular glucose supply, and as a result, the proliferation and
metastasis of pancreatic cancer cells are inhibited (119). MiR-
451 regulates the proliferation, migration and responsiveness to
glucose deprivation of glioma cells by targeting the LKB1/AMPK
pathway, and depresses the LKB-1-associated protein CAB39
that promotes glioma cells adapting to metabolic stress (120).
Taurine up-regulated gene 1 (TUG1) is highly expressed in HCC
cells and upregulates miR-455-3p at the transcriptional level,
thus the TUG1/miR-455-3p/AMPKβ2 axis promotes glycolysis
and metastasis by upregulating HK2 (40). Higher expression
of lncRNA MACC1-AS1 correlates with the lung metastasis
of gastric cancer cells, and MACC1-AS1 is elevated under
metabolic stress and facilitates metabolic plasticity by increasing
MACC1 mRNA expression and strengthening glycolysis and
anti-oxidative abilities via the AMPK/Lin28 pathway (121).
LncRNA MACC1-AS1 is also upregulated in pancreatic cancer
and related to poor prognosis, and its knockdown inhibits
the metastasis of pancreatic cancer cells by upregulating the
expression of PAX8 (paired-box gene 8), which plays a role
in activating NOTCH1 signaling and promoting cell aerobic
glycolysis (122).
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FIGURE 3 | NcRNAs regulate metabolic reprogramming by targeting signaling pathways. “→” indicates positive regulation or activation; “⊥”, negative regulation or

blockade; dotted lines “—–”, indirect regulation. LncRNAs are marked as red color. ACC, acetyl-CoA carboxylase; AMPK, AMP-activated protein kinase; GLS,

glutaminase; GLUT, glucose transporter; HK, hexokinase; IGF-1R, insulin-like growth factor-1 receptor; LDH, lactate dehydrogenase; LKB1, liver kinase B1; PFK,

phosphofructokinase; PKM2, pyruvate kinase M2; PTEN, phosphatase and tensin homolog.

PI3K/AKT/mTOR Pathway
In tumor cells, the classical PI3K/AKT/mTOR signaling pathway
is often highly expressed and is involved in regulating cancer
growth, proliferation, invasion, and metastasis (123, 124).
Recent studies also show that PI3K/AKT/mTOR pathway
also functions in tumor cell metabolisms such as glycolysis
(125), lipid metabolism (126) and amino acid metabolism
(127). Meanwhile, ncRNAs also participate in the regulation
of cell metabolism through the PI3K/AKT/mTOR pathway,
thus affecting tumor cell metastasis. MiR-204-5p expressed in
breast cancer cells affects the mTOR pathway, reduces the
oxygen consumption and extracellular acidification rates, and
inhibits metastasis (128). Circular RNA circNRIP1 acts as ceRNA
to bind to miR-149-5p, activates the AKT/mTOR signaling
pathway, thus increases glucose uptake, lactate contents and
ATP production, regulates the Warburg effect and promotes
gastric cancer cell metastasis (129). LINC00963 promotes non-
small cell lung cancer metastasis by preventing ubiquitination
of glycolytic kinase PGK1 (phosphoglycerate kinase 1), which
activates the AKT/mTOR pathway (130). MiR-384 regulates
the expression of pleiotrophin, which can upregulate lipogenic

genes, mediate de novo lipid synthesis and promote the
metastasis of HCC cells via the N-syndecan/PI3K/Akt/mTOR
pathway (131).

CONCLUSION AND EXPECTATION

Metastasis is a major obstacle for successful treatments of
cancer and represents the leading cause of cancer-related
death. Metabolic reprogramming is another hallmark of
cancer because cancer cells obtain their energy supply mainly
depending on glycolysis rather than mitochondrial oxidative
phosphorylation through altered oncogenic metabolic pathways.
The changes in metabolisms of glucose, lipid, and glutamine
and mitochondrial respiration and oxidative phosphorylation
involve the hypoxia-inducible, LKB1-AMP activated protein
kinase and other signaling pathways in cancer cells. These
metabolic alterations render cancer cells obtaining energy and
metabolites for fast bioenergetics and metabolic fluxes, and
being prone to metastasize to distant organs, where normal
cells also undergo metabolic changes to form pre-metastatic
niches for the implantation and growth of cancer cells. Many

Frontiers in Oncology | www.frontiersin.org 8 May 2020 | Volume 10 | Article 810

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Li and Sun NcRNAs in Metabolic Reprogramming/Metastasis

FIGURE 4 | NcRNAs participate in tumor metastasis by regulating metabolic reprogramming. Red and green pellets represent ncRNAs that inhibit and promote,

respectively, the metastasis through regulating glycolysis, lipid metabolism or glutamine metabolism.

ncRNAs, particularly miRNAs and lncRNAs, have been identified
as major participants in the metabolic gene regulatory networks
and the multi-staged process of metastasis. Some of them
either inhibit or promote cancer metastasis involving cell
motility, transit in the circulation, and growth at a new
site by regulating the metabolism of glycolysis, lipid, and
glutamine (Figure 4).

Despite cumulative studies showing the altered expression
profiles of ncRNAs during metabolic rearrangement in cancer,
their roles and molecular characteristics remain largely
unexplored. Without a doubt, the dysregulation of ncRNAs
influences multiple metabolic processes and plays a critical
role in tumor metastasis. More ncRNAs are being identified
as potential diagnostic biomarkers or therapeutic targets for
cancers. For example, a meta-analysis of a large cohort of cancer
patients reveals that lncRNA SNHG12 serves as a diagnostic and
prognostic biomarker and a druggable therapeutic target with
promising clinical potential in multiple types of cancer (132).
MiR-34, miR-16, and miR-155 have been regarded as cancer
therapeutic targets and are being evaluated in clinical trials (133).
Furthermore, therapeutic small RNA drugs are becoming novel
promising therapeutics since the first small-interfering RNA
(siRNA) drug, Patisiran, which acts by binding and degrading
transthyretin mRNA, was approved for the treatment of a
rare polyneuropathy by FDA in 2018. However, it seems that
ncRNAs are likely to play “fine-tuning” rather than “definite”
roles. NcRNAs interact with each other and with other types of
factors to form complicated networks, which regulate metabolic
reprogramming and metastasis of cancer cells. Therefore,

a deeper and more comprehensive understanding of the
complicated networks of interactions that ncRNAs coordinate
in the metabolic and metastatic processes may help translate the
discoveries into a strategy for the diagnosis and treatment of
cancer (32).

In addition, thousands of ncRNA sequences exist within
cells and more types of ncRNAs have been recently discovered,
such as circular RNA (circRNA), piwi-interacting RNA (piRNA),
small interfering RNAs (siRNA), enhancer RNAs (eRNA) and
promoter-associated RNA (PAR), which engage in cellular
processes including chromatin remodeling, transcription, post-
transcriptional modifications and signal transduction (134, 135).
Further investigation on the new ncRNAs and their interactions
with other ncRNAs and the associated networks may provide
a unique opportunity to elucidate underlying mechanisms of
how ncRNAs operate in the crosstalk between cancer metabolic
reprogramming and metastasis.
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