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Background: Currently, radiation-oncologists generally evaluate a single treatment plan

for each patient that is possibly adapted by the planner prior to final approval. There is

no systematic exploration of patient-specific trade-offs between planning aims, using a

set of treatment plans with a-priori defined (slightly) different balances. To this purpose,

we developed an automated workflow and explored its use for prostate cancer.

Materials and Methods: For each of the 50 study patients, seven plans were

generated, including the so-called clinical plan, with currently clinically desired ≥99%

dose coverage for the low-dose planning target volume (PTVLow). The six other plans

were generated with different, reduced levels of PTVLow coverage, aiming at reductions

in rectum dose and consequently in predicted grade≥2 late gastro-intestinal (GI) normal

tissue complication probabilities (NTCPs), while keeping other dosimetric differences

small. The applied NTCPmodel included diabetes as a non-dosimetric predictor. All plans

were generated with a clinically applied, in-house developed algorithm for automated

multi-criterial plan generation.

Results: With diabetes, the average NTCP reduced from 24.9 ± 4.5% for ≥99%

PTVLow coverage to 17.3± 2.6% for 90%, approaching the NTCP (15.4± 3.0%) without

diabetes and full PTVLow coverage. Apart from intended differences in PTVLow coverage

and rectum dose, other differences between the clinical plan and the six alternatives were

indeed minor. Obtained NTCP reductions were highly patient-specific (ranging from 14.4

to 0.1%), depending on patient anatomy. Even for patients with equal NTCPs in the

clinical plan, large differences were found in NTCP reductions.

Conclusions: A clinically feasible workflow has been proposed for systematic

exploration of patient-specific trade-offs between various treatment aims. For each

patient, automated planning is used to generate a limited set of treatment plans with
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well-defined variations in the balances between the aims. For prostate cancer, trade-offs

between PTVLow coverage and predicted GI NTCP were explored. With relatively small

coverage reductions, significant NTCP reductions could be obtained, strongly depending

on patient anatomy. Coverage reductions could also make up for enhanced NTCPs

related to diabetes as co-morbidity, again dependent on the patient. The proposed

system can play an important role in further personalization of patient care.

Keywords: personalized radiotherapy, automated multi-criterial treatment planning, normal tissue complication

probability (NTCP), prostate cancer, gastro-intestinal

INTRODUCTION

The aim of radiotherapy treatment planning is to define a
treatment that provides adequate tumor volume irradiation
with the highest expected therapeutic ratio. To this purpose,
doses in organs at risk (OARs) are minimized based on known
risks for radiation-induced toxicity (1). Technical developments
in external beam radiotherapy (EBRT), e.g., replacement of
3D-conformal radiotherapy (3DCRT) by intensity modulated
radiation therapy (IMRT) and volumetric modulated arc therapy
(VMAT) (2–4), and improvements in image guidance (5–7),
have significantly improved treatment outcome and/or reduced
radiation induced side effects in a variety of treatment sites.
Recently, developments in automation of treatment planning
have further enhanced opportunities for generation of high
quality treatment plans (8–10).

Ideally, toxicity risks to be used in planning are modeled
with normal tissue complication probabilities (NTCPs). There
is an active field of research developing these predictive
models (1, 11–15). More and more, published NTCP models
include non-dosimetric parameters that modulate the radiation-
induced toxicity risk (16). For example, Cozzarini et al.
(14) used multivariate logistic regression to include both
dosimetric parameters, extracted from the clinical plans, and

patient characteristics (e.g., smoking status, age, application and
duration of hormonal therapy) in the toxicity prediction models.

Pre-selection of a relevant predictor subset was performed
using univariate logistic regression. A similar approach was

performed in previous work by Sharfo et al. (17) who developed

a multivariate logistic regression model predicting radiation
induced gastro intestinal (GI) toxicity.

Current practice in radiation therapy treatment planning is

based on treatment site specific clinical protocols, containing
hard constraints, and planning aims. Evidence based medicine

recommends the definition of clinical protocols, based on
findings in prospective clinical trials and dose escalation studies

(18). Generally, the planning protocol is used by a planner to
generate for each patient a single treatment plan that may or
may not be adjusted after discussion with the treating physician
prior to final approval. There is no systematic exploration of
patient-specific trade-offs between the various planning aims by
generation of a set of treatment plans for each patient with
(slightly) different trade-offs.

We hypothesized that generation of a limited set of well-
designed treatment plans per patient, instead of a single plan, can

help to better identify plans with optimal patient-specific trade-
offs. For example, for some patients with specific anatomies, a
slight decrease in coverage might result in a relatively large NTCP
gain. For patients with non-dosimetric conditions that result in a
significantly enhanced predicted NTCP, a lower PTV coverage or
a somewhat enhanced NTCP for a different side-effect might be
accepted to counter-act the enhancement. We also hypothesized
that automated planning can be used to effectively generate the
required treatment plans.

In this paper we have investigated these hypotheses for
treatment of prostate cancer. An automated planning algorithm
was used to generate for each patient a set of plans to explore
the trade-off between the dose coverage of the large planning
target volume to be irradiated with reduced dose (PTVLow) and
the predicted NTCP for grade ≥2 GI toxicity for otherwise
similar dose distributions. In particular, measures were taken
to maintain clinical target volume (CTV) coverage at 100%
and to keep the coverage of the (smaller) PTVHigh at the
requested ≥99% level. Deterioration of bladder dose was also
to be avoided. We also investigated to what extent reduction in
PTVLow coverage could compensate for significantly enhanced
toxicity risks caused by diabetes.

MATERIALS AND METHODS

Patients and Clinical Protocol
Fifty arbitrarily selected prostate cancer patients, previously
treated in our center in the context of the randomized HYPRO
trial (19) with a simultaneously integrated boost technique,
were included in the study. PTVHigh consisted of the prostate
(CTVHigh) expanded with a 5–6mm isotropic margin, but
avoiding overlap with the rectum. PTVLow was defined by
applying a 8–10mm isotropic margin around the prostate +

seminal vesicles (CTVLow). All patients were treated in the
hypofractionation arm with prescribed total doses for PTVHigh

and PTVLow of 64.6Gy and 57.76Gy, delivered in 19 fractions.
For both PTVs, the planning aim was to have ≥99% of the
volume covered by 95% of the prescription dose, with full
coverage of the CTVs. Contoured organs at risks (OARs) were
rectum, bladder, anus, and hips. Reduction of rectum dose was
the highest OAR priority.

System for Automated Plan Generation
In this study, all treatment plans were generated with the in-
house developed Erasmus-iCycle system for fully-automated
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multi-criterial plan generation, which has been extensively
described in the literature (8, 20–22). Generated plans are Pareto-
optimal and often superior to manually generated plans (10, 23,
24). Here a short description of the system provided. Plans are
generated using a so-called wish-list (described in more detail in
section Wish-Lists) that defines the protocol for automated plan
generation, based on a set of cost functions that are either defined
as hard constraints or planning objectives with assigned priorities
and goal values. In plan generation, planning constraints are
never violated. On the other hand, goal values of objective
functions are met as well as possible or possibly superseded,
taking into account the constraints and ascribed priorities.
Planning objectives are sequentially optimized according to their
priorities while always adhering to all imposed constraints.
After each objective function optimization, a new constraint is
added to the optimization problem to ensure that the previously
obtained function value is maintained while minimizing lower
priority objectives. Wish-lists are treatment site specific and are
constructed in an iterative tuning process, together with the
treating physician. Although clinically delivered manual plans
serve as an initial reference for wish-list generation, the final goal
is always to supersede the manual plan quality.

Exploration of Patient-Specific Trade-Offs
Between Target Coverage and
Radiation-Induced Toxicity
In a recent study, Sharfo et al. (17) used automated treatment
planning to investigate the quality of dose distributions delivered
in the HYPRO trial (19). To that purpose, logistic regression
analyses was used to develop an NTCP model (Equation 1) for
grade ≥ 2 GI toxicity, based on scored toxicities, delivered doses
and non-dosimetric predictive parameters.

NTCP =
1

1+ e−6.362+B·2.083+D·0.608+T·0.406+E·0.084
(1)

B = Baseline GI toxicity (yes/no), D = Diabetes (yes/no),
T = High risk treatment group (yes/no) (19), and E =

rectum gEUDEQD2Gy(7.7).
Here we used this model to systematically investigate patient-

specific trade-offs between predicted GI toxicity and PTVLow

coverage. Seven plans were generated for each patient to quantify
risk reductions associated with reductions in coverage from the
clinical ≥99% to as low as 90% for otherwise highly similar
dose distributions.

A sub-group of the patients in the study cohort had diabetes
as a co-morbidity. However, to systematically explore diabetes as
a co-morbidity, analyses were performed both assuming that all
patients had diabetes or none of them had.

Generated Treatment Plans
Erasmus-iCycle was used to automatically generate VMAT
plans with 10MV photon beams. Starting point for the plan
generations was a slightly modified version of the wish-list
developed by Sharfo et al. (17) for automated generation of plans
with ≥99% coverage for both PTVs, in line with the HYPRO
protocol. In this study, this wish-list was used to generate for

each patient the so-called ‘clinical plan’ which is a high-quality
Pareto-optimal plan with the currently required ≥99% coverage
for both PTVs. (Note: these are not the clinically delivered plans,
which were manually generated and of lower quality (17). The
six alternative plans with various PTVLow coverages in the range
99%−90%were generated withmodified versions of this wish-list
(as specified in section Wish-Lists) aiming for increased rectum
sparing while guaranteeing high similarity with the clinical plan
for other dose parameters.

Wish-Lists
The applied wish-lists are described in Table 1 with some
explanations in the following text. In Erasmus-iCycle, target
coverage is generally optimized by minimizing a logarithmic
tumor control probability (LTCP) cost function (Equation
2) (25),

LTCP =
1

m

∑m

j=1
e(−α(dj−PD) (2)

where m is the number of voxels in the target, PD the prescribed
dose, dj the dose in voxel j, and α the cell sensitivity parameter
(26). A ≥99% coverage for PTVHigh was for all generated plans
achieved using a goal value of 0.8. Minimum dose constraints for
CTVHigh and CTVLow guaranteed that CTV coverage was always
maintained when reducing PTVLow coverage.

For generation of the clinical plan, the priority 2 cost function
was disabled and a goal value of X = 0.4 was used in priority
3 to always acquire >99% coverage for PTVLow (the LTCP
cost function was applied to the entire PTVLow, including the
overlapping area with the rectum). Rectum sparing was obtained
by optimizing a gEUD(k) with k equal to 7.7, in line with the
NTCP model (Equation 1). Conformality of the dose outside
the PTVs was controlled by a set of maximum dose objectives
(priorities 5 and 8), assigned to concentric shells around PTVLow.

For generation of the six plans with reduced PTVLow coverage,
modifications in the wish-list were made at the level of the
bold/italic lines in Table 1. The aim was always to have PTVLow

underdosages in the most promising regions for GI NTCP
reduction, i.e., where rectum was overlapping with the PTVLow

and its surroundings, without compromising the CTV doses and
while keeping the remainder of the dose distribution as similar
as possible to the clinical one. To this purpose, the priority 2
objective was introduced for dose optimization in the PTVLow-
RectumPRV structure in which the overlapping rectum expanded
by a margin was subtracted from the PTVLow. The applied
PRV margins were 25, 20, 15, or 10mm for patient-specific
PTVLow and rectum overlapping areas of <4, <6, <7, or >7%,
respectively. An LTCP cost function with a goal value of 0.4 was
used to always cover >99% of PTVLow-RectumPRV.

To obtain plans with various PTVLow coverages <99%, the
LTCP in priority 3 was now used for partial recoveries of the
PTVLow coverage in a controlled way. This was performed by
using well-selected (patient-independent) X-values in priority
3 that were different for each of the six plans generated
with reduced PTVLow coverage. For generation of the plans
with reduced PTVLow coverage, the bladder DMean objective in
priority 9 was removed, while a bladder DMean constraint was
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TABLE 1 | Wish-lists used for automated plan generations in this study.

CONSTRAINTS

Structure Constraint function Limit

PTVHigh Maximum dose <105% of PDHigh

PTVHigh Mean dose <100.5% of PDHigh

PTVLow-(PTVHigh exp

by 2.5mm)

Maximum dose <95% of PDHigh

PTV Shell 50 Maximum dose <50% of PDHigh

Rectum Maximum dose <102% of PDHigh

Anus Maximum dose <102% of PDHigh

Patient Maximum dose <105% of PDHigh

CTVHigh Minimum dose >95% of PDHigh

CTVLow Minimum dose >95% of PDLow

OBJECTIVES

Priority Structure Aim & objective

function

Goal value

(Sufficient)

1 PTVHigh ↓ LTCP(99.5% of

PDHigh,α =0.8)

0.8 (0.8)

2 PTVLow-

RectumPRV

↓ LTCP(PDLow ,α=1.4) 0.4 (0.4)

3 PTVLow ↓ LTCP(PDLow ,α=1.4) X (X)

4 Rectum ↓ gEUD(7.7) 0

5 Entrance Dose ↓ Maximum dose <20% PDLow

5 PTV Shell 5 ↓ Maximum dose <80% PDLow

6 Rectum ↓ Mean dose 5

7 Anus ↓ Mean dose 5

8 PTV Shell 15 ↓ Maximum dose <50% PDLow

8 PTV Shell 25 ↓ Maximum dose <30% PDLow

9 Bladder ↓ Mean dose 5

10 Hip left ↓ Maximum dose 40

10 Hip right ↓ Maximum dose 40

Bold/italic lines are different for the clinical plans and alternative plans (see text).

Minimum values to CTVs were set 2Gy higher to account for voxel sampling in the

optimizations. PDHigh, prescribed dose for PTVHigh (64.6Gy); PDLow, prescribed dose for

PTVLow (57.76Gy); gEUD(k), generalized equivalent uniform dose; k, volume parameter;

LTCP(PD,α), logarithmic tumor control probability (25); with α, cell sensitivity; OAR, organ

at risk; ↓, minimization; ↑, maximization.

added with a limit value equal to the patient-specific bladder
DMean obtained in the clinical plan. This was done in order
to avoid dose being pushed away from the rectum toward
the bladder.

Creation of the appropriate wish-lists was performed
in a tuning process involving CT-scans of a set of
10 patients.

RESULTS

Figures 1, 2 show NTCP reductions for the 50 study patients
as a function of the loss in PTVLow dose coverage. Figure 1
is valid in case of diabetes, while for Figure 2 we assumed
that there was no diabetes. As explained in the M&M section,
reductions in PTVLow coverage in the six alternative plans for
each patient were obtained with (convex) LTCP cost functions.

Convexity avoids getting trapped in local minima, but with
the LTCP cost function, obtained PTVLow coverage values
vary somewhat between patients. For generation of Figures 1,
2, NTCPs for the defined coverage reductions were for each
patient obtained by piecewise linear interpolations between
the generated plans. The different colors show the impact of
incremental underdosage steps of 1% in PTVLow on obtained
NTCP. For some patients (e.g., patient 13), reducing the coverage
to as low as 90% was not possible, possibly due to not sufficiently
large PRV margins or conflicting constraints on the PTVHigh

and the CTVs dose requirements. For patient 50, accepting
lower PTVLow coverage did not result in any NTCP reduction
because of lack in overlap between PTVLow and rectum (see also
Figure 6).

Following Equation 1, NTCP values were indeed higher in
case patients had diabetes (compare upper panels of Figures 1, 2).
On the other hand, NTCP reductions were also larger in
case of diabetes. For a PTVLow coverage of 95%, average
NTCP reductions of 4.3% (0.3–8.0%) and 2.9% (0.2–5.5%)
were obtained with or without diabetes, respectively. For 90%
coverage, the obtained NTCP reductions increased to 8.3%
(0.3–14.4%) and 5.6% (2.0–10.1%), respectively. Both with and
without diabetes, there was an overall trend toward enhanced
NTCP reductions for patients with the highest clinical NTCPs
(lower panels Figures 1, 2). On the other hand, large inter-patient
variations were observed. For example, patients 1 and 3 had
similar clinical NTCPs, but a large difference in achievable NTCP
reductions. Moreover, similar NTCP reductions were observed
for different costs in PTVLow coverage. For example, patients 12
and 14 have similar NTCP reductions of ∼10% accepting 94%
or 91% PTVLow coverage instead of 99% (Figure 1). Observed
maximum NTCP reductions ranged from > 14% (patient 1) to
<1% for patient 50, depending on differences in anatomy (see
Figure 6).

Figures 3, 4 show the differences between clinical and
alternative plans on a per patient base and in population
DVHs, respectively. They demonstrate that the enforced PTVLow

coverage reductions mainly had an impact on rectum sparing
while having a clinically insignificant dosimetric impact on
PTVHigh, CTVHigh, CTVLow, bladder, anus and hips, as intended
(section Generated Treatment Plans). Figure 5 shows for an
example patient highly similar dose distributions, except for the
region of overlap between rectum and PTVLow.

In Figure 6 we investigated the extent of feasible NTCP
reduction as a function of overlap between rectum and
PTVLow. Although, there is an overall trend toward more
reduction with larger overlap, there are inter-patient variations
with R2 equal to 0.6 and 0.7, for 95 and 90% PTVLow

coverage, respectively.
For the 50 patients in this study, presence of diabetes resulted

in an average increase in clinical NTCP from 15.4 ± 3.0%
(1SD) to 24.9 ± 4.5% (1SD) (compare also the upper panels
of Figures 1, 2). Figure 7 explores opportunities for mitigation
of enhanced toxicity risk due to diabetes by reducing required
PTVLow coverage. Clearly, depending on the allowed coverage
reduction and the patient anatomy, NTCP enhancements due to
diabetes could be largely compensated. For some patients, (e.g.,
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FIGURE 1 | (Top) NTCP values for the clinical plans (PTVLow coverage ≥99%) in case of diabetes as a co-morbidity. (Bottom) Cumulative NTCP reductions for

decreasing levels of PTVLow coverage. Patients were sorted according to their clinical NTCP as visualized in the top panel.

FIGURE 2 | (Top) NTCP values for the clinical plans (PTVLow coverage ≥99%). (Bottom) Cumulative NTCP reductions for decreasing levels of PTVLow coverage.

Patients were supposed not to have diabetes. Patient sorting along the x-axis was the same as for Figure 1.

1, 6, and 8) the impact of diabetes could be completely canceled
when using a coverage of 90–91%. Other patients (e.g., 3 and 20)
demonstrate quite large residual differences in NTCP with and
without diabetes, for reduced PTVLow coverages.

DISCUSSION

In this study, we have used prostate cancer radiotherapy as

a model for development of a clinically feasible workflow for
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FIGURE 3 | Dose parameter differences between the clinical plan and the alternative plans with reduced PTVLow coverages. (Top) Targets. (Bottom) OARs. All

differences were small and within clinically acceptable limits.

FIGURE 4 | Population average DVHs for each of the seven plans generated per patient. The left panel shows a clear (intended) trade-off between rectum dose and

coverage of PTVLow. The right panel shows very small differences for other structures.

application of automated planning for assessment of patient-
specific trade-offs between treatment goals. All plans were
generated fully automatically, i.e., without any manual fine-
tuning. With carefully designed, patient-independent variations

in the autoplanning configuration (i.e., wish-list), the PTVLow

coverage could be varied in a controlled way in the range 99–
90% to reduce the predicted NTCP, without significant further
changes in the dose distributions. In particular, CTV coverage

Frontiers in Oncology | www.frontiersin.org 6 June 2020 | Volume 10 | Article 943

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Bijman et al. Automated Planning for Trade-Off Exploration

FIGURE 5 | Dose distributions of patient 13 for 99% (left) and 94% PTVLow dose coverage. For both patients, top: sagittal view through isoc., bottom: axial views at

two levels. Structures: red = PTVHigh, blue = PTVLow, white = rectum, and yellow = bladder. Apart from the dose in the posterior part of PTVLow, dose distributions

are highly similar.

FIGURE 6 | NTCP reductions by going from ≥99% coverage for PTVLow to 95% (Left) and 95% (Right), as a function of the percentage of rectum overlapping with

PTVLow. Each dot represents one of the fifty study patients. In the left panel, patients 1 and 50 are marked for discussions in the text.

remained 100%, PTVHigh coverage was kept at ≥99%, and
bladder dose did also not significantly change. For each patient,
the obtained bladder DMean in the clinical plan (PTVLow coverage

≥99%) was used as constraint in the generation of the six
other plans with reduced PTVLow coverage. It was demonstrated
that large, but highly patient-specific NTCP reductions could

Frontiers in Oncology | www.frontiersin.org 7 June 2020 | Volume 10 | Article 943

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Bijman et al. Automated Planning for Trade-Off Exploration

FIGURE 7 | Compensation for diabetes induced-enhancement of predicted NTCPs (compare black solid and dashed lines) by reducing PTVLow coverage levels. With

gradual decreases in coverage, NTCPs with diabetes gradually approach the dashed curve for NTCPs without diabetes. Patient sorting along the x-axis was the same

as for Figure 1.

be obtained. For a PTVLow coverage of 90%, observed NTCP
reductions ranged from 14.4 to 0.1%, compared to 99% coverage,
depending on the patient anatomy. Reductions in required
PTVLow coverage could to a large extent make up for diabetes
as a co-morbidity, again depending on patient anatomy. To the
best of our knowledge, this is the first study that proposes the
use of automated planning for patient-specific exploration of
opportunities for dosimetric compensation of non-dosimetric
toxicity risk factors.

Automated treatment plan generation required about 1–2 h
per treatment plan. No manual interaction was required at any
step of the procedure. Therefore, multiple plans could be run,
sequentially or in parallel, over the night. Generation of a wish-
list generally takes several weeks. This is a one-time effort and
should be seen as an upfront time-investment, which saves a
lot of manual planning time at a later stage. Specifically for
this project, the wish-list was already developed in a previous
study (17).

Observed NTCP reductions correlated to some extent with
the volume of rectum overlapping with PTVLow (Figure 6,
R2 = 0.6–07). Once a correlation model is built based on the
plans generated with the proposed method, the regression lines
might be of use as a tool for selection of the PTVLow coverage
region of interest, or for selection of patients. That is, the
proposed method could be applied only to patients and/or
to PTVLow levels that show to be more promising in NTCP
reduction. However, even in the relatively easy treatment site of
prostate cancer, a not too strong correlation was found. Different
parameters may be investigated, but for more challenging
treatment sites finding predictors for NTCP reduction may be

even more complex. The presented method, on the other hand,
only requires computation time once the procedure is defined.

In the wish-lists applied in this study, concentric shells at
distances of 5, 15, 25, and 50mm from the PTV edge were
used to control plan conformality (Table 1). The limit and goal
values were the same for all patients and all plans. Initially, we
did however try to get further NTCP reductions by loosening
conformality goal values. This was not successful; conformality
worsened but NTCPs remained practically unchanged.

Equation 1 was used for NTCP prediction in this study, as
our patients were treated in the context of the HYPRO trial, and
Equation 1 was derived for these patients. Important to note is
that various alternative predictive models exist (11, 15), which
could possibly have resulted in different conclusions, or could
have resulted in different approaches for lowering NTCPs. Direct
use of Equation 1 in this study was limited to plan evaluations,
i.e., Equation 1 was not used in the wish-list for plan generations
(see Table 1). For planning, we generally prefer to use convex
cost functions to avoid getting trapped in local minima, and the
NTCP expression in Equation 1 is not convex. Alternatively, the
(convex) rectum gEUD (7.7), as used in Equation 1, was directly
applied as an objective function (priority 4 in Table 1).

The proposed method to explore trade-offs in planning goals
has some similarities with the well-known Pareto navigation,
using a graphical user interface with sliders to find a clinically
favorable plan (8, 26–31). Also in that method, multiple plans
are automatically generated for manual plan selection. There are,
however, important differences. The most important difference
is that for each patient, we first generate a high-quality, Pareto
optimal plan (“wish-point”) with clinically most desired PTVLow
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coverage (≥99%). For each patient, this plan is then used
as anchor point for patient-specific generation of the plans
with slightly reduced PTVLow coverage, using the bladder dose
obtained in the wish-point plan as constraint. In the proposed
workflow, only plans are generated that are useful for the
desired analyses. In conventional generation of plans for Pareto
navigation, there is no knowledge of the “wish-point,” and
generation of plans is less focused. Due to our highly focused
plan generation, only few plans are needed for the analyses. In
this study we used seven plans per patient. This number was not
optimized in terms of finding the minimum number of required
plans. The aim was to include for all patients, the full range of
PTVLow coverages from 99 to 90%. If a clinical protocol has more
precise directions for reductions in PTVLow coverage, for sure
even fewer plans need to be generated.

PTV margins are generally used to minimize risk in CTV
miss. In this paper, we kept all margins unchanged, but allowed
doses in the overlap area of PTVLow with rectum to get
lower than in the clinical plan. Coverages in PTVHigh and
CTV were always maintained. With this approach, the risk
of CTV miss was minimized, but still (at least potentially)
enhanced compared to regular clinical planning. Therefore,
clinical introduction of this type of workflow is not trivial.
Extensive computer simulations could be performed to assess
the true risks, taking into account the clinically applied image-
guided approach. Clinical introduction could well be performed
in a formal study. Anyway, it seems that patient selection could be
important, with patients with a high clinical NTCP (e.g., related
to an unfavorable anatomy or diabetes) and a large potential
for NTCP reductions, as best candidates. It is important to
realize that we used in this study our clinically required PTV
coverage level of 99%. In many studies, coverages of 95% were
reported (32).

We have investigated trade-offs between PTV coverage and
GI NTCP for prostate cancer but believe that the proposed
methodology could also be applied for other tumor sites. The
system could also be used to explore patient-specific trade-offs
between various toxicities for fixed PTV coverage. Focusing
on balances between toxicities instead of toxicity vs. PTV
coverage could ease clinical implementation. The developed
workflow could potentially also be used in shared decision
making studies.

CONCLUSION

A novel, clinically feasible workflow has been proposed for the
use of automated planning to systematically explore patient-
specific trade-offs between various treatment aims. For prostate
cancer, the patient-specific balance between PTV coverage
and predicted GI toxicity risk was explored. Opportunities
for compensating significantly enhanced predicted toxicity
risk related to diabetes by reducing the PTV coverage were
investigated as well. Large variations in potential benefit were
observed in the fifty study patients. The proposed system could
play an important role in further high-precision personalization
of patient care.
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