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Chimeric antigen receptor-modified (CAR) T cells targeting CD19 have revolutionized

the treatment of relapsed or refractory aggressive B-cell lymphomas, and their use has

increased the cure rate for these cancers from 10 to 40%. Two second-generation

anti-CD19 CAR T-cell products, axicabtagene ciloleucel and tisagenlecleucel, have

been approved for use in patients, and the approval of a third product, lisocabtagene

maraleucel, is expected in 2020. The commercial availability of the first two products

has facilitated the development of real-world experience in treating relapsed or refractory

aggressive B-cell lymphomas, shed light on anti-CD19 CAR T-cell products’ feasibility in

trial-ineligible patients, and raised the need for strategies to mitigate the adverse effects

associated with anti-CD19 CAR T-cell therapy, such as cytokine release syndrome,

neurotoxicity, and cytopenia. In addition, promising clinical data supporting the use of

anti-CD19 CAR T-cell therapy in patients with indolent B-cell lymphomas or chronic

lymphocytic leukemia have recently become available, breaking the paradigm that

these conditions are not curable. Multiple clinical CAR T-cell therapy-based trials

are ongoing. These include studies comparing CAR T-cell therapy to autologous

stem cell transplantation or investigating their use at earlier stages of disease, novel

combinations, and novel constructs. Here we provide a thorough review on the use

of the anti-CD19 CAR T-cell products axicabtagene ciloleucel, tisagenlecleucel and

lisocabtagene maraleucel in patients with indolent or aggressive B-cell lymphoma or with

chronic lymphocytic leukemia, and present novel CAR T cell-based approaches currently

under investigation in these disease settings.

Keywords: CAR T cells, indolent B-cell lymphomas, aggressive B-cell lymphomas, chronic lymphocytic leukemia,

clinical trials, real-world experience

INTRODUCTION

B-cell non-Hodgkin lymphomas (NHLs) constitute the disease setting in which treatment with
chimeric antigen receptor-modified (CAR) T cells is currently most advanced. CD19 has been
identified as an ideal target for CAR T-cell therapy in the majority of B-cell malignancies. In
fact, while it is an ubiquitously expressed protein in the B lymphocyte lineage, its expression
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is maintained in B cells that have undergone neoplastic
transformation (1). Early studies exploring the safety and
feasibility of CD19-directed CAR T-cell therapy have generally
included heterogeneous patient populations [i.e., they have
enrolled patients with aggressive B-cell lymphoma, indolent B-
cell lymphoma or chronic lymphocytic leukemia (CLL) in the
same study] (2–4). However, later clinical trials focused mainly
on aggressive B-cell lymphomas in light of their worse prognosis
and higher need for novel curative options. For this reason, data
regarding the efficacy of CAR T-cell therapy are more mature
in the aggressive B-cell lymphoma setting, and the currently
approved treatment indications exclude indolent lymphomas
and CLL.

As of February 2020, two second-generation anti-CD19
CAR T-cell products, axicabtagene ciloleucel (axi-cel) and
tisagenlecleucel (tisa-cel, formerly known as CTL019), have been
approved by the U.S. Food and Drug Administration (FDA)
and European Medicine Agency. Approval for a third product,
lisocabtagene maraleucel (liso-cel [or JCAR017]), is expected
in 2020. Alternative strategies aimed at improving CAR T-cell
activity, reducing their toxicity, and expanding their indication to
diseases other than aggressive lymphomas are undergoing clinical
testing (Table 1).

TABLE 1 | Ongoing trials of axi-cel, tisa-cel and liso-cel in patients with aggressive

B-cell lymphoma.

Trial Phase Patient

population

Product

NCT02348216 (ZUMA-1) 1/2 Failed 2 lines Axi-cel

NCT02926833 (ZUMA-6) 1/2 Failed 2 lines Axi-cel + atezolizumab

NCT03391466 (ZUMA-7) 3 Failed 1 line Axi-cel vs ASCT

NCT03153462 (ZUMA-9) EA Failed 2 lines Axi-cel (suboptimal)

NCT03704298 (ZUMA-11) 1/2 Failed 2 lines Axi-cel + utomilumab

NCT03761056 (ZUMA-12) 2 Previously

untreated

Axi-cel

NCT04002401 (ZUMA-14) 2 Failed 2 lines Axi-cel + rituximab

Axi-cel + lenalidomide

NCT04134117 1 PCNSL Tisa-cel

NCT03630159 (PORTIA) 1 Failed 2 lines Tisa-cel + pembrolizumab

NCT03876028 1 Failed 2 lines Tisa-cel + ibrutinib

NCT04161118 (TIGER) 2 Failed 1 line

(elderly)

Tisa-cel

NCT02445248 (JULIET) 2 Failed 2 lines Tisa-cel

NCT03570892 (BELINDA) 3 Failed 1 line Tisa-cel vs ASCT

NCT04094311 3B Failed 2 lines Tisa-cel (suboptimal)

NCT02631044

(TRANSCEND)

1 Failed 2 lines Liso-cel

NCT03310619

(PLATFORM)

1/2 Failed 2 lines Liso-cel + CC-122; Liso-cel

+ durvalumab

NCT03744676

(OUTREACH)

2 Failed 2 lines Liso-cel

NCT03483103 (PILOT) 2 Failed 1 line Liso-cel

NCT03575351

(TRANSFORM)

3 Failed 1 line Liso-cel vs ASCT

ASCT, autologous SCT; EA, expanded access; PCNSL, primary central nervous

system lymphoma.

Here we provide a detailed review of clinical trials and real-
world experiences focused on the use of axi-cel, tisa-cel and liso-
cel in patients with aggressive or indolent B-cell lymphomas or
with CLL, also mentioning novel CAR T cell-based approaches
currently under investigation in these disease settings.

AXI-CEL FOR AGGRESSIVE B-CELL
LYMPHOMA

Efficacy and Predictors of Outcome
The safety and efficacy of axi-cel for the treatment of aggressive
B-cell lymphoma was investigated in a pivotal, multicenter phase
1/2 study named ZUMA-1. The study included patients with
refractory disease, defined as (1) progressive or stable disease
as best response to the most recent chemotherapy regimen,
or (2) progression/relapse within 12 months after autologous
stem cell transplantation (SCT) (5, 6). Patients with diffuse
large B-cell lymphoma (DLBCL), primary mediastinal B-cell
lymphoma (PMBCL), or transformed follicular lymphoma (tFL)
were eligible, whereas patients who had received allogeneic SCT
or with prior and/or active central nervous system (CNS) disease
were excluded.

In ZUMA-1, bridging therapy was not allowed. Conditioning
consisted of fludarabine (30 mg/m2) and cyclophosphamide (500
mg/m2) administered intravenously for 3 days. At the most
recent update published in 2019, 108 patients had been infused
with a target dose of 2 × 106 CAR T cells per kilogram of
body weight (7). After a median follow-up time of 27 months,
the best overall response rate (ORR) was 83% and the complete
remission (CR) rate was 58%. Response was independent of
traditional baseline prognostic factors except for the baseline
high tumor burden, which was indicated by either an elevated
lactate dehydrogenase (LDH) level or high total metabolic tumor
volume detected on a positron emission tomography (PET) scan
(8). The use of axi-cel resulted in 11.5-fold higher odds of CR
and a 73% reduction in the risk of death when compared with
standard salvage regimens (9).

Based on the results of this pivotal trial, axi-cel was approved
by the FDA in 2017 for the treatment of relapsed or refractory
large B-cell lymphoma in patients who had experienced failure of
at least two lines of systemic therapy. Axi-cel is marketed by Kite
Pharma (Santa Monica, CA) as Yescarta.

Researchers have made multiple efforts to identify product-
and host-related factors predicting axi-cel’s efficacy. To this end,
the phenotype of the CAR T cells infused into 62 patients treated
in the ZUMA-1 trial has been characterized (10). Axi-cel contains
both CCR7+T cells (naïve and central memory T cells) andmore
differentiated CCR7– T cells. The CCR7+:CCR7– T-cell ratio
was positively associated with CAR T-cell peak and cumulative
expansion during the first month after infusion. More robust
CART-cell expansionwas also associated with a higher likelihood
of achieving CR (11), and early expansion of a specific subset of
CD4+ CAR T cells (i.e., with high expression of CD45RO, CD57,
PD1, and T-bet transcription factor) may help identify patients
most likely to maintain CR at 6 months (12).

Pretreatment features of the host tumor microenvironment
can affect the efficacy of axi-cel, and systemic inflammatory
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myeloid cytokines and circulating myeloid derived suppressor
cells are associated with a higher risk of relapse after axi-
cel therapy (13). On the other hand, CAR T cells themselves
can influence the host tumor microenvironment. Both gene-
expression profiling and multiple immunofluorescence analyses
of paired pretreatment and posttreatment biopsy samples
obtained from patients treated with axi-cel have shown
upregulation of T-cell activation, effector, chemokine and
immune-checkpoint genes (14, 15). Upregulation of immune-
checkpoint genes has provided the rationale for combining axi-
cel with checkpoint-inhibitor blockers for treatment of B-cell
lymphoproliferative diseases (see below).

Of interest, in the ZUMA-1 trial, one-third of patients in
partial remission (PR) 30 days after infusion had CR upon re-
evaluation at day 90, and CR at day 90 was associated with
prolonged survival (6). Of all PET scan-related measurements,
only the total tumor glycolysis level at day 30 predicted the quality
of response at day 90 (16). In addition, even in the absence of
disease detected on PET scans, circulating tumor DNA could
be detected as early as 28 days after axi-cel infusion and was
associated with a poor outcome (17, 18). Novel techniques, aimed
at the early identification of minimal residual disease (MRD)may
guide the design of future consolidation studies and improve the
outcomes in patients with aggressive B-cell lymphomas treated
with axi-cel.

Special Scenarios: Patients With
Aggressive B-Cell Lymphoma Who Are
Elderly or Have CNS Disease or Chronic
Viral Hepatitis
Special scenarios that can be encountered during the use of axi-
cel for the treatment of aggressive B-cell lymphoma include the
presence of CNS disease or chronic viral hepatitis, or the need to
treat it in elderly individuals.

Patients with CNS disease were excluded from the ZUMA-
1 trial, so experience in regard to their treatment comes from
the commercial use of axi-cel. A recent report from the U.S.
Lymphoma CAR T Consortium on patients with aggressive B-
cell lymphoma treated with axi-cel identified 17 patients with
secondary lymphomatous CNS involvement (five had active
disease at the time of infusion) and 283 patients without CNS
disease (19). After a median follow-up of 10 months, similar
rates of toxicity and comparable outcomes were observed in
the two groups, highlighting the need to further explore the
activity and safety of axi-cel in patients with B-cell lymphoma and
CNS disease.

The ZUMA-1 trial also excluded patients with chronic
viral hepatitis. In a recent case series, two patients with
chronic hepatitis B and one with chronic hepatitis C were
given commercial axi-cel (20). All three patients experienced a
favorable outcome; viral reactivation was reported in only one
patient who decided to interrupt anti-viral prophylaxis against
medical advice. Currently, no conclusions can be drawn based on
only three patients, and the safety of the use of this product will
need to be further investigated in individuals with chronic viral
hepatitis treated outside of clinical trials.

In spite of the absence of an age limit in the ZUMA-1
trial, only 24% of the included patients were older than 65
years, raising doubts about the safety and efficacy of axi-cel in
this population. This concern is also supported by the notion
that comorbidities, the burden of which is typically higher
in elderly patients than in younger patients, are associated
with poor outcomes after axi-cel infusion (21). Two small,
retrospective single-center studies that analyzed outcomes for
patients 65 years or older (24 and 17 patients, respectively, in
the two studies) and patients younger than 65 years (25 and
44 patients, respectively) who received axi-cel for relapsed or
refractory large B-cell lymphoma showed comparable efficacies
and rates of cytokine release syndrome (CRS) and neurotoxicity
(22, 23). Similar data were reported in a retrospective analysis
of 177 Medicare patients (24). However, real-world multicenter
data from a study comparing the outcomes of 153 patients
65 years or older with those of 244 patients younger than
65 years after treatment with axi-cel showed higher rates
of neurotoxicity and atrial fibrillation in the older patients,
although the higher atrial fibrillation rate was not associated
with an increased mortality rate (25). Whereas older age and
comorbidities should not preclude access to axi-cel, patients
aged 65 years or older and those with comorbidities must be
monitored closely and be the focus of experimental strategies
aimed at mitigating toxicities.

CRS, Neurotoxicity, and Persistent
Cytopenia
In the ZUMA-1 trial, grade 3 or worse CRS occurred in 12 (11%)
patients [as per the American Society for Transplantation and
Cellular Therapy consensus criteria, the so-called Lee criteria
(26)], and grade 3 or worse neurological events occurred in
35 (32%) patients (as per the Common Terminology Criteria
for Adverse Events, version 4.03). Forty-seven percent of the
patients received tocilizumab and 27% received steroids for the
management of these side effects.

The U.S. Lymphoma CAR T Consortium recently reported
that, in a large cohort of patients with aggressive B-cell lymphoma
receiving axi-cel, those who did not have CRS were less likely
to achieve CR, possibly reflecting lower short-term CAR T-cell
activity, although no differences in other relevant outcomes,
including the ORR and survival rate, were observed (27).

Fever is a defining characteristic of CRS, but its pattern
and management remain elusive, frequently representing a
challenge for the treating clinician. In a retrospective single-
center study, fever occurred in 71% of patients within 72 h of
axi-cel infusion, and it recurred in 69% of them after tocilizumab
use (within 24 h in one-third of the cases) (28). As a result,
more sensitive and specific tools for the early detection of CRS,
including sublingual microcirculatory imaging, are currently
under investigation (29).

Although the characteristics of CRS have been extensively
described, CRS’s clinical and radiological correlations with
neurotoxicity were reported only recently (9). In a retrospective
single-center study including 95 patients with relapsed or
refractory large B-cell lymphoma treated with axi-cel, 65
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patients experienced neurotoxicity. Among 26 patients
with evaluable magnetic resonance imaging scans of the
brain, 15 had abnormal findings, including autoimmune,
encephalitis-like patterns in 6 patients; stroke-like patterns in
4 patients; leptomeningeal disease-like patterns in 3 patients;
and posterior, reversible encephalopathy syndrome-like patterns
in 2 patients. Electroencephalograms were performed in 52
patients and were abnormal for 47 of them. In 35 patients,
focal and/or diffuse slowing, reported as an isolated finding,
was the most common abnormality, whereas in 12 patients,
epileptiform discharges and/or non-convulsive status epilepticus
were observed.

Given the frequency and morbidity of neurotoxicity, multiple
efforts are ongoing to recognize possible predictive factors.
Among them, elevated fibrinogen levels on day 0, the germinal
center B-cell subtype in DLBCL, and increased cortical glycolysis
revealed on PET scans have already been identified (30, 31).

In patients treated with anti-CD19 CAR T cells, increasing
evidence of the correlation between pre-treatment and post-
treatment activation of the immune microenvironment
and endothelial system with higher risk of both CRS and
neurotoxicity has led to early use of steroids with the aim of
preventing toxicity (32–34). In 41 patients treated in cohort 4
of the ZUMA-1 trial, steroid use was allowed in case of grade
1 neurotoxicity or grade 1 CRS after 3 days of supportive care
(35). At a median follow-up of 9 months, a lower incidence of
toxicity was observed in patients in cohort 4 who were supported
with an earlier steroid use, in the absence of a significant impact
on treatment efficacy. It is important to note that post-hoc
analysis based on the cumulative dose and duration of steroid
administration was not performed in this study, and given their
potentially negative impact on CAR T cells efficacy, liberal use of
steroids should not be encouraged.

A novel CAR T-cell-related toxic effect only recently fully
acknowledged is persistent cytopenia, which has been observed
in 30–40% of patients given axi-cel (6, 36). Persistent cytopenia
is characterized by an increased need for blood or platelet
transfusions, or the use of growth factors, the latter of which
potentially increases the risk of CRS, with microscopic evidence
of bone marrow failure without concomitant myelodysplastic
syndrome in the majority of patients (37–40). Whereas
myelosuppression resolves in 75% of individuals in the first
year after axi-cel infusion, up to one-quarter of patients
have persistently low numbers of CD4+ T cells 2 years
after CAR T-cell infusion, with an increased risk of late
opportunistic infections and a greater need for appropriate anti-
microbial prophylaxis (41). In these patients, understanding
the mechanisms of cytopenia, which is frequently unrelated to
previous therapies and/or lymphodepleting conditioning, will
be crucial for the effective prevention and management of
this condition.

CAR T-cell-associated toxicity is frequently seen with the
use of axi-cel in patients with aggressive B-cell lymphoma: the
non-progression-related mortality rate is estimated to be 3–15%
(42, 43), and it can constitute a significant financial burden
for the health care system (44, 45). However, multiple studies
have shown that the latter is overcome by the life-prolonging

effects of treatment with axi-cel, resulting in an overall favorable
cost-effectiveness balance (46, 47).

Real-World Data on Axi-Cel’s Efficacy and
Safety
Since axi-cel’s commercialization in 2017, the amount of real-
world data regarding its efficacy and safety for the treatment
of relapsed or refractory aggressive B-cell lymphoma has
progressively grown.

In a recently updated retrospective multicenter analysis
including 163 patients treated with axi-cel, at day 30 the ORR
was 72% and the CR rate was 43%, both slightly lower than
those observed in the ZUMA-1 trial, although researchers in the
latter trial reported the best response to treatment instead of the
30-day response (48, 49). Grade 3-4 CRS was seen in 13% of
patients and grade 3-4 neurotoxicity was seen in 41% of them.
Whereas neurotoxicity was more frequent than that reported in
the ZUMA-1 trial (31%), it is important to note that multiple
scales, based on institution preference, were used for toxicity
grading in this study. A post-marketing review of 397 case
reports of neurotoxicity from the FDA Adverse Events Reporting
System database has shown that the real-world neurotoxicity
rates in patients given axi-cel largely resemble those reported in
clinical trials. Specifically, neurotoxicity is more common in older
patients and in those with concomitant CRS, and it is transient
in the majority of cases according to patient-reported outcomes
(50, 51). Similar data have been reported for 295 patients by the
Center for International Blood and Marrow Transplant Research
and for 122 patients by the National Health Service England,
supporting the post-marketing efficacy and safety of axi-cel in
both in the U.S. and Europe (52, 53).

While the excitement about the use of axi-cel in patients with
relapsed or refractory aggressive B-cell lymphomas is rapidly
growing, an important point to remember is that up to one
third of the individuals for whom axi-cel was intended have
been unable to receive it, mostly because of progression-related
death before leukapheresis (54). This raises concern about the
identification of optimal bridging therapy for these patients,
as these strategies were not allowed in the ZUMA-1 trial and
are typically needed in patients with high-risk disease (55).
Unfortunately, real-world data show a heterogeneous pattern of
the use of bridging therapies, and a preferred strategy has yet to
be identified (56, 57). Of interest, recent data demonstrated that
radiation therapy may be a safe and effective bridging approach;
in particular, it may limit myelosuppression and favorably impact
the host immune tumor microenvironment (58–60).

Finally, real-world data have shed light on the outcomes
in patients who relapse after axi-cel treatment. In the U.S.
Lymphoma CAR T Consortium’s analysis of 274 patients with
aggressive B-cell lymphoma who received axi-cel, 116 had
disease progression during the follow-up period (maximum
follow-up time, 14 months) (61). While patients whose disease
progressed within 3 months had dismal outcomes, the effect
of salvage therapy was more promising for those with a later
relapse. To this regard, late progression represents a potential
opportunity for further manipulation of CAR T-cell function
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and/or the host immunemicroenvironment, to achieve long term
remission. Research efforts are undergoing to investigate these
types of intervention.

TISA-CEL FOR AGGRESSIVE B-CELL
LYMPHOMA

Efficacy and Predictors of Outcome
Based on the promising results observed in 28 patients included
in a single-center phase 2a study of tisa-cel (4), the efficacy
of this drug was further investigated in a pivotal international,
multicenter phase 2 trial named the JULIET study (36). The
study included patients with aggressive B-cell lymphoma who
had relapsed after at least two lines of systemic therapy, including
an anthracycline-based regimen and an anti-CD20 monoclonal
antibody, and who were either ineligible for or had disease
refractory to autologous SCT. Patients with DLBCL; high-grade
B-cell lymphoma, including double- and triple-hit lymphoma;
or tFL were included in the study. Patients with PMBCL, who
had received allogeneic SCT, or who had prior and/or active CNS
disease were excluded.

In the JULIET study, bridging therapy was allowed, and
conditioning therapy, consisting of either (1) fludarabine (25
mg/m2) and cyclophosphamide (250mg/m2) given intravenously
for 3 days, or (2) bendamustine (90 mg/m2) given intravenously
for 2 days, was not mandated in patients with fewer than 1 ×

109 white blood cells within the week before tisa-cel infusion.
In a first report, 111 patients were infused, including 95 in the
U.S. (the main cohort) and 16 in Europe (cohort A). Ninety-
three patients from the main cohort who had at least 3 months of
follow-up were included in the efficacy analysis, and the best ORR
was 52% (including 40% with CR); these results met the study’s
primary endpoint. Based on the results of this study, in 2018 the
FDA approved tisa-cel for the treatment of relapsed or refractory
large B-cell lymphoma in patients who had experienced failure
of at least two lines of systemic therapy. Tisa-cel is marketed by
Novartis (Basel, Switzerland) as Kymriah.

Updated efficacy data for 99 patients from the main cohort
have been reported at a median follow-up of 19.3 months (62).
TheORRwas 54%, the CR rate was 40%, and themedian duration
of response was not achieved. Multiple efforts have been made
to identify the factors associated with increased or impaired
tisa-cel product efficacy in these patients. Factors examined
have included clinical and laboratory baseline characteristics,
and the use and type of bridging therapy and lymphodepleting
conditioning. When considering the 115 patients from both
cohorts who were infused with tisa-cel and underwent follow-up
for at least 3 months, the only baseline characteristic associated
with a lower ORR inmultivariate analysis was a high pre-infusion
LDH level (defined as higher than twice the upper limit of
normal), which is a known surrogate marker of disease burden
and aggressivity (63). Of these patients, the ORR for the 11
who did not receive bridging therapy was higher than that of
patients who did receive bridging therapy (82% vs. 49%), likely
reflecting a lower tumor burden and less-aggressive disease in
the former group (64). Because of pre-infusional leukopenia,

eight patients did not receive lymphodepleting conditioning and
experienced a lower ORR (25%) than did those who received
conditioning with fludarabine and cyclophosphamide (58%) or
bendamustine (41%). These results highlight the importance of
lymphodepletion in patients receiving tisa-cel (64).

The association between CAR T-cell persistence and efficacy
also has been evaluated. In a subgroup analysis that included
93 patients from the JULIET trial, transgene levels in peripheral
blood (measured using quantitative polymerase chain reaction)
were equally detectable in tisa-cel responders and non-
responders. The two groups had similar median times to
maximum levels of circulating CAR T cells (9–10 days)
and high inter-individual variability. In addition, whereas the
majority of the responders had persistent transgene levels, some
remained disease-free despite experiencing a decline in transgene
amount to undetectable levels, demonstrating that quantitative
polymerase chain reaction testing for CAR transgene levels in the
blood is not a reliable basis for making any therapeutic decisions
for patients with large B-cell lymphoma treated with tisa-cel (65).

Special Scenarios: CNS Disease,
Unmeasurable Disease, and Suboptimal
Product Quantities
Special scenarios that can be encountered during the use of
tisa-cel for the treatment of aggressive B-cell lymphoma include
the presence of CNS disease, the absence of measurable disease
before infusion, and the use of suboptimal quantities of product.

The outcomes for eight patients with active secondary CNS
involvement at the time of commercial tisa-cel infusion have been
reported (66). Three patients had parenchymal disease, three had
lepto-meningeal disease, and two had both. Of these patients,
four had responses (durable in three), and no patient experienced
high-grade neurotoxicity. Of interest, although only two patients
had concomitant active systemic disease at the time of infusion,
CAR T-cell expansion (determined using patients’ CD3 T-cell
counts as surrogate marker) occurred in all patients, suggesting
adequate trafficking of effector T cells to the CNS.

In the JULIET study, seven patients experienced CR with
bridging therapy, and no measurable disease was observed at the
time of tisa-cel infusion (67, 68). All seven patients remained
in CR at 3 months and had toxicity grades and rates similar
to those in the general study. Two patients had relapses by 1
year. Quantitative polymerase chain reaction-based assessment
of CAR transgene levels showed adequate CAR T-cell expansion
in all patients during the first 28 days after infusion, with a
median time to peak expansion of 9 days, measurable levels of
CAR transgenes at up to 2 years in the majority of patients,
and a median time to undetectable CAR transgene levels of
about 1 year. Collectively, these data support the efficacy of
tisa-cel in patients without detectable disease and have potential
implications for tisa-cel’s use in a consolidative setting.

Prior to its release for commercial use, tisa-cel has to meet
precise lot release specifications, such as the presence of 0.6
to 6.0 × 108 viable CAR-positive T cells and a total cell
viability of at least 80%. CAR T-cell products that do not meet
these specifications can only be administered via an expanded
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access protocol or as single-patient investigational new drugs. Of
interest, in the JULIET trial, where the median dose of viable
CAR-positive T cells was 3 × 108 (range, 0.1–6 × 108 cells) and
the transduction efficiency (as determined using flow cytometry)
was 28% (range, 5–63%), CAR T-cell product attributes had
no significant impact on tisa-cel’s efficacy or toxicity (69).
Likewise, the outcomes for 11 patients with refractory large B-cell
lymphoma treated with “out-of-specification” tisa-cel have been
analyzed, with efficacy and toxicity similar to those reported in
the JULIET trial (70). These findings suggested that suboptimal
tisa-cel products are safe and effective and that criteria for their
commercial release may need to be revised in the future.

CRS and Neurotoxicity
In the JULIET study, CRS was graded according to the University
of Pennsylvania grading scale (71), and neurotoxicity was graded
according to the Common Terminology Criteria for Adverse
Events, version 4.03. Including all 111 patients, CRS of any grade
was reported in 58% of the patients (grade 3-4 in 22%), and
neurological events were reported in 21% of them (grade 3-4
in 12%). These conditions necessitated steroid and tocilizumab
use in 10% and 14% of patients, respectively (36). With extended
follow-up, which included 115 patients, the grade 3-4 CRS rate
was 23%, and the grade 3-4 neurotoxicity rate was 11% (62). To
ensure harmonization of grading among studies, CRS events in
the pivotal JULIET study were recently regraded using the Lee
criteria, showing a similar rate of CRS of any grade (57%), and a
lower rate of grade 3-4 CRS (17%) (72). Similarly, after regrading
using the CARTOX system (73), neurotoxicity of any grade was
observed in 17% of patients and grade 3-4 neurotoxicity was
observed in 13% (74).

In a 24-month clinical update of the JULIET study, increased
serum C-reactive protein, ferritin, interferon-G, interleukin (IL)-
2, IL-6, and IL-10 levels after tisa-cel infusion were associated
with severe CRS, with an increase as early as 2 days after infusion
for IL-2, IL-6, and interferon-G. In contrast, a weaker association
with severe neurotoxicity was reported (75). Of interest, when
analyzing the association between tisa-cel product characteristics
and clinical outcomes, the total number of activated CD4+ T
cells infused positively correlated with high-grade CRS but not
with efficacy, suggesting that controlling the composition of the
product helps mitigate toxicity without hampering efficacy (69).

Real-World Data
The outcomes for 47 patients with relapsed or refractory large
B-cell lymphoma treated with commercial tisa-cel were recently
reported by the Center for International Blood and Marrow
Transplant Research Cellular Therapy Registry (76). The ORR
in these patients was 60% and the CR rate was 38%. Using
the Lee criteria, grade 3-4 CRS was observed in 4% of patients
and prompted steroids or tocilizumab use in 9 and 41% of
patients, respectively. Grade 3-4 neurotoxicity was reported
in 4.3% of patients, and no deaths were toxicity-related; all
14 observed deaths were secondary to progressive disease. Of
interest, 21 of the 47 patients received “out-of-specification”
commercial product, with no significant impact on efficacy or

toxicity as compared with patients who received commercial tisa-
cel within specifications. Similar results have been reported for
a multicenter retrospective study, which described the outcomes
of 79 patients with refractory large B-cell lymphoma treated
with commercial tisa-cel at eight U.S. academic centers (49).
In these patients, the ORR was 59% and the CR rate was
44%. Using institution-specific grading systems (including the
Lee criteria, Common Terminology Criteria for Adverse Events
[version 4.03], and CARTOX system), the grade 3-4 CRS rate
was 1%, the grade 3-4 neurotoxicity rate was 3%, and use of
steroids or tocilizumab was required in 7% and 13% of patients,
respectively. Overall, these data suggest that, in the commercial
setting, tisa-cel is safe and effective for patients potentially not
meeting clinical trial eligibility criteria, although themanagement
of these patients requires the expertise and resources that only
academic centers can provide. The unexpectedly lower rates
of CRS and neurotoxicity may reflect inconsistency in toxicity
reporting outside of clinical trials, highlighting the importance
of training healthcare professionals and of maintaining adequate
electronic record systems.

LISO-CEL FOR AGGRESSIVE B-CELL
LYMPHOMAS

Efficacy, Predictors of Response, and
Quality of Life
Liso-cel is a CD19-directed CAR T-cell product administered
at a precise dose of CD4+ and CD8+ CAR T cells. The
specific CD4+:CD8+ ratio is a defining characteristic of this
product, and Celgene (Summit, NJ), the manufacturer of liso-
cel, has made multiple efforts to reduce phenotype inter-patient
variability and to decrease the risk of transducing residual tumor
cells (77, 78).

The safety and efficacy of liso-cel are being investigated
in a pivotal multicenter, seamless-design, phase 1 trial named
TRANSCEND (79). Patients with large B-cell lymphoma that
relapsed or was refractory after at least two lines of systemic
therapy were eligible for the study. Patients with DLBCL,
high-grade B-cell lymphoma (including double- and triple-hit
subtypes), PMBCL and grade 3B follicular lymphoma (FL) were
included in the study. Of note, patients with secondary CNS
involvement were not excluded.

Bridging therapy was allowed, although patients without
measurable disease before lymphodepleting conditioning with
fludarabine and cyclophosphamide were excluded. Liso-cel was
administered at one of three target dose levels (DLs): 50 × 106

(DL1), 100 × 106 (DL2), or 150 × 106 (DL3) viable CAR T cells.
DL2 was chosen for dose expansion. At the most recent update
presented inDecember 2019, 268 patients had been infused (DL1,
n=51; DL2, n=176; and DL3, n=41) and, because outcomes for
the DLs have been similar, data have been pooled (80). Among
the 255 patients evaluable for efficacy, at a median follow-up of
11 months, the best ORR was 73% and the CR rate was 53%, with
a median duration of response of 13 months.

A phase 2 study, named OUTREACH, is now further
investigating the efficacy of liso-cel at DL2 in the same population
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and will most likely lead to liso-cel’s FDA approval and
commercial availability in the near future.

In addition to efficacy data, the TRANSCEND study evaluated
patient-reported outcomes to assess health-related quality of life,
symptom burden, and health utility (81). Themajority of patients
experienced an improvement in health-related quality of life and
health utility, and a reduction in their fatigue and pain burden
up to 1 year after infusion, although some reported a temporary
detriment during the first month after infusion. Like efficacy
data, patient-reported outcomes will be crucial in the ongoing
comparison of CAR T-cell products with autologous SCT.

Liso-cel is also being investigated in an open-label phase 2
study named PILOT as a second-line therapy for aggressive B-
cell lymphoma in patients who are not eligible for transplant.
Recently, preliminary efficacy data have been reported for the first
nine patients: seven with large B-cell lymphoma and two with
transformed lymphoma (82). At a median follow-up of 4 months,
the best ORR was 100% and the CR rate was 44%.

As none of the traditional prognostic factors were significantly
associated with efficacy in the TRANSCEND trial, to understand
tumor microenvironmental factors affecting liso-cel clinical
activity, multiplexed immunofluorescence was performed on
biopsy samples obtained at baseline (n = 58) and on day 11
(n = 53; 28 paired) (83). As expected, early tumor infiltration
by CAR and non-CAR T cells was associated with more
durable responses. In addition, pre-treatment tumor infiltration
by activated T cells and absence of macrophages were also
associated with longer remissions, highlighting the importance
of a functional and anti-tumoral microenvironment in increasing
the success of CAR T-cell therapy. While potentially guiding
the design of future combinations of CAR T cells with drugs
with immunomodulatory activity, these data support the use
of CAR T cells at earlier stages of disease and in less heavily
pretreated patients.

Special Scenario: CNS Disease
Unlike the JULIET and ZUMA-1 studies, the TRANSCEND
study did not exclude patients with secondary CNS
lymphomatous involvement. At the most recent update, nine
patients with secondary CNS lymphoma have been treated with
liso-cel: four at DL1 and five at DL2. Overall, three of the patients
were given liso-cel as retreatment (84). Four patients responded,
all of whom experienced CR, with two of these four patients
having ongoing remission (at 270 and 545 days, respectively).
Of interest, none of the three patients who received liso-cel as
retreatment had responses. Only one patient had neurotoxicity
(grade 3), which was successfully treated with steroids. Although
details regarding concomitant systemic therapy, patient-specific
CAR T-cell expansion, and CNS-directed bridging therapy have
not been provided, patients with aggressive B-cell lymphoma
who have CNS disease represent an unmet clinical need, and
their inclusion in future clinical trials with CAR T cells should be
strongly encouraged.

CRS, Neurotoxicity, and Financial Burden
Among the 268 patients in the TRANSCEND study who
were evaluable for safety, CRS of any grade (according to the

Lee criteria) occurred in 42% of patients and grade 3-4 CRS
occurred in only 2%. The median time of CRS onset was 5
days. Neurotoxicity of any grade (according to the Common
Terminology Criteria for Adverse Events, version 4.03) was
reported in 30% of patients and grade 3-4 neurotoxicity occurred
in 10%. The median time of neurotoxicity onset was 9 days.
Overall, treatment with tocilizumab or steroids were needed in
19 and 21% of patients, respectively (80). In the PILOT study,
no patient had CRS or neurotoxicity and neither tocilizumab or
steroids were used, but this may be accounted for by the limited
follow-up and small sample size (82).

In light of liso-cel’s unprecedentedly good safety profile,
outpatient administration was allowed in the TRANSCEND and
the PILOT studies. The outcomes of 37 patients given liso-cel in
the outpatient setting were recently reported (85). Whereas 16
patients had CRS and 12 had neurotoxicity, only 2 had grade 3-4
complications, 3 needed tocilizumab with steroids, and 4 needed
steroids alone. Overall, 22 patients needed hospitalization after a
median of 5 days.

Although factors associated with safe outpatient
administration of liso-cel have yet to be identified, if this
product proves feasible for commercial outpatient use, the
impact on the healthcare system may be considerable. A recent
examination of health resource use among 102 patients treated
with liso-cel in the TRANSCEND study showed that length of
stay, either in a hospital or in an intensive care unit, is the key
driver of toxicity management cost and is mainly associated with
grade 3-4 toxicity (86). Likewise, an analysis of 94 patients from
the same study showed that outpatient infusions of liso-cel were
associated with a 40% shorter hospital/intensive care unit stay
when compared with upfront inpatient infusions, entailing a
reduction in the financial burden for patients and the healthcare
system (87). Therefore, strategies aimed at mitigating toxicity in
patients receiving CAR T-cell therapy, and allowing outpatient
infusion and management are desperately needed.

CD19-DIRECTED CAR T CELLS FOR
TREATMENT OF OTHER B-CELL
LYMPHOMAS

Data regarding the use of CD19-directed CAR T-cell products
in patients with indolent NHL [including FL and marginal
zone lymphoma (MZL)] or mantle cell lymphoma (MCL)—the
latter frequently representing an aggressive disease—are more
scarce than those regarding the use of these products in patients
with large B-cell lymphoma, and mainly derive from studies
including patients with a variety of histologies. Based on the
heterogeneity and small number of treated patients, and on the
short follow-up periods in the majority of the reports, assessing
the efficacy of these treatments with precision and identifying
predictors of outcome or prognostic characteristics is difficult.
Regardless, overall, the toxicity profile of CD19-directed CAR T-
cell products in indolent NHL and MCL appears to be close to
that observed in aggressive NHL cases. Larger studies specifically
enrolling patients with indolent NHL and MCL are currently
ongoing (Table 2).
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TABLE 2 | Ongoing trials of axi-cel, tisa-cel and liso-cel in patients with indolent B-cell lymphomas, MCL or CLL.

Trial Phase Disease Population Product

NCT02601313 (ZUMA-2) 2 MCL Failed anthracycline or bendamustine, anti-CD20 mAb, and BTKi Axi-cel

NCT04162756 (ZUMA-18) EA MCL Failed anthracycline or bendamustine, anti-CD20 mAb and BTKi Axi-cel

NCT03105336 (ZUMA-5) 2 MZL, FL Failed 2 lines Axi-cel

NCT03624036 (ZUMA-8) 1/2 CLL Failed 2 lines (including BTKi) Axi-cel

NCT03568461 (ELARA) 2 FL Failed 1 line Tisa-cel

NCT02631044 (TRANSCEND-NHL-001) 1 FL G3b, MCL Failed 1-2 lines Liso-cel

NCT03744676 (OUTREACH) 2 FL G3b Failed 2 lines Liso-cel

NCT03483103 (PILOT) 2 FL G3b Failed 1 line Liso-cel

NCT03310619 (PLATFORM) 1/2 FL G3b Failed 2 lines Liso-cel + CC-122

Liso-cel + durvalumab

NCT03575351 (TRANSFORM) 3 FL G3b Failed 1 line Liso-cel vs ASCT

NCT03331198 (TRANSCEND-CLL-004) 1/2 CLL Failed 2-3 lines Liso-cel +/- ibrutinib

BTKi, BTK inhibitor; EA, expanded access; G3b, grade 3b; mAb, monoclonal antibody.

Axi-Cel for Other B-Cell Lymphomas
Initial data on the efficacy of axi-cel for the treatment of indolent
NHL were reported by the National Cancer Institute (88). Three
patients with heavily pretreated FL and one with splenic MZL
received cyclophosphamide (60 mg/kg) on days−6 and−7 and
fludarabine (25 mg/m2) on days−5 through−1, followed by
CAR T-cell infusion (0.3–3 × 107 CAR T cells per kilogram of
body weight), and a course of intravenous IL-2. Three patients
had responses to the treatment, and a correlation between
toxicity and serum-level elevations of inflammatory cytokines
(i.e., interferon-γ and tumor necrosis factor α) was reported.
After the treatment regimen was modified to omit IL-2 infusion,
an additional patient with splenic MZL had a PR (2), and durable
CR (>11 months) was reported in two patients with FL and one
with MCL (89).

The phase II ZUMA-2 study is a registrational multicenter
trial evaluating axi-cel in patients with relapsed/refractory MCL
(90). Conditioning chemotherapy consists of cyclophosphamide
(500 mg/m2/day) and fludarabine (30 mg/m2/day) for 3 days
and is followed by a single infusion of axi-cel at a target dose
of 2 × 106 CAR T cells per kilogram of body weight. The most
recent report includes data for 60 patients from the primary
efficacy analysis, with a median of three prior treatment lines
and a median follow-up period of 12.3 months. The ORR and
CR rates were 93% and 67%, respectively, with a 12-month
estimated progression-free survival rate of 61%. Grade 3-4 CRS
(according to the Lee criteria) occurred in 15% of patients, and
grade 3-4 neurological events occurred in 31% of patients, with
no fatal events.

The ZUMA-5 phase 2, single-arm trial (NCT03105336),
which is investigating the efficacy of axi-cel in patients with
relapsed/refractory FL, MZL or other indolent NHLs, is currently
enrolling, but results are not available yet.

Tisa-Cel for Other B-Cell Lymphomas
Fourteen patients with FL that relapsed less than 2 years
after the second line of therapy and who had a dismal
prognosis (anticipated survival duration, <2 years) were treated

with tisa-cel (4). Bridging therapy was allowed, and patients
received variable lymphodepleting therapies, at the discretion
of the treating physician, prior to the infusion of 1–5 ×

108 tisa-cel cells. The 3-month ORR was 79% and the 6-
month CR rate was 71%, with 89% of patients who had a
response remaining in remission at a median follow-up of
28.6 months. Two patients with MCL were also treated with
the same regimen, and one of them had a response (91).
At the most recent update presented in 2019, the median
progression-free survival time in the FL patients was 32.4
months. At a median follow-up of 49 months, the median
overall survival duration for the whole cohort as well as the
median response duration for patients experiencing a CR were
not reached (92).

The multicenter, phase 2 ELARA trial (NCT03568461) is
currently enrolling patients with relapsed/refractory FL that will
be treated with tisa-cel. Results are not available yet.

Liso-Cel for Other B-Cell Lymphomas
A phase 1 study of JCAR014, a CAR T-cell product that uses
the same construct as JCAR017 with the defined CD4+:CD8+
ratio, but includes an additional in vitro stimulation step
with a CD19+ Epstein-Barr virus-immortalized lymphoblastoid
cell line in the manufacturing process, enrolled 37 patients
with relapsed/refractory B-cell NHL (3). Among five evaluable
patients with FL, four had responses and two had a CR, whereas
only one of four patients with MCL had a response.

Eight patients with FL and 13with tFLwere enrolled in a phase
1/2 clinical trial and given 2 × 106 liso-cel per kilogram of body
weight after cyclophosphamide- and fludarabine-containing
lymphodepletion (93). Of the eight patients with FL, seven had
received four or more prior lines of therapy, and four had
experienced failure after autologous SCT. CR was achieved in
seven of the eight patients at a median time of 29 days (range, 27–
42 days), and was maintained in all patients at a median follow-
up time of 24 months. Overall, the treatment was well-tolerated,
and no significant differences in terms of toxicity between the
FL and the tFL cohorts were observed. All-grade CRS and/or
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neurotoxicity were observed in 50% of patients with FL, and no
adverse events of grade 3 or higher occurred.

Preliminary results for nine patients with relapsed/refractory
MCL treated with liso-cel in the TRANSCEND study also have
been reported (94). Six patients, with a median of five prior
treatment lines, received 50 × 106 CAR T cells (DL1) and three
patients received 100 × 106 CAR T cells (DL2). Three of the
nine patients had CRS, all grade 1, and no neurological events
occurred. The ORR was 78% (four of the six patients at DL1, at
a median follow-up time of 12.4 months, and all three patients at
DL2, at a median follow-up time of 1.4 month).

CD19-DIRECTED CAR T CELLS FOR CLL

In the initial pilot trials, CD19-directed CAR T cells were also
evaluated in patients with relapsed/refractory CLL, but in this
setting, CAR T-cell product development was slowed by a lower
than expected ability to achieve CR, and a subsequently increased
rate of progressive disease. Clinical studies designed specifically
to assess the activity of anti-CD19 CAR T cells in CLL patients
are underway (Table 2).

As in patients with indolent NHL, the timing and frequency of
treatment-related complications in CLL patients receiving CAR
T cells do not appear to be substantially different from those in
patients with aggressive NHL. Also, due to a lower number of
patients with CLL who have received CAR T cells, identifying
disease-related predictors of response in these individuals is
difficult. However, much translational work has been carried out
and has revealed that the unsatisfactory efficacy of CAR T cells in
CLL appears to be at least partially attributable to pre-existing
immune system dysfunctions—particularly those affecting the
T-cell compartment—which may limit the generation and
expansion of effective autologous CAR T cells. Therefore,
strategies to overcome this issue are currently under evaluation.

Axi-Cel for CLL
The already-mentioned 2012 paper from the National Cancer
Institute, describing the clinical results of patients treated with
axi-cel and a course of intravenous IL-2, also included data on
four patients with CLL who had previously undergone multiple
relapses (88). Three patients had responses to axi-cel, one of
whom had prolonged CR (>15months). Four additional patients
with CLL, who were treated with a modified treatment plan that
did not include IL-2 infusion, had responses to axi-cel—including
three who had CR (2).

The ZUMA-8 study (NCT03624036), which will specifically
evaluate the safety and efficacy of axi-cel in patients with
relapsed/refractory CLL, is currently recruiting patients.

Tisa-Cel for CLL
Three patients with extensively pretreated CLL were initially
enrolled in a pilot clinical trial and received tisa-cel. CAR T
cells had a potent antitumor effect in all patients, two of whom
experienced long-lasting CR (95). Thereafter, a total of 14 patients
with relapsed/refractory CLL were successively treated during
the course of the study (96). The patients received a variety
of lymphodepleting regimens, followed by a median of 1.6 ×

108 tisa-cel cells infused over 3 days. The ORR was 57%, and
29% of the patients had CR with MRD negativity. Long-term
persistence of tisa-cel was detected in patients who experienced
CR, who had a median duration of response of 40 months. In
contrast, the median duration of response in the four patients
with PR was only 7 months. CR, PR and non-responding patients
were also different in terms of tisa-cel peak expansion, which
was significantly more robust in patients who had CR. CRS
was observed in 9 of 14 patients and was grade 3-4 in 6
patients. Five patients had concomitant neurological symptoms
and four received tocilizumab. CRS was also associated with peak
expansion of tisa-cel (and with clinical response), and patients
with grade 2-4 CRS had higher peak levels of IL-6 than did those
with grade 0-1 CRS.

In addition, a dose-optimization trial was conducted to
identify the optimal dose of tisa-cel in patients with CLL (97).
Two doses (5 × 108 and 5 × 107 tisa-cel) were compared, and
the results of the study suggested better efficacy of the higher
dose (ORR, 55% vs. 31%; and CR rate, 36% vs. 8%). The optimal
dose cohort was then expanded, and among 17 evaluable patients
given 5 × 108 tisa-cel, the ORR and CR rate were 53% and 35%,
respectively. CR was maintained in five patients at a median
follow-up duration of 23 months. CRS was experienced by 54%
of patients and was of grade 3-4 in 20%. Interestingly, the tisa-cel
dose was not associated with CRS development or severity.

Liso-Cel for CLL
Thirteen patients with CLL were treated with JCAR014 in an
initial phase 1/2 trial and had promising durable responses,
with a CR rate of 50% (98). A cohort of 24 patients with CLL
subsequently received the same product (99). These patients were
particularly difficult to treat: they had received a median of five
previous treatment lines, 19 had disease resistant to ibrutinib,
and 6 had venetoclax-refractory disease. Of note, ibrutinib was
held at the time of leukapheresis and CAR T-cell administration
to avoid unexpected side effects. Lymphodepleting chemotherapy
consisted of cyclophosphamide (60 mg/kg/day) and fludarabine
(25 mg/m2/day) for the majority of patients, and after that
patients received 2 × 105 (n = 4), 2 × 106 (n = 19), or 2
× 107 (n = 1) CAR T cells. The ORR was 74% and the CR
rate was 21%. Among evaluable patients who had bone marrow
disease prior to CAR T-cell therapy, 88% had MRD negativity as
determined using flow cytometry and 58% hadMRDnegativity as
determined using deep immunoglobulin heavy chain sequencing.
This deep response strongly correlated with outcome, and the
patients who had CR and MRD negativity as determined via
deep sequencing had 100% progression-free survival and overall
survival rates (median follow-up time, 6.6 months). Twenty
of 24 patients experienced CRS, which was grade 1-2 in 18
patients, grade 4 in one patient, and grade 5 in one patient
(according to the Lee criteria). Two, five, and one patients
experienced grade 1-2, grade 3, and grade 5 neurotoxicity,
respectively. Overall, six patients needed the use of tocilizumab
and/or steroids.

TRANSCEND-CLL-004 is an open-label phase 1/2 study
of liso-cel in patients with relapsed/refractory CLL, which is
currently recruiting. At the most recent update, results for 23
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patients (22 of whom were evaluable for efficacy) were presented
(100). After 3 days of lymphodepleting chemotherapy with
fludarabine and cyclophosphamide, patients received 50 × 106

(n = 9) or 100 × 106 (n = 14) CAR T cells. In 83% of
the patients CLL was defined as high-risk, and the patients
had received a median of five prior therapies. All patients had
previously received ibrutinib, and 21 of 23 were considered to
have refractory disease or had relapses during therapy. At a
median follow-up of 9 months, the best ORR was 82% and the
best CR rate was 45%. By day 30, 60% of evaluable patients
had undetectable MRD in the bone marrow. Of nine responding
patients with a follow-up duration of 9 months or more, seven
have remained progression-free, and in six patients responses
deepened over time. Long-term CAR T-cell persistence was
confirmed by the detection of transduced T cells at the 6-month
timepoint in 80% of patients. CRS was reported in 74% of patients
(grade 3-4 in 9%) and neurotoxicity was reported in 39% (grade
3-4 in 22%). Neurotoxicity was associated with a greater lymph
node tumor burden and elevated levels of IL-6 or tumor necrosis
factor α. Sixty-one percent of patients received tocilizumab and
48% received corticosteroids.

Additional Anti-CD19 CAR T-Cell Products
Under Evaluation in CLL
Another second-generation anti-CD19 CAR T-cell product has
been developed and studied in patients with CLL by the group
at Memorial Sloan Kettering Cancer Center. Similarly to that
used for axi-cel, this construct includes a CD28 costimulatory
domain and is delivered to T cells by a retroviral vector. The
first report of the phase 1 trial included data on eight patients
with purine analog-refractory CLL. Objective responses were
not observed in either three patients who did not receive
lymphodepleting chemotherapy prior to the infusion of 1–3
× 107 CAR T cells per kilogram of body weight or in five
patients who received cyclophosphamide (1.5 g/m2) prior to
the infusion of 0.4–1.0 × 107 CAR T cells per kilogram of
body weight (101). More recently, after a modification of the
protocol to optimize conditioning chemotherapy, the authors
presented an updated report describing the outcome of a total of
16 patients who had received a median of four prior therapies
(102). The ORR was 38% in the whole cohort and 50% in
evaluable patients who had received conditioning chemotherapy
(CR rate, 25%). All patients experienced CRS, which was
generally an early event and precluded infusion of the second
fraction of CAR T cells in 6 of 11 patients for whom split-dose
treatment had been planned. Six patients experienced neurologic
adverse events.

The same CAR T-cell product was used as consolidation
therapy in eight patients who had residual CLL after
receiving frontline chemoimmunotherapy with pentostatin,
cyclophosphamide and rituximab (103). After low-dose
conditioning therapy (cyclophosphamide, 600 mg/m2),
escalating doses of CAR T cells were infused (3 × 106, 1 × 107,
or 3 × 107 CAR T cells/kg). This treatment approach appeared
safe and well-tolerated, with no patients needing tocilizumab,
corticosteroids or intensive care unit admission. Unfortunately,
responses were observed in only 38% of the patients.

CD19-directed CAR T Cells and Ibrutinib
for CLL
Different studies have highlighted the impact of the T-cell
subset distribution on final CAR T-cell products’ antitumor
efficacy. Besides the postulated improved potency of the already-
mentioned optimized 1:1 CD4+:CD8+ T-cell ratio, which
characterizes the liso-cel product, it was also shown in a mouse
model that anti-CD19 CAR T cells derived from CD4+ and
CD8+ naïve and central memory T cells are more effective than
those derived from effector memory T cells (104). In patients
with CLL, response to CAR T cells is associated with different
parameters of T-cell fitness, and an elevated frequency of CD8+
T cells with memory-like characteristics (CD27+CD45RO–) in
apheresis products contributes to clinical efficacy (105).

The Bruton tyrosine kinase (BTK) inhibitor ibrutinib has
revolutionized the treatment landscape for CLL and has
achieved unprecedented response durations also in patients
with high-risk disease (106). Interestingly, in addition to its
anti-neoplastic effect, ibrutinib exerts an off-tumor effect that
modulates different immune compartments, and particularly T
cells (107–109). The possibility of exploiting both ibrutinib’s
immunomodulatory activity and its antitumor effect to improve
CAR T-cell performance is certainly very appealing.

Preclinical data have demonstrated that ibrutinib enhances
intrinsic liso-cel activity in vitro and in vivo (110). Previous
prolonged exposure of CLL patients to ibrutinib may favor
tisa-cel expansion and CAR T-cell clinical activity, and in a
mouse model, ibrutinib-based treatment improved CAR T-cell
engraftment and cytotoxic efficacy (111). Also, pre-treatment
with ibrutinib appears to modulate CAR T-cell phenotype,
expanding CD8+CD62L+ (central memory) and shrinking
CD62L– (effector/effector memory) T-cell subsets in the final
CAR T-cell product (102, 112).

CTL119 (the humanized version of CTL019) was combined
with ibrutinib to treat CLL in 19 patients who were not
in CR despite at least 6 months of ibrutinib therapy (113).
After standard lymphodepletion, patients received 1–5 × 108

CTL119 cells over 3 days. Five patients were receiving first-line
ibrutinib, and for the remaining 14, the median number of prior
therapies was two. Three patients had experienced failure of
prior treatment with murine CD19-directed CAR T cells without
ibrutinib. The 3-month ORR for the entire cohort was 71%,
with a CR rate of 43% and a bone marrow remission rate of
94% (including 78% MRD negative responses as determined via
deep sequencing). At a median follow-up of 18.5 months, the
majority of patients were still receiving ibrutinib (the median
time from CAR T-cell infusion to ibrutinib discontinuation
was 8 months; n = 6). CRS was common (95%), but was of
grade 3-4 in only 16% of the patients. Five patients experienced
encephalopathy (four grade 1-2, one grade 4), and one patient
died of a cardiac arrhythmia that occurred during an episode of
severe neurotoxicity.

A study performed at the Fred Hutchinson Cancer Research
Center compared outcomes of CLL patients treated with
JCAR014 (2 × 106 CAR T cells/kg) in a phase 1/2 trial (n =

19) with those of a subsequent cohort in which JCAR014 was
administered with concurrent ibrutinib from at least 2 weeks
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prior to leukapheresis until at least 3 months after CAR T-cell
infusion (n= 17) (114). Although not statistically significant, the
ORR in the ibrutinib cohort was superior to that in the non-
ibrutinib cohort (88% vs. 56%). The rate of patients experiencing
all-grade CRS was similar in the ibrutinib and non-ibrutinib
cohorts (76% vs. 89%; p = 0.39), but in the former cohort, no
patients had grade 3-5 CRS (vs. 26% of patients in the non-
ibrutinib cohort). Among patients receiving ibrutinib, one died,
presumably from a fatal cardiac arrhythmia, in the setting of
grade 2 CRS. Ibrutinib did not appear to influence the frequency
or severity of neurotoxicity or cytopenias.

Finally, in the already-mentioned cohort treated at Memorial
Sloan Kettering Cancer Center, response of CLL to CAR T-
cell therapy appeared better in the patients receiving ibrutinib
concurrent with cellular therapy than in the patients who did
not receive ibrutinib (4 of 5 vs. 2 of 11 responders), although the
number of patients studied was small and the efficacy of the tested
CAR T-cell product was suboptimal (102).

Overall, these initial data have demonstrated the safety of
treatment with ibrutinib during T-cell collection and CAR
T-cell infusion and, in spite of the short follow-up periods,
they support the hypothesis that treatment with ibrutinib
increases CAR T-cell antitumor activity. The exact mechanisms
through which ibrutinib modulates CAR T-cell efficacy are still
under investigation.

NOVEL CAR T CELL-BASED
APPROACHES FOR B-CELL NHL AND CLL

Undeniably, the commercial availability of CD19-directed CAR
T cells is a real game-changer in the treatment landscape for
aggressive B-cell NHL. Besides those already mentioned, other
second-generation anti-CD19 products are under investigation
(e.g., JWCAR029) (115). However, to improve the clinical activity
of CAR T cells and expand the therapeutic indications for these
treatments to disease settings in which results are still suboptimal,
further research efforts are needed. Several approaches have been
tested, and some of them are currently being evaluated in the
clinical setting.

Third-Generation CD19-Directed CAR T
Cells
The co-stimulatory domain inserted into the CAR structure
appears to influence the activity of the transduced effector cells.
CD28 generates a more rapid and intense signal than does 4-
1BB, but this leads to shorter periods of cytotoxic activity and
decreased in vivoCART-cell persistence (116–118).With the aim
of combining rapid tumor elimination and long-term durability
in the same product, third-generation CAR T-cell constructs
include two different co-stimulatory domains in their structures.

In a phase 1 trial, 16 patients with NHL were simultaneously
infused with second-generation anti-CD19 CAR T cells
containing the CD28 co-stimulatory sequences alone and with
third-generation CAR T cells containing both CD28 and 4-1BB
(119). Cells transduced with the third-generation vector had
superior expansion and longer persistence, suggesting that

the addition of 4-1BB enhances the in vivo kinetics of CD28-
containing CD19-directed CAR T cells. This same construct
(i.e., containing both CD28 and 4-1BB), developed at Baylor
College of Medicine, was used in a phase 1/2a study: among 11
patients with relapsed/refractory CD19+ NHL or CLL, response
rate was low (4 of 11 patients) and not very durable, although
only a minority of the patients experienced CRS or neurological
toxicity (120).

Investigators in a single-center phase 1/2 trial currently
running in Germany are treating a broad spectrum of patients
with CD19+ relapsed/refractory NHL with another third-
generation anti-CD19 CAR T-cell product incorporating both
CD28 and 4-1BB (121, 122). The preliminary data have
demonstrated a very reassuring toxicity profile with no CRS or
neurologic events of grades higher than 2, and good responses in
the first eight patients treated (ORR, 75%).

Alternative Targets and Dual Targeting
A possible approach to overcoming resistance to CD19-directed
CAR T cells is to target a different antigen.

The established use of anti-CD20monoclonal antibodies in B-
cell NHL therapy supported the development of anti-CD20 CAR
T cells. Different CD20-directed constructs have been tested by
researchers at Fred Hutchinson Cancer Research Center, but they
lacked optimization for successful in vivo use (123–125). Another
second-generation anti-CD20 CAR T-cell product was used to
treat relapsed/refractory DLBCL in seven patients. Among six
evaluable patients, five had a response (mainly PRs) (126). In
a subsequent phase 2a study, 11 patients with CD20+ NHL
underwent treatment and had an ORR of 82%, a CR rate of 55%,
and an acceptable toxicity profile (no grade 4 toxic effects or CRS
events were reported) (127).

CD22 has been evaluated as a candidate target antigen
mainly in B-cell acute lymphoblastic leukemia, but clinical trials
including patients with refractory CD22+ NHL are ongoing
(NCT02794961, NCT02315612).

Another attractive target may be the immunoglobulin kappa
(κ) light chain, which allow to direct CAR T-cell cytotoxic activity
toward κ chain-restricted B-cell lymphomas, avoiding complete
B-cell aplasia. In a phase 1 trial, nine patients with relapsed
or refractory NHL or CLL were treated with κ chain-directed
CAR T cells. The ORR was 33% (CR, one patient; PR, two
patients), and no significant treatment-induced toxic effects were
observed (128).

The receptor tyrosine kinase-like orphan receptor (ROR1)
is an embryonal antigen aberrantly expressed in some cancers,
including CLL and MCL. Preclinical evidence and in vivo
evaluations in non-human primates support the potential
antitumor efficacy of a ROR1-directed CAR T-cell strategy (129,
130), but clinical results in humans are lacking.

In the absence of another widely and homogeneously
expressed target that could replace CD19 in treatment of B-
cell lymphoproliferative diseases, the concomitant targeting of
more than one antigen was favored as an alternate strategy
(dual CAR T cells). In acute lymphoblastic leukemia, targeting
CD19 and CD123 may be effective for the treatment and
prevention of CD19-negative relapses. In the preclinical setting,
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a CAR-expressing T-cell population targeting both CD19 and
CD123 showed superior in vivo activity compared to that of
anti-CD19 CAR T cells, anti-CD123 CAR T cells, and pooled
anti-CD19 and anti-CD123 CAR T-cell populations (131).

For treatment of NHL, the selection of two clinically validated
targets for dual CAR T cells, such as CD19 and CD20, is
certainly very appealing (132). In a phase 1 trial, bispecific
CD19/CD20CART cells were used to treat relapsed/refractory B-
cell NHL and CLL (133). All patients received lymphodepletion
(fludarabine and cyclophosphamide) followed by CAR T cells
(starting dose, 2.5 × 105 cells/kg; target dose, 2.5 × 106 cells/kg,
which was the dose selected for the expansion phase). Among 11
treated patients (5 with DLBCL, 4 with MCL, and 2 with CLL),
the ORR was 82%, the CR rate was 55%, and all CR patients
were still in remission at the latest follow-up. Fifty-five percent
of patients had CRS (all grade 1-2) and 27% had neurotoxicity
(all grade 1-2).

A bispecific CAR construct targeting CD19 and CD22 was
used in a phase 1 trial to treat DLBCL in five patients (134).
One patient had CR and two had PR, with overall acceptable
tolerability (CRS, 86% of patients; neurotoxicity, 43% of patients,
all grade 1-2). An additional CAR T-cell product targeting CD19
and CD22 (AUTO) is currently under investigation in patients
with DLBCL (NCT03287817).

Finally, the possibility of concomitantly targeting CD19 and
CD37, an antigen expressed by B-cell NHL and CLL cells, has
been explored preclinically (135).

CAR T Cell-Based Combination Strategies
for the Treatment of B-Cell NHL and CLL
Besides the already-mentioned combination of CAR T cells
with ibrutinib in CLL patients, other therapeutic associations
of CAR T cells and drugs that affect the immune system are
under evaluation with the aim of improving T-cell fitness and,
subsequently, the CAR T-cell efficacy.

When the programmed cell death protein 1 (PD-1)-blocking
antibody pembrolizumab was administered to 12 patients with
refractory B-cell NHL who experienced progression after anti-
CD19 CAR T-cell therapy, it induced a CAR T-cell re-
expansion peak in 75% of treated patients, and an antitumor
response in 27% of them (136). The phase 1b PORTIA trial
is currently investigating the safety and efficacy of tisa-cel plus
pembrolizumab (200mg given every 21 days for up to six
doses) in patients with relapsed/refractoryDLBCL. A preliminary
report on four patients who received pembrolizumab starting
on day 15 after tisa-cel administration showed no exacerbation
or recurrence of CAR T cell-related toxic effects following
pembrolizumab infusion, but also no secondary CAR T-cell
expansion (137).

The ZUMA-6 phase 1 study is investigating axi-cel in
combination with the anti-programmed death-ligand 1 (PD-
L1) monoclonal antibody atezolizumab (1,200mg given every 21
days for four doses, starting at different timepoints after CAR T-
cell infusion) (138). Pharmacokinetic data suggested enhanced
axi-cel expansion, and preliminary results for 12 patients have
shown an ORR of 90%, a CR rate of 60%, and durable responses.
No apparent exacerbation or recurrence of axi-cel-related toxic
effects following atezolizumab infusion were noted.

In another phase 1 study, the combination of JCAR014 and
the anti-PD-L1 monoclonal antibody durvalumab (administered
in different doses and schedules) was evaluated in patients
with relapsed/refractory aggressive B-cell NHL (139). In the
preliminary report of 15 treated patients, in vivo re-expansion
of CAR T cells was observed in a minority of patients, the ORR
was 50%, and the CR rate was 42%. Thirty-eight percent of the
patients had CRS (grade 1-2 in 31%) and 8% experienced grade
1 neurotoxicity.

The ongoing phase 1/2 PLATFORM trial is investigating the
efficacy of liso-cel in association with different immune system
modifiers — in parallel cohorts — in patients with aggressive
B-cell NHL. Arm A of the trial is combining liso-cel with
durvalumab (starting on day 29 at a total dose of 1,500 mg/4
weeks for up to 12 months) (140). Of the 11 patients who
have received liso-cel and at least one dose of durvalumab, 10
have had responses, including 7 CR. No dose-limiting toxic
effects were observed, and CRS did not occur after durvalumab
infusion. Although the follow-up is still short and the number
of treated patients is low, this trial suggests better persistence of
CAR T cells over time when liso-cel is given with durvalumab
instead of alone. This persistence may possibly convert into more
durable responses.

Lenalidomide and other immunomodulatory drugs
(IMIDs) can also be used to recover T-cell exhaustion.
Preclinical data have demonstrated that lenalidomide
enhances the anti-tumor activity and persistence of CAR
T cells in different NHL and multiple myeloma models
(141–143). Of note, the already mentioned PLATFORM
trial also includes an arm in which patients will receive
CC-122, a novel IMID, and the phase 1/2 ZUMA-11 trial
(NCT03704298) is investigating the safety and efficacy of axi-cel
in combination with utomilumab, a monoclonal antibody that
binds 4-1BB and stimulates immune cells, in patients with
refractory DLBCL.

Finally, it has been proposed that a further enhancement
of CAR T-cell activity might be indirectly pursued through
the manipulation of the gut microbiome, based on evidences
supporting its critical role in the responses to other immune-
based treatments, such as checkpoint inhibitors (144).

Armored CAR T Cells
A further strategy to increase CAR T-cell efficacy envisages
the induction of the expression on effector T cells—along with
the CAR—of an additional transgene, which endows them with
supplementary functions, such as enhanced effector activity, or a
control over microenvironment-induced immunosuppression.

TRUCKs (T cells redirected for universal cytokine killing) are
CAR T cells that produce and release a transgenic cytokine, that
accumulates in the targeted tissue. The constitutive or inducible
expression of IL-12, IL-15, and IL-18 has been integrated in
different models of CAR T cells, demostrating benefical effects
in terms of efficacy (145–147).

Based on the aforementioned efficacy of the combination
of CAR T cells with checkpoint inhibitor antibodies, CAR T
cells can also be engineered to secrete anti-PD-1 or anti-PD-L1
blockers directly at the site of the immune recognition (built-in
CAR T-cells) (148).
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Furthermore, armored CAR T cells can be modified to
express ligands for costimulatory molecules. For example, in an
acute lymphoblastic leukemia preclinical model, the expression
of CD28-co-stimulated CAR along with 4-1BB-L increases the
persistence and tumoricidal effect of transduced effector T cells,
optimizing the engagement of both CD28 and 4-1BB signals
(117). A phase 1 clinical trial evaluating escalating doses of
autologous 19-28z/4-1BB-L+ CAR T cells (from 1 × 105 to 3
× 106 cells/kg) in patients with NHL or CLL is ongoing, and
preliminary data have been presented (149). Of 27 patients who
received treatment, 16 had CR, including 78% of patients with
DLBCL, 75% of patients with FL, 33% of patients with CLL and
67% of patients with Richter’s transformation. No dose-limiting
toxic effects were observed. CRS occurred in 39% of patients (one
patient had a grade 3 event), and neurotoxicity occurred in 39%
of patients (three patients had a grade 3 event).

CAR T cells can also be modified to counteract immune-
suppressive signals. In mouse models of solid tumors, CAR T
cells expressing a chimeric construct comprising the extracellular
domain of PD-1 and the cytoplasmic signaling domains of
CD28 demonstrated improved antitumor activity associated
with decreased susceptibility to tumor-induced hypofunction,
and attenuation of inhibitory-receptor expression (150). Anti-
CD19 CAR T cells co-expressing the PD-1/CD28 chimeric
switch receptor were evaluated in a phase 1 clinical trial
treating patients with relapsed/refractory DLBCL (151). In 17
patients, conditioning chemotherapy with cyclophosphamide
and fludarabine was followed by CAR T-cell infusion at a dose
of 0.5–4.0× 106 cells/kg. The ORR was 59% and the CR rate was
41%. Eighty-two percent of the patients had CRS (grade 1-2) and
24% had neurotoxicity (grade 1).

Instead of inducing the expression of an additional gene,
a complementary approach is the silencing of the checkpoint
inhibitor molecule PD-1 on CAR T cells, in order to affect
the immunosuppressive tumor microenvironment at the site of
effector T-cell activity (NCT03208556, NCT03298828).

Allogeneic CAR T-Cell Products
The use of allogeneic anti-CD19 CAR T-cell products obtained
from healthy donors (off-the-shelf products) could represent a
solution to avoid the need to use patient-derived dysfunctional
T cells, increase availability of the product without the
need to wait for time-consuming manufacturing, and reduce
costs, as allogeneic manufacturing can generate products
for use in several patients. Importantly, however, strategies
to minimize the alloreactivity of donor-derived T cells,
determined by their T-cell receptor (TCR) reaction against
non-autologous tissues, must be implemented before off-the-
shelf products can be used. Allogeneic products could in
fact cause graft-vs.-host disease, but also induce CAR T-cell
rejection due to the recipient immune system acting against the
infused cells.

Recently developed gene editing technologies have been
fundamental to prevent the expression of endogenous TCR on
modified T cells. Different techniques can be exploited in order
to disrupt the TCR α constant (TRAC) gene, such as the use of
zinc finger nucleases (ZFN), transcription activator-like effector
nucleases (TALEN), and CRISPR/Cas9 system (152).

A universal anti-CD19 CAR T-cell product (UCART19) has
been generated by simultaneously introducing the CAR, and
knocking out the TCR (to avoid graft-vs.-host disease) and CD52
(to induce resistance to the anti-CD52 monoclonal antibody,
used in lymphodepletion to reduce the risk of UCART19
rejection) in allogeneic T cells (153). UCART19 has been used
to treat relapsed/refractory B-cell acute lymphoblastic leukemia;
evidence of UCART19 expansion was seen in responding
patients and safety profile was acceptable and manageable
(154). ALLO-501, another allogeneic product with the same
construct as UCART19, is currently under clinical investigation
in the ALPHA clinical trial (NCT03939026) for the treatment of
relapsed/refractory DLBCL and FL.

PBCAR0191 is an allogeneic anti-CD19 CAR T-cell product
generated with a single-step CAR knock-in and TCR knock-out.
It includes a novel costimulatory domain (N6) that promotes cell
expansion while maintaining the naïve cell phenotype. In a phase
1 trial, preliminary evidence of in vivo cell expansion and of a cell-
mediated antitumor effect was seen in three patients with NHL
who received the initial dose level (3× 105 CART cells/kg) (155).

Finally, it is worth highlighting that a CAR construct may be
transduced also into other immune cells, such as natural killer
(NK) cells. Allogeneic NK cells represent an attractive carrier
for CAR because they are efficient immune-effector cells and do
not cause graft-vs.-host disease. CD19-directed CAR NK cells
have been generated from cord blood; these cells, which also
incorporate the IL-15 gene (to support NK cell survival and
proliferation) and a so-called suicide gene (inducible caspase-
9, to induce the selective elimination of transduced cells in
case of excessive toxicity), have proven to be very effective in
preclinical NHL and CLLmodels (156). A clinical trial performed
at The University of Texas MD Anderson Cancer Center has
evaluated the safety and efficacy of cord blood-derived, anti-
CD19, CAR-engineered NK cells for the treatment of B-cell
lymphoid malignancies (157). No CRS neither neurotoxicity
were observed. Eleven patients were treated and 8 (73%) had a
response, including CR in 7 (4 with lymphoma and 3 with CLL).

CONCLUSIONS

CAR T-cell therapy is rapidly modifying the treatment and
outcome of aggressive and indolent B-cell lymphomas and
CLL, and is becoming established as a new therapeutic option.
Ongoing clinical trials are further improving the efficacy
and curative potential of CAR T cells, also investigating
their rationally-designed combinations with drugs with
immunomodulatory activity, and in the future, novel off-the-self
products may facilitate more rapid and broadly-accessible
treatments. Real-world data are increasingly demonstrating the
feasibility of CAR T-cell therapy in patients otherwise ineligible
for clinical trials, and supporting the need for novel strategies
to mitigate CAR T-cell-related toxicity. Preclinical studies and
patient sample-based analyses are urgently needed to clarify
the biological mechanisms of such toxicities, and to enable
outpatient infusion of the majority of CAR T-cell products,
minimizing healthcare-associated costs.
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