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Objective: The stage, size, grade, and necrosis (SSIGN) score can facilitate the

assessment of tumor aggressiveness and the personal management for patients with

clear cell renal cell carcinoma (ccRCC). However, this score is only available after the

postoperative pathological evaluation. The aim of this study was to develop and validate

a CT radiomic signature for the preoperative prediction of SSIGN risk groups in patients

with ccRCC in multicenters.

Methods: In total, 330 patients with ccRCC from three centers were classified into

the training, external validation 1, and external validation 2 cohorts. Through consistent

analysis and the least absolute shrinkage and selection operator, a radiomic signature

was developed to predict the SSIGN low-risk group (scores 0–3) and intermediate-

to high-risk group (score ≥ 4). An image feature model was developed according to

the independent image features, and a fusion model was constructed integrating the

radiomic signature and the independent image features. Furthermore, the predictive

performance of the above models for the SSIGN risk groups was evaluated with regard

to their discrimination, calibration, and clinical usefulness.

Results: A radiomic signature consisting of sixteen relevant features from the

nephrographic phase CT images achieved a good calibration (all Hosmer–Lemeshow p>

0.05) and favorable prediction efficacy in the training cohort [area under the curve (AUC):

0.940, 95% confidence interval (CI): 0.884–0.973] and in the external validation cohorts

(AUC: 0.876, 95% CI: 0.811–0.942; AUC: 0.928, 95% CI: 0.844–0.975, respectively).
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The radiomic signature performed better than the image feature model constructed by

intra-tumoral vessels (all p< 0.05) and showed similar performance with the fusion model

integrating radiomic signature and intra-tumoral vessels (all p > 0.05) in terms of the

discrimination in all cohorts. Moreover, the decision curve analysis verified the clinical

utility of the radiomic signature in both external cohorts.

Conclusion: Radiomic signature could be used as a promising non-invasive tool to

predict SSIGN risk groups and to facilitate preoperative clinical decision-making for

patients with ccRCC.

Keywords: clear cell renal cell carcinoma, SSIGN score, prognostic prediction, computed tomography, radiomics

INTRODUCTION

Renal cell carcinoma (RCC) is the most common malignancy of
the kidney in adults, among whom clear cell renal cell carcinoma
(ccRCC) accounts for 70–80% of all renal carcinomas (1, 2).
This is the most prevalent histological subtype. Surgery is the
primary treatment for ccRCC, but about 20–30% of patients
will experience metastasis or a recurrence after surgery, and
not all of them will benefit from the surgery (3, 4). Therefore,
the preoperative risk stratification of patients with ccRCC is
increasingly significant from the perspective of personalized
medicine. The use of the Stage, Size, Grade, andNecrosis (SSIGN)
score is one of the most common prognostic models for ccRCC,
and it is a scoring system developed by the Mayo Clinic Center.
This is based on the tumor staging, size, grade, and necrosis
being used to predict the survival and metastasis rate for ccRCC
(5, 6). According to the latest research done by Correa et al.
and Shao et al., the SSIGN scoring system shows the best
predictive performance in both retrospective and prospective
studies relative to other prognostic models (7, 8). However, the
clinicopathological data for the SSIGN score is only available
after the postoperative pathological evaluation. Therefore, a non-
invasive, accurate prediction method of the SSIGN risk group
preoperatively may provide great help in the assessment of tumor
aggressiveness and the personal management of ccRCC patients.

Computed tomography (CT) is recommended as the first-line
assessment tool preoperatively (9). Nevertheless, its efficacy is
limited in tumor staging which may lead to an under-staging or
over-staging for a considerable proportion of ccRCC patients (4).
Radiomics, as an emerging field, refers to transforming medical
images into mineable high-throughput feature sets and explores
the relationships between these features and the underlying
phenotypes to improve clinical decision-making (10). Recently,
studies on radiomics have reported that it can be used to predict
the RCC from benign renal neoplasms, to classify the subtype

Abbreviations: RCC, Renal cell carcinoma; ccRCC, Clear cell renal cell carcinoma;

SSIGN, Stage size, grade, and necrosis; CT, Computed tomography; GZPPH,

Guizhou Provincial People’s Hospital; AHZMU, Affiliated Hospital of Zunyi

Medical University; TCGA, The Cancer Genome Atlas; TCGA-KIRC, The Cancer

Genome Atlas-Kidney Renal Clear Cell Carcinomas; WHO, World Health

Organization; ISUP, International Society of Urological Pathology; IBSI, Image

Biomarker Standardization Initiative; ROI, Region of interest; ICC, Intra-class

correlation coefficient; Rad score, Radiomic score; ROC, Receiver operating

characteristics; AUC, Area under the curve; DCA, Decision curve analysis; LASSO,

Least absolute shrinkage and selection operator.

of RCC, to discriminate the stages of ccRCC as determined
by the World Health Organization/International Society of
Urological Pathology (WHO/ISUP), to differentiate sarcomatous
transformation, and to predict the Von Hippel–Lindau mutation
in ccRCC (11–15). However, previous radiomic studies assessing
the invasiveness of ccRCC only focused on the prediction of a
single risk index and were limited by unsatisfactory predictive
accuracy, small sample sizes, and the absence of multicenter
validation. Additionally, to our knowledge, a radiomic signature
that can preoperatively predict the SSIGN risk groups in ccRCC
has not been reported, to date.

Consequently, the study aims to develop and validate an
easy-to-use radiomic signature in multicenter cohorts for a
preoperative prediction of the low-risk and the intermediate to
high-risk groups based on the SSIGN scores.

MATERIALS AND METHODS

Participant Selection
This was a multicenter retrospective study. All patients with

ccRCC were selected from two Chinese hospitals [Guizhou
Provincial People’s Hospital (GZPPH; Guiyang, China) between

August 2013 and December 2017 and the Affiliated Hospital

of Zunyi Medical University (AHZMU; Zunyi, China) between
February 2010 and December 2017] and the Cancer Genome
Atlas (TCGA) database (https://cancergenome.nih.gov), which
is currently the largest and most comprehensive public
cancer database. Permission for the study was granted by
the ethics committee of GZPPH, and the requirement for
patient informed consent was waived because it was a
retrospective study.

The inclusion criteria were as follows: (1) patients who

had confirmed ccRCC by postoperative pathology; (2) patients

who did not receive biopsy or any treatment prior to surgery;

and (3) pretreatment contrast CT image including at least

the nephrographic phase conducted within 30 days before

surgery. The exclusion criteria were as follows: (1) patients

that received needling biopsy prior to CT examination or
any other treatment prior to surgery; (2) no nephrographic
phase contrast-enhanced CT images; (3) insufficient CT quality
that could not be subjected to analysis (e.g., owing to
artifacts or obvious noise); and (4) incomplete demographic or
clinicopathology data.

Frontiers in Oncology | www.frontiersin.org 2 July 2020 | Volume 10 | Article 909

https://cancergenome.nih.gov
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Jiang et al. Radiomics Predicts SSIGN Risk Groups

Demographic and Clinicopathology Data
The age, gender, tumor size, tumor necrosis, T stage, N stage, and
TNM stage were obtained from the electronic medical records
system and The Cancer Genome Atlas-Kidney Renal Clear Cell
Carcinoma (TCGA-KIRC) (16, 17). A new grading system of
WHO/ISUP was recommended for ccRCC because Fuhrman
nuclear grading was characterized by strong subjectivity
and poor repeatability. Therefore, the nuclear grading for
all cases was reviewed by two subspecialized genitourinary
pathologists (B.Y.H. and Y.Y.T., with 14 and 21 years’ experience,
respectively) according to the WHO/ISUP grading.

SSIGN Score Risk Groups
As per the previous clinical study, ccRCC patients were classified
into two groups by the SSIGN score according to T stage, tumor
size, nuclear grade, and necrosis, as follows: low-risk group (0–
3) and intermediate- to high-risk group (≥4) according to the
SSIGN score (5).

Image Feature Analysis
Nephrographic phase contrast-enhanced CT images were
downloaded from the image archiving and communication
system and The Cancer Imaging Archive (TCIA), https://wiki.
cancerimagingarchive.net/) (16). Detailed description of the CT
scan equipment and parameters used in the above for both
hospitals are shown in Supplementary S1.

The image semantic features were analyzed by two senior
radiologists (L.H. and Z.X.C., with 11 and 19 years’ experience
in imaging diagnosis, who were both kept ignorant of the
clinicopathological information except for them being aware of
the diagnosis of ccRCC. The image features assessed were as
follows: tumor boundary (defined margin or ill-defined margin);
necrosis imaging (negative or positive, non-enhanced area is
approximately more than 50% of the total tumor); renal vein
invasion (negative or positive, tumor thrombogenesis is seen
in renal vein or inferior vena cava); collecting system invasion
(negative and positive, tumor infiltration of the renal pelvis and
renal cone); intra-tumoral vessels (negative or positive, visible
vascular enhancement within tumor); lymph node metastasis
(negative or positive, peri-renal, hilar, and retroperitoneal
lymph nodes >10mm in the short-axis diameter); visual
relative enhancement (hyperattenuating, isoattenuating, and
hypoattenuating, compared with the degree of renal cortical
enhancement); and enhancement pattern [homogeneity (90%),
relative homogeneity (75–90%), and heterogeneity (<75%), in
terms of the tumor enhanced homogeneity].

Tumor Segmentation
The segmentation was executed using the ITK-SNAP version
3.8 software (www.itksnap.org). First, a radiologist (T.C.) with
6 years’ experience in abdominal diagnosis was responsible for
manually delineating the region of interest (ROI) of the tumor
on each slice of the CT nephrographic images by excluding
the adjacent vessels, peri-renal fat, and renal parenchyma.
Then, these drawn ROIs were reviewed by a senior radiologist
(Z.X.C). Any disagreement was determined through mutual
negotiation between both radiologists who were kept ignorant of
the clinicopathological information.

Radiomic Feature Extraction
Radiomic feature extraction was accomplished using an
open-source python package Pyradiomics with the delineated
ROIs (18). To eliminate the impact of the different datasets
owing to inhomogeneous CT scanners and parameters,
image standardization was implemented as follows: B-spline
interpolation resampling techniques were used to standardize
the image scale in the slice, resulting in a pixel size of 0.75mm
× 0.75mm × 0.75mm. Based on the original images, six
common feature groups [(first-order features based on the
voxel intensity, shape features, and texture features including
the gray-level co-occurrence matrix (GLCM), gray-level run
length matrix (GLRLM), gray-level size zone matrix (GLSZM),
and gray-level dependence matrix (GLDM)] were extracted.
Moreover, the first-order features and texture features were
also extracted from two types of filtered images (logarithm and
wavelet transformation) from the original CT image. Detailed
definitions of the above-extracted texture features can be found
in the Pyradiomics documentation.

The feature extraction algorithms were standardized by
referring to the Image Biomarker Standardization Initiative
(IBSI) (19). In total, 1,218 radiomic features for each region
of interest (ROI) of the tumor were extracted from the three-
dimensional tumor region. In addition, these extracted features
were normalized by the z-score method based on the parameters
calculated in the training set in order to standardize the feature
values to a normal distribution.

Inter-observer and Intra-observer
Agreement Assessment
The reproducibility of intra-observer and inter-observer
agreement for the radiomic features was measured using 45 of
patients randomly chosen from three databases. To evaluate
intra-observer agreement, the radiomic features extracted
from the ROI were delineated by observer 1 (Radiologist T.C.)
around 2 weeks using the same method. The inter-observer
agreement was assessed by comparing the radiomic features
extracted from the ROI as outlined separately by observer 1
first and then by observer 2 (radiologist Z.X.C.). The intra-class
correlation coefficient (ICC) was used to evaluate the intra-
observer and inter-observer agreement, and the ICC > 0.75
indicated satisfactory agreement and so these were retained for
feature selection.

Radiomic Signature Construction
To minimize overfitting or selection bias in our radiomic
features, the least absolute shrinkage and selection operator
(LASSO) regression method fit for regression of high-
throughput data was utilized to filter the features that best
predicted the SSIGN score. The features that remained after
LASSO regression were applied to build a radiomic signature by
the logistic regression (LR) model through a linear combination
of selected features weighted by LR coefficients in the training
set. Afterwards, a radiomic score (Rad score) based on the above
model formula was calculated for each patient and the cutoff
value was statistically analyzed using the Youden index. Finally,
the verification of the radiomic signature was performed among
the external validation cohorts.

Frontiers in Oncology | www.frontiersin.org 3 July 2020 | Volume 10 | Article 909

https://wiki.cancerimagingarchive.net/
https://wiki.cancerimagingarchive.net/
www.itksnap.org
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Jiang et al. Radiomics Predicts SSIGN Risk Groups

FIGURE 1 | Flowchart of the patient recruitment process.

Image Feature Model and Fusion Model
Construction
Univariate and multivariate logistic regressions were in
succession used to select the risk factors of the image features for
predicting the SSIGN risk group, and the features with p < 0.05
were introduced into a multivariate logistic regression to build
an image feature model in the training cohort. Additionally, a
fusion model was used to integrate the radiomic signature and
the independent image features in order to predict the SSIGN
score through a multivariate logistic regression model in the
training set. In the end, the image feature model and the fusion
model were both verified in the external validation cohorts.

Multicenter Model Validation and
Assessment
The predictive value of the radiomic signature, the image feature
model, and the fusion model were assessed among the training
cohort (n = 132), external validation cohort 1 (n = 123), and
external validation cohort 2 (n = 75) regarding discriminability,
calibration, and clinical value. The discriminability performance
was carried out by the area under the receiver operator
characteristic (ROC) curve (AUC), and the differences in AUC
values between the threemodels were compared using theDelong
test. The Hosmer–Lemeshow test was used with a calibration
curve to determine the goodness of fit. Decision curve analysis
(DCA) was used to calculate the net benefits for a range of
threshold probabilities in both validation datasets to estimate
whether the models was sufficiently robust for clinical use.

Statistical Analysis
Statistical tests were performed using SPSS (version 21.0,
IBM) and R statistical software (version 3.6.0, https://www.r-
project.org) or Python (version 3.6.8, https://www.python.org).
Univariate analysis was applied to compare the differences
of the image feature factors between the two groups by
using the chi-square test or Fisher exact test for categorical
variables and theMann–WhitneyU-test for continuous variables,
where appropriate. The “glmnet” package was used to perform
the LASSO regression model analysis. Calibration curve plots
were performed using the “gbm” package, and the Hosmer–
Lemeshow test was performed using the “generalhoslem”
package. Differences in the AUC values between different models
were estimated using the DeLong test. The DCA was performed
using the “dca.R.” package. The discrimination metrics of the
established models, including the AUC, classification accuracy,
sensitivity, and specificity were also calculated, and the ROC
curves were plotted using Python. A two-sided p < 0.05 was
considered significant.

RESULTS

Patient Characteristics
As shown in Figure 1, a total of 330 eligible patients were
enrolled and divided into three independent cohorts as follows:
the training cohort consisting of 132 patients (81 low-risk group,
51 intermediate- to high-risk group) from AHZMU; external
validation cohort 1 consisting of 123 patients (78 low-risk group,
45 intermediate- to high-risk group) from GZPPH; and external
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TABLE 1 | Characteristics of ccrcc Patients in the training cohorft, validation cohort 1 and validation cohort 2.

Characteristics Training cohort (n=132) Validation cohort 1 (n=123) Validation cohort 2 (n=75)

SSIGN low

risk group

(n = 81)

SSIGN

intermediate-

high risk

group (n = 51)

P-value SSIGN low

risk group

(n = 78)

SSIGN

intermediate-

high risk

group (n = 45)

P-value SSIGN low

risk group

(n=38)

SSIGN

intermediate-

high risk

group (n = 37)

P-value

Age 56.99 ± 11.39 56.02 ± 16.03 0.708 56.08 ± 13.53 55.93 ± 11.53 0.952 57.95 ± 14.95 60.86 ± 11.55 0.348

Gender 0.714 0.703 0.489

Female 30 (37.04%) 21 (41.18%) 31 (39.74%) 16 (35.56%) 15 (39.47%) 18 (48.65%)

Male 51 (62.96%) 30 (58.82%) 47 (60.26%) 29 (64.44%) 23 (60.53%) 19 (51.35%)

tumor 4.25 ± 1.65 6.53 ± 2.20 <0.001* 4.15 ± 1.60 6.94 ± 2.18 <0.001* 3.97 ± 1.42 7.90 ± 2.54 <0.001*

Tumor boundary

(%)

0.012* <0.001* <0.001*

Circumscribed 74 (91.36%) 38 (74.51%) 72 (92.31%) 27 (60.00%) 38 (100.00%) 23 (62.16%)

Infiltrative 7 (8.64%) 13 (25.49%) 6 (7.69%) 18 (40.00%) 0 (0.00%) 14 (37.84%)

Necrosis imaging

(%)

0.857 0.010* 0.002*

Absent 32 (39.51%) 21 (41.18%) 17 (21.79%) 2 (4.44%) 23 (60.53%) 9 (24.32%)

Present 49 (60.49%) 30 (58.82%) 61 (78.21%) 43 (95.56%) 15 (39.47%) 28 (75.68%)

Renal vein invasion

(%)

0.030* <0.001* <0.001*

Absent 75 (92.59%) 40 (78.43%) 77 (98.72%) 34 (75.56%) 38 (100.00%) 28 (75.68%)

Present 6 (7.41%) 11 (21.57%) 1 (1.28%) 11 (24.44%) 0 (0.00%) 9 (24.32%)

Collecting system

invasion (%)

<0.001* <0.001* 0.007*

Absent 73 (90.12%) 30 (58.82%) 74 (94.87%) 22 (48.89%) 36 (97.30%) 27 (72.97%)

Present 8 (9.88%) 21 (41.18%) 4 (5.13%) 23 (51.11%) 1 (2.70%) 10 (27.03%)

Intratumoral

vessels (%)

<0.001* <0.001* 0.005*

Absent 39 (48.15%) 5 (9.80%) 24 (30.77%) 2 (4.44%) 28 (73.68%) 15 (40.54%)

Present 42 (51.85%) 46 (90.20%) 54 (69.23%) 43 (95.56%) 10 (26.32%) 22 (59.46%)

lymphatic

metastasis (%)

<0.001* <0.001* 0.054*

Absent 80 (98.77%) 42 (82.35%) 75 (96.15%) 31 (68.89%) 38 (100.00%) 33 (89.19%)

Present 1 (1.23%) 9 (17.65%) 3 (3.85%) 14 (31.11%) 0 (0.00%) 4 (10.81%)

Visual relative

enhancement (%)

0.073 0.343 0.931

Hyperattenuating 7 (8.64%) 7 (13.73%) 11 (14.10%) 11 (24.44%) 12 (31.58%) 13 (35.14%)

Isoattenuating 60 (74.07%) 28 (54.90%) 47 (60.26%) 23 (51.11%) 20 (52.63%) 19 (51.35%)

Hypoattenuating 14 (17.28%) 16 (31.37%) 20 (25.64%) 11 (24.44%) 6 (15.79%) 5 (13.51%)

Enhancement

pattern (%)

0.362 0.009* 0.043*

Homogeneous

enhancement

31 (38.27%) 14 (27.45%) 28 (35.90%) 10 (22.22%) 18 (47.37%) 8 (21.62%)

Relatively

homogeneous

enhancement

25 (30.86%) 16 (31.37%) 34 (43.59%) 14 (31.11%) 8 (21.05%) 8 (21.62%)

Heterogeneous

enhancement

25 (30.86%) 21 (41.18%) 16 (20.51%) 21 (46.67%) 12 (31.58%) 21 (56.76%)

Tumor Size 3.37 ± 0.96 6.40 ± 2.15 <0.001* 3.63 ± 1.17 7.64 ± 2.24 <0.001* 3.57 ± 1.15 8.85 ± 3.48 <0.001*

WHO/ISUP

grading (%)

<0.001* <0.001* 0.006*

I 20 (24.69%) 3 (5.88%) 15 (19.23%) 1 (2.22%) 10 (26.32%) 5 (13.51%)

II 53 (65.43%) 24 (47.06%) 60 (76.92%) 19 (42.22%) 16 (42.11%) 14 (37.84%)

III 8 (9.88%) 19 (37.25%) 3 (3.85%) 19 (42.22%) 12 (31.58%) 8 (21.62%)

IV 0 (0.00%) 5 (9.80%) 0 (0.00%) 6 (13.33%) 0 (0.00%) 10 (27.03%)

(Continued)
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TABLE 1 | Continued

Characteristics Training cohort (n=132) Validation cohort 1 (n=123) Validation cohort 2 (n=75)

SSIGN low

risk group

(n = 81)

SSIGN

intermediate-

high risk

group (n = 51)

P-value SSIGN low

risk group

(n = 78)

SSIGN

intermediate-

high risk

group (n = 45)

P-value SSIGN low

risk group

(n=38)

SSIGN

intermediate-

high risk

group (n = 37)

P-value

Coagulative

Necrosis.

<0.001* <0.001* 0.005*

present 10 (12.35%) 41 (80.39%) 5 (6.41%) 32 (71.11%) 11 (28.95%) 23 (62.16%)

absent 71 (87.65%) 10 (19.61%) 73 (93.59%) 13 (28.89%) 27 (71.05%) 14 (37.84%)

T stage (%) <0.001* <0.001* <0.001*

T1 76 (93.83%) 23 (45.10%) 77 (98.72%) 11 (24.44%) 36 (94.74%) 6 (16.22%)

T2 3 (3.70%) 21 (41.18%) 0 (0.00%) 24 (53.33%) 0 (0.00%) 7 (18.92%)

T3 2 (2.47%) 7 (13.73%) 1 (1.28%) 9 (20.00%) 2 (5.26%) 22 (59.46%)

T4 0 (0.00%) 0 (0.00%) 0 (0.00%) 1 (2.22%) 0 (0.00%) 2 (5.41%)

N stage (%) 0.073 0.366 0.002*

N1 1 (1.23%) 4 (7.84%) 0 (0.00%) 1 (2.22%) 0 (0.00%) 8 (21.62%)

N0+Nx 80 (98.77%) 47 (92.16%) 78 (100.00%) 44 (97.78%) 38 (100.00%) 29 (78.38%)

M stage (%) <0.001* 0.002* <0.001*

M0 81 (100.00%) 40 (78.43%) 78 (100.00%) 39 (86.67%) 38 (100.00%) 28 (75.68%)

M1 0 (0.00%) 11 (21.57%) 0 (0.00%) 6 (13.33%) 0 (0.00%) 9 (24.32%)

TNM stage (%) <0.001* <0.001* <0.001*

I 75 (92.59%) 14 (27.45%) 77 (98.72%) 11 (24.44%) 36 (94.74%) 4 (10.81%)

II 3 (3.70%) 19 (37.25%) 0 (0.00%) 21 (46.67%) 0 (0.00%) 5 (13.51%)

III 3 (3.70%) 7 (13.73%) 1 (1.28%) 7 (15.56%) 2 (5.26%) 19 (51.35%)

IV 0 (0.00%) 11 (21.57%) 0 (0.00%) 6 (13.33%) 0 (0.00%) 9 (24.32%)

*P < 0.05 means statistical significance.

Data are in n (%) unless otherwise indicated.

Categorical variables are compared using chi-square tests or Fisher exact tests, while continuous variables are compared using t-test or Mann-Whitney U-test, as appropriate.

validation cohort 2 consisting of 75 patients (38 low-risk group,
37 intermediate to high-risk group) collected from TCGA-KIRC.
There were no significant differences between these cohorts
in the SSIGN risk group (p > 0.05). The demographics, the
clinicopathology characteristics, and the image features of all
patients are shown in Table 1.

Radiomic Signature Construction
A total of 1,218 radiomic features were extracted from the
nephrographic phase contrast-enhanced CT images with 1144
radiomics features remaining by eliminating the radiomic
features with non-robustness (ICC < 0.75) between the inter-
and intra-observers. Then, 16 SSIGN risk group-related radiomic
features with non-zero coefficients were screened using the
LASSO regression analysis. A radiomic signature based on
the above radiomic features was constructed via the LASSO
logistic regression model in the training cohort. The Rad
score calculation formula is shown in Supplementary S2, and
the optimal risk cutoff value of the Rad score was 0.352
according to the maximized Youden index in the training
cohort. Consequently, a statistically significant difference was
observed in the Rad scores [median (interquartile range)]
between the low-risk group and intermediate- to high-risk
group in the training cohort [0.097 (0–0.346) vs. 0.744 (0.353–
1), respectively, p < 0.001]. This difference was confirmed in

external validation cohort 1 [0.095 (0.001–0.3441) vs. 0.727
(0.727–0.378), respectively, p < 0.001] and in external validation
cohort 2 [0.086 (0–0.311) vs. 0.813 (0.372–1), respectively, p <

0.001]. Finally, the radiomic signature demonstrated a favorable
predictive performance with an AUC of 0.940 [95% confidence
interval (CI), 0.884–0.973] in the training cohort, 0.876 (95% CI,
0.811–0.942) in external validation cohort 1 and 0.928 (95% CI,
0.844–0.975) in external validation cohort 2.

Image Feature Model and Fusion Model
Construction
In the univariate analysis, the image features of the tumor
boundary, the renal vein invasion, the collecting system invasion,
the intra-tumoral vessels, and the enhancement pattern were
significantly different between the SSIGN low-risk group and
intermediate- to high-risk group (p < 0.05). There was only one
image feature, intra-tumoral vessels (OR 11.463 [9.702–13.226],
P < 0.001), as an independent predicted factor for the SSIGN
intermediate- to high-risk groups by applying multivariate
logistic regression analysis. Consequently, an image feature
model was developed based on the intra-tumoral vessels and
yielded an AUC of 0.708 (95% CI, 0.625–0.787) in the training
cohort, 0.630 (95% CI, 0.538–0.715) in external validation cohort
1 and 0.666 (95%CI, 0.547–0.771) in external validation cohort 2.

Frontiers in Oncology | www.frontiersin.org 6 July 2020 | Volume 10 | Article 909

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Jiang et al. Radiomics Predicts SSIGN Risk Groups

FIGURE 2 | Comparison of ROC curves between radiomic signature, image feature model, and fusion model for prediction of tumor necrosis in the training cohort

(A), the validation cohort 1 (B), and the validation cohort 2 (C). The three colors of the curves represent different models: green, radiomics signature; blue, image

feature model; red, fusion model. Calibration curves of the radiomic signature, fusion model in the training cohort (D), the validation cohort 1 (E), and the validation

cohort 2 (F), respectively. Calibration curves show the calibration of the nomogram in terms of agreement between the predicted probability of SSIGN risk group and

actual probability. The 45 black lines represent a perfect prediction, and the green and red lines represent the predictive performance of the radiomic signature and the

fusion model, respectively. The closer the dotted line fit is to the ideal line, the better the predictive accuracy of the model is.

In addition, a fusion prediction model was constructed
combining the radiomic signature and the independent predictor
which demonstrated AUCs of 0.942 (95% CI, 0.887 to 0.975),
0.876 (95% CI, 0.808–0.945) and 0.920 (95% CI, 0.834–0.970),
respectively, for the training and external validation cohorts.

Model Evaluation and Model Comparison
The ROC curves of the radiomic signature, the image features,
and the fusion model are demonstrated in Figures 2A–C and the
predicted performance summarized in Table 2 for all cohorts.
Through the DeLong test, the results showed that the AUCs of
the radiomic signature and the fusion model exceeded that of the
image feature model (p < 0.001 and p < 0.001, respectively, in all
cohorts), while no significant differences in the AUC values were
discovered between the radiomic signature and the fusion model
in the training and external validation cohorts (p = 0.575, 1.000,
0.304), summarized in Table 3. The results indicated that they
were equally effective in the discrimination performance between
the SSIGN low-risk and intermediate- to high-risk groups.

The calibration curves in all the cohorts are illustrated in
Figures 2D–F. The calibration curve and theHosmer–Lemeshow
test revealed that the radiomic signature and the fusion model
both demonstrated an excellent agreement between the expected
and predicted consistency probabilities in training cohorts (p
= 0.987 and p = 0.647). The favorable calibration was further

verified in external validation 1 cohort (p= 0.140 and p= 0.255)
and external validation 2 cohort (p= 0.125 and p= 0.131).

The DCA of the radiomic signature, the image features,
and the fusion model are presented in Figure 3. The radiomic
signature and the fusion model provided more net benefits
than the image model and the treat-all or treat-none scheme,
and the two models showed no significant differences in the
threshold probability >12% in the external validation cohorts,
thus indicating that both models attained similar performance
with regard to their clinical application.

DISCUSSION

In this multicenter study, a radiomic signature was proposed with

an excellent predictive accuracy to discriminate SSIGN low-risk
and intermediate to high-risk groups in patients with ccRCC.

This significantly outperformed the image feature model and
showed similar performance with the fusion model in terms of

the discrimination, calibration, and clinical value in the training
cohort and both validation cohorts. The results demonstrated
the feasibility and reproducibility of the radiomic signature in
preoperative SSIGN risk assessment between different centers for
ccRCC patients.
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TABLE 2 | Predictive performance of the radiomics signature, image feature model, fusion model in all cohorts.

Model Trainning cohort (n = 132) Validation cohort 1 (n = 123) Validation cohort 2 (n = 75)

AUC 95%CI
(AUC)

acurracy sensitivity spencificity AUC 95%CI
(AUC)

acurracy sensitivity spencificity AUC 95%
CI(AUC)

acurracy sensitivity spencificity

Radiomics
signature

0.940 0.884–
0.973

87.88% 85.19% 92.16% 0.876 0.811–
0.942

78.86% 81.61% 72.22% 0.928 0.844–
0.975

81.33% 94.74% 67.57%

Image
feature
model

0.708 0.625–
0.787

65.91% 49.38% 92.16% 0.630 0.538–
0.715

48.78% 28.74% 97.22% 0.666 0.547–
0.771

66.67% 73.68% 59.46%

Fusion
model

0.942 0.887–
0.975

87.88% 85.19% 92.16% 0.876 0.808–
0.945

80.49% 82.76% 75.00% 0.920 0.834–
0.970

80.00% 94.74% 64.86%

TABLE 3 | Model prediction performance comparison.

Training

cohort

Validation

cohort 1

Validation

cohort 2

Radiomics signature vs. image

feature model

p < 0.0001 p < 0.0001 p < 0.0001

Fusion model vs. image feature

model

p <0.0001 p < 0.0001 p < 0.0001

Radiomics signature vs. fusion

model

p = 0.575 p = 1.000 p = 0.304

A radiomic signature in the current study was constructed
using eleven selected features including shape features, first-
order feature, and texture features. Pathologically, tumor size
is an important indicator of tumor staging and associated with
higher nuclear grade, more histologic necrosis, and sarcomatoid
changes (15, 20–22). As a consequence, the shape features,
especially the major axis length, which is the largest axis
length of the tumor, contributed to predicting the SSIGN risk
groups. The only first-order feature was kurtosis, a statistical
parameter of peakedness or the sharpness of the histogram, which
increased with lower heterogeneity (23). In agreement with this
principle, the ccRCC with low risk demonstrated higher kurtosis
values when compared to high-risk ccRCC, suggesting a more
homogeneous pattern within the pixels in the SSIGN low-risk
group. Comparedwith the above two types of features, the texture
features yielded a better diagnostic performance according to the
LASSO coefficients. The texture features were used to describe
the patterns or spatial distributions of voxel intensity and proved
to be an efficient approach in characterizing tumor macroscopic
heterogeneity, which is a potential representation of tumor
aggressiveness (24, 25). In previous studies, the differentiated
distribution of texture features can be detected between low
and high WHO/ISUP grade ccRCC, sarcomatoid, and non-
sarcomatoid RCC (12, 15). Therefore, the texture features provide
important supplementary information for other features and
constitute the most relevant feature set for SSIGN risk prediction.

Consistent with the previous study, the image feature
model constructed and based on the intra-tumoral vessels was
significantly worse than the radiomic signature in discriminating
performance, further proving that the radiomic features can
produce more detailed phenotypic information about a tumor
hard to detect with the naked eye (10, 26, 27). Furthermore,
a fusion model was constructed by integrating the radiomics
signature and the image feature. However, there was no

significant difference between the radiomic signature and the
fusionmodel in the discrimination, calibration, and clinical value
on account of which the image feature, the intra-tumoral vessels,
could not add any incremental value to the radiomic signature.
Therefore, this study considered the single radiomic signature
with improved efficiency, reproducibility, and consistency and
pipeline systems to potentially provide an easy-to-use tool to
predict the SSIGN risk groups for patients with ccRCC.

In different centers, there was a great challenge in validating
the radiomic models reflecting the tumor’s invasiveness by
predicting a single pathological index. This was because the
evaluation of the pathological indicator may be differed among
different pathologists (28, 29). Unlike these, the SSIGN score
in this study had a better credibility and generalization among
the different centers as the multi-indicator comprehensive model
could have reduced the influence of the errors and bias caused by
a single indicator used for the diagnosis. Additionally, in order
to ensure the generalizability and reproducibility of the radiomic
signature, this study was constructed using a large sample size
and validated by two independent external datasets, including
those of the TCGA-KIRC. Therefore, the radiomic signature
capable of predicting the SSIGN risk group has great clinical and
practical value.

Overall, our study has important practical implications
because SSIGN is one of the commonest used prediction systems
for the overall survival prognosis of ccRCC patients. However,
percutaneous biopsy serves as a standard method for tumor
aggressiveness assessment in vivo. However, this kind of biopsy
cannot deliver a SSIGN score and is limited by sampling bias,
unsatisfactory accuracy, and the use of an invasive method (30).
Considering the favorable performance in predicting the SSIGN
risk groups in the multicenter datasets, radiomic analysis may be
an alternative method for the assessment of the aggressiveness
of ccRCCs and could play a more key role in the choice of
optimal treatment methods for ccRCC patients before surgery.
In addition, radiomic analysis with its non-invasive nature and
automated analysis can be seen as a promising tool to repeatedly
assess patients with ccRCC being treated conservatively, such as
them being under active surveillance and using ablative therapies
during follow-up.

There were several limitations in this study. First, although

these models were satisfactory when it came to accuracy in
the two independent external validation cohorts, the robustness

and repeatability should be validated by a larger prospective
cohort. Second, this study only focused on the value of radiomics

in the discrimination of SSIGN low-risk and intermediate-
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FIGURE 3 | Decision curve analysis (DCA) for each model in the validation cohorts. The DCA demonstrated that if the threshold probability was >12% in the validation

cohort 1 (A) and in the validation cohort 2 (B), the application of radiomics signature and fusion model to predict SSIGN risk group performance equals and adds

more benefit than does the image model and treats all or none of the patients.

to high-risk groups due to the limited sample size and the
unbalanced patient distribution. However, the prediction of
more at-risk subgroups based on the SSIGN score may be
of greater value in the diagnosis and treatment of ccRCC
patients. Third, there were greater heterogeneities in the CT scan
equipment and the parameters between inter-central and intra-
central, especially in the TCGA-KIRC cohort. Fourth, the loss
of the interpretability and explainability of the radiomic features
remained as an important challenge for the application of the
radiomic signature clinically.

In conclusion, this current study proposed a CT-
based radiomic signature that demonstrated satisfactory
predictive performance in distinguishing SSIGN low-risk
group and an intermediate- to high-risk group of ccRCC
preoperatively. As a quantitative and non-invasive predictive
tool, a radiomic signature is expected to further facilitate
clinical decision-making.
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