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Cancer cells undergo a metabolic rewiring in order to fulfill the energy and biomass

requirements. Cysteine is a pivotal organic compound that contributes for cancer

metabolic remodeling at three different levels: (1) in redox control, free or as a component

of glutathione; (2) in ATP production, via hydrogen sulfide (H2S) production, serving as

a donor to electron transport chain (ETC), and (3) as a carbon source for biomass and

energy production. In the present review, emphasis will be given to the role of cysteine as

a carbon source, focusing on the metabolic reliance on cysteine, benefiting the metabolic

fitness and survival of cancer cells. Therefore, the interplay between cysteine metabolism

and other metabolic pathways, as well as the regulation of cysteine metabolism related

enzymes and transporters, will be also addressed. Finally, the usefulness of cysteine

metabolic route as a target in cancer treatment will be highlighted.

Keywords: cysteine, cysteine metabolism, cysteine transport, cancer metabolic remodeling, targeting cysteine

route

INTRODUCTION

Posited as a glutathione precursor or as a source of sulfur and carbon, cysteine contributes for
cancer cell strongness and prosperity, allowing their survival upon stressful microenvironmental
conditions and upon drugs exposure (1, 2).

In the recent years, the role of cysteine and glutathione in the scavenging of reactive oxygen
species (ROS), contributing for chemoresistance (3–9) have been under scrutiny. Cysteine and
glutathione are crucial in the maintenance of the metabolic course (10–13), since the cancer
metabolic rewiring implies the generation of oxidative stress (14–16). Nevertheless, cysteine has
been underestimated as a carbon source, due to the core position of glycolysis in the cellular
biosynthesis and bioenergetics, being major emphasis given to glucose as a preferential fuel and
to glutamine as its main substitute [as reviewed in (17, 18)].

Despite few recent studies addressing cysteine as a key organic compound in cancer, the actual
meaning of cancer cells’ cysteine dependency is far from being completely known. Therefore, in
the next sections, the metabolic dynamics of cysteine in cancer and the interconnections between
cysteine metabolism and other metabolic pathways will be addressed.

CYSTEINE AS A CARBON SOURCE IN CANCER

The usefulness of cysteine as a carbon source is visible along the cysteine catabolic pathway, since
cysteine catabolism originates organic compounds used in carbon and energy metabolism (19–23).
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Cysteine Metabolism and Other Metabolic
Pathways Intercrosses
The metabolic reliance of cancer cells on cysteine promotes
a better adaptation to metabolically damaging conditions and
the development of chemoresistance (1, 2), accounting for
cancer success.

Cysteine catabolism occurs upon the action of four enzymes:
cystathionine β-synthase (CBS); cystathionine γ-lyase (CSE),
and 3-mercapto-pyruvate sulfurtransferase (MST), which
works together with cysteine aminotransferase (CAT) (24, 25).
Cysteine-derived organic compounds, such as pyruvate,
α-ketobutyrate and glutamate (26), supply other metabolic
pathways (Figure 1A), such as the tricarboxylic acid (TCA)
cycle and glucose-related pathways. Besides organic compounds,
cysteine catabolism generates hydrogen sulfide (H2S) (27–32).
Thus, the role of the enzymes has been directly associated
with ATP production, as H2S can donate electrons to electron
transport chain (ETC) (27, 28, 33, 34), and indirectly with the
role of H2S as a paracrine and an autocrine signaling molecule
in cancer, regulating cell proliferation, bioenergetics and
angiogenesis (35, 36). The link between the enzymes involved in
cysteine degradation and malignancy (27–29, 37–42) is thereby
not easy to distinguish as being specifically related to the release
of H2S or to the generation of organic compounds.

Cysteine catabolism cannot be addressed without
mentioning that de novo cysteine synthesis occurs through
the transsulfuration pathway (TSP), deriving from methionine
and serine (Figure 1B), which makes the synthesis of cysteine
dependent on the availability of methionine cycle intermediates
(43). Serine and glycine can be glutamine-originated, making
an interconnection of glutamine and cysteine metabolism
(3). In methionine cycle, homocysteine is synthesized, being
further condensed with serine to generate cystathionine, by CBS.
Afterwards cystathionine is hydrolyzed by CSE, giving rise to
cysteine, and other compounds (e.g., ammonia, α-ketobutyrate
or propionate) [as reviewed (44)].

Pyruvate kinase (PK) is considered a main regulator of energy
homeostasis by the generation of glucose-derived pyruvate (45),
but recently, cysteine catabolism and serine synthesis pathway
(SSP) were considered the main supplier of pyruvate in cancer
cells, as a way of overcoming the lack of PK expression (46).

One-Carbon Metabolism Concurrently
Depends on and Controls Cysteine
Bioavailability
The one-carbon metabolism is constituted by the methionine
cycle and the folate cycle, which are dependent on serine and
glycine bioavailability and from which certain intermediates are
deviated to form cysteine (Figure 1B). Serine is synthesized from
glucose and glutamine, and in turn serine gives rise to glycine [as
reviewed (47)], which enters the folate cycle (48). Interestingly,
cancer cells produce glycine from serine rather than import
glycine (49), pointing out the upregulation of SSP as a cancer
specialization. Moreover, phosphoglycerate dehydrogenase, a
SSP key enzyme, was recently proposed as a poor prognosis
marker in lung (50), gastric (51), and pancreatic (52) carcinomas.

FIGURE 1 | Cysteine is a core player in the cellular metabolism. (A) Cysteine is

imported as cystine or as cysteine. Cysteine plays a pivotal role in cancer: it is

incorporated in glutathione, a reactive oxygen species (ROS) scavenger; upon

degradation in cytosol or in mitochondria, it supplies carbon and energy

metabolism through FA and AA syntheses, tricarboxylic acid (TCA) cycle, one

carbon metabolism and the production of ATP through the ETC, and it

contributes for sulfur and energy production as a generator of hydrogen sulfide

(H2S), a donor of electrons (e−) to ETC. (B) The one carbon metabolism is

composed by the folate cycle and the methionine cycle. Serine, needed to

start the folate cycle, can be glucose (serine synthesis pathway—SSP) or

glutamine-originated. Serine originates glycine, which reacts with folic

acid-derived tetrahydrofolate (THF), originating 5,

10-methylenetetrahydrofolate (5, 10-MTHF), which is converted into

(Continued)
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FIGURE 1 | 5-methyltetrahydrofolate (5-MTHF) or 10-methyltetrahydrofolate

(10-MTHF). 5-FTHF reacts with vitamin B12 (Vit B12) and homocysteine

(hCysteine), forming THF and methionine. 10-FTHF is incorporated in the

synthesis of purines, essential for nucleotides synthesis. In the methionine

cycle, methionine is converted sequentially into S-adenosylmethionine (SAM),

and to S-adenosylhomocysteine (SAH). The consequent release of a methyl

group (CH3) will supply the methylation of DNA, DNA and histones. SAH is

converted into hCysteine keeping on the methionine cycle, or it is deviated to

the pyrimidines synthesis and consequently to nucleotides synthesis. Cysteine

is de novo synthesized in the transsulfuration pathway (TSP), linking cysteine

to the methionine cycle. The hCysteine, is converted into cystathionine

through the condensation with serine. Cystathionine is hydrolyzed to cysteine

and other organic compounds (e.g., α-ketoglutarate or propionate). Cysteine

can be degraded and originate (directly or not) pyruvate, α-glutarate,

α-ketobutyrate, serine, propionyl-CoA, succinate, and acetyl-CoA to supply

the tricarboxylic acid (TCA) cycle, amino acids synthesis or the fatty acids

synthesis. (C) Glycolysis is the degradation of a glucose molecule into 2

pyruvate molecules, through a sequence of reactions, having three irreversible

steps catalyzed by hexokinase (HK), phosphofructokinase (PFK), and pyruvate

kinase (PK). Gluconeogenesis is almost a reversion of glycolysis and

cysteine-derived pyruvate is converted in glucose. The reversible steps are

common to glycolysis and gluconeogenesis and are catalyzed by enolase,

phosphoglycerate mutase (PGAM), phosphoglycerate kinase (PGK),

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH), aldolase, and

Glucose-6-phosphate isomerase (GPI). The three irreversible steps of

glycolysis impose gluconeogenesis to use four other enzymes: PC, pyruvate

carboxylase; PKC, phosphoenolpyruvate carboxykinase; FBP, fructose

1,6-bisphosphatase; and G6PC, glucose 6-phosphatase. Gluconeogenesis is

regulated by Nrf2, Kras, Pi3K, Wnt, and HIF1. Besides being an intermediate

of glycolysis and gluconeogenesis glucose 6-phosphate is the substrate of

phosphate pentose pathway (PPP), which has two biochemical branches (an

oxidative and a non-oxidative branch) of reversible reactions. The

non-oxidative branch of PPP uses glucose-6-phosphate to generate

ribulose5-phosphate for AA and nucleotides synthesis. While the oxidative

branch of PPP generates NADPH, involving the action of glutathione (GSH)

reductase and the interplay with reductive biosynthesis, namely FA synthesis.

PPP is regulated by Nrf2, Pi3K, Wnt, NFkB, and Myc.

The folate cycle depends on the dietary folate and controls
the systemic levels of methionine and homocysteine (53), which
directly regulates cysteine bioavailability. This cycle uses glycine
and tetrahydrofolate (THF; converted from folic acid) and
produces intermediates [5,10-methylene-tetrahydrofolate (5,10-
MTHF) and 5-methylene-tetrahydrofolate (5-MTHF)] to supply
purine synthesis and afterwards by the entrance of cobalamin
(vitamin B12) and the interconnection with the methionine cycle,
folic acid is again synthesized (Figure 1B).

The import of methionine is a vital step in one carbon
metabolism, since methionine is an essential amino acid (AA),
which is sequentially converted into S-adenosylmethionine
(SAM) and S-adenosylhomocysteine (SAH), releasing methyl
groups (CH3) that will be used in DNA, RNA, and histones
methylation (Figure 1B). SAH can be deviated to originate
pyrimidines or originate homocysteine, which will react with
vitamin B12 and 5-MTHF in order to resynthesize methionine.
Homocysteine can be deviated from one carbon metabolism
and, together with serine, enter in TSP to originate cysteine
and propionyl-CoA under the action of CBS and CSE (21, 54).
Propionyl-CoA can be further converted into AA, fatty acids (FA)
and TCA cycle intermediates (22, 23).

Methionine scarcity impairs cancer cells’ proliferation (55),
and methionine dependency is controlled by PI3K/AKT/mTOR

pathway through the induction of the expression of
cyst(e)ine/glutamate antiporter xc- (xCT; SLC7A11 gene) (56),
ensuring that the levels of cysteine won’t limit the bioavailability
of methionine, since cysteine uptake downregulates TSP.

As above mentioned, the methyl groups generated in the one-
carbon metabolism, when released from methionine cycle, are
crucial for DNA, RNA, and histones methylation for epigenetic
modulation (57), whose functioning is regulated by PI3K/mTOR
and HIF2α pathways, the same that control SSP and one-carbon
metabolism (58, 59). Hence, the expression of LAT1 (SLC7A5),
themain transporter of methionine, is associated with the activity
of methyltransferases in lung cancer cells (60). Moreover, the
relevance of one carbon metabolism is also highlighted by the
association between the levels of folate in peripheral blood, DNA
methylation and colorectal tumor staging (61). Accordingly, the
existence of polymorphisms and the increased expression or
activity of enzymes participating in one-carbon metabolism are
considered markers for highly proliferative and aggressive cancer
phenotypes and chemoresistance (57, 62, 63).

Cysteine Contribution for Gluconeogenesis
and Phosphate Pentose Pathway (PPP)
Gluconeogenesis or the synthesis of glucose from non-glucidic
compounds, such as glycerol, lactate, pyruvate, acetyl-CoA, or
glucogenic AA, only recently started to be explored in cancer.
Gluconeogenesis (Figure 1C) is a reversion of glycolysis, with
3 alternative reactions counteracting the 3 irreversible steps of
glycolysis (64–67). Cysteine is a glucogenic AA, as it originates
pyruvate, however, as far as I know, cysteine was not yet explored
as a source of glucose in cancer. Nevertheless, in other biological
models cysteine has been pointed out as an important regulator
of enzymes, such as peroxidases that can interact with PK and
block the conversion of pyruvate into acetyl-CoA, avoiding
pyruvate entrance in TCA cycle or in FA synthesis (68) and
favoring its deviation into gluconeogenesis, ensuring the cell
needs of glucose.

Gluconeogenic enzymes are regulated by signaling pathways
pivotal in carcinogenesis KRAS-dependent, PIK3/mTOR and
Wnt pathways and HIF1 [as reviewed in (69) and in (70)]. The
pro-survival character of gluconeogenesis is supported by the
upregulation or the de novo expression of its enzymes in different
cancer types, such as breast, colon, stomach, uterine cervix, liver,
and pancreas (67).

The inhibition of the final step of gluconeogenesis redirects
glucose 6-phosphate to phosphate pentose pathway (PPP)
(Figure 1C), making gluconeogenesis a supplier of PPP in
glucose depleted environments. Again, cysteine as a source of
pyruvate can be at the origin of glucose-6-phosphate canalized
to PPP.

The PPP occurs in parallel to glycolysis through two
irreversible oxidative reactions followed by two biochemical
branches (an oxidative and a non-oxidative branch) of reversible
reactions (71). The non-oxidative branch of PPP (Figure 1C)
uses glucose-6-phosphate to generate pentose phosphates for
AA and nucleotides synthesis. While the oxidative branch
of PPP generates NADPH, essential for FA synthesis and
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redox balance (72–75). Indeed, a cellular dependence on
PPP was described in cancer cells that are heavy cystine
importers, requiring NADPH for cystine to cysteine intracellular
conversion (76).

PPP is associated with increased cancer cell survival
and proliferation (74, 77), implying the inhibition of
phosphofructokinase (mainly PFK1) from glycolysis (78, 79),
a direct competitor of glucose-6-phosphate dehydrogenase
(G6PD), the limiting enzyme in PPP (75). PI3K/AKT pathway
controls the expression and the activity of G6PD, whose
dimerization is activated by phosphorylation (80). Wnt/c-MYC
and p65-NFkB pathways induce the expression of G6PD,
activating PPP as part of a more metastatic and chemoresistant
cancer phenotype (81, 82).

Besides cysteine is a source of pyruvate, another important
link of gluconeogenesis and PPP to cysteinemetabolism and anti-
oxidant character (83), is the fact that the expression of PCK1
(phosphoenolpyruvate carboxykinase 1) and G6PD is directly
regulated by Nrf2, a master regulator of redox control (84, 85).

Regulation of Cysteine Anabolism and
Catabolism, in Cancer
The metabolic reliance on cysteine is a common feature to
different cancer types. Therefore, the upregulation of catabolic
pathways and the expression of cyst(e)ine transporters is often
observed in cancer together with the upregulation of cysteine
synthesis. The TSP is dependent on the action of CBS and
CSE, which can also act in cysteine catabolism (Figure 1B). The
expression of CBS and CSE seems to be cancer type-related often
dependent on the organ and the genetic background.

In ovaries, it seems that CSE must be silenced upon malignant
transformation, since it is expressed in normal epithelial ovarian
cells but it is absent in malignant tumors (27, 86). On the
contrary, the high CBS expression is a feature of ovarian cancer,
being associated with advanced stage and chemoresistance (27,
86). In colon cancer, the increased expression and activity of
CBS and CSE is associated with high rates of proliferation and
migration of cancer cells, controlled, respectively, by PI3K/AKT
and Wnt pathways (28, 86, 87). Controversially to the evidence
that CBS is linked to carcinogenesis, a study presents CBS as a
tumor suppressor gene, claiming that in gastric and colorectal
cancer the expression of CBS is inhibited by DNA methylation
in association with KRAS mutations (88). Notwithstanding
a study reporting the importance of both CBS and CSE in
gastric carcinogenesis (89), other study shows a compensatory
mechanism involving the two enzymes. It was demonstrated
that CSE expression overlaps the absence of CBS, being CSE
correlated to increased proliferation and decreased apoptotic
rate (41). In thyroid cancer, CBS is the major responsible
for H2S production, which activates cancer cells proliferation
and migration, through ROS/PI3K/AKT/mTOR and MAPK
pathways (90). In breast cancer, tumors, and cell lines, CSE
favors cell proliferation and migration under the command
of STAT3, a member of JAK/STAT pathway (38); while in
a murine model, CSE is stated as controlling the metastatic
behavior of breast cancer cells through VEGF-dependent PI3K

and MAPK pathways (91). In melanoma, CSE loss of expression
accompanies the progression of the disease, being highly
expressed in primary tumors and low expressed in metastatic
lesions (30). The abovementioned data supports that the role
of CBS and CSE enzymes, favoring or counteracting cancer,
is highly adaptive and obviously dependent on the cysteine
bioavailability itself, within certain cancer microenvironmental
and metabolic contexts. Furthermore, if the role of CBS and CSE
in cancer is related to cysteine anabolism or catabolism is not
always clear.

Cysteine degradation catalyzed by CAT and MST (Figure 1B)
is not deeply explored in cancer, sinceMST is more enzymatically
efficient at a pH higher than the physiological, thus the role of
CBS and CSE is considered more relevant in cancer biology (92).
However, Zuhra et al. (93) demonstrated recently, in a colon
cancer cell line, thatMST can produce H2S fromN-acetylcysteine
instead of cysteine-derived 3-mercaptopyruvate. Nonetheless,
MST is constitutively expressed in normal differentiated cells
and some studies have detected its expression or activity in
various cancer cell lines and primary tumors, including brain,
colon, liver, kidney, lung and bladder cancer, and melanoma
[reviewed in (35)]. In some of those studies the MST expression
was higher than CSE expression (94, 95), and an association
between MST expression and chemoresistance was found (96,
97). Few functional assays tried to correlate the expression
and/or activity of MST with the cancer cells features, however,
using inhibiting and silencing assays, some studies proved
that MST activity is important for cancer cells proliferation
(98, 99). Unfortunately, most studies addressing cysteine
degradation are focused in H2S production and not in resulting
organic compounds.

REGULATORS AND MEDIATORS OF
CYSTEINE TRANSPORT, IN CANCER

The transport of cysteine across the cell membrane is a critical
step in cysteine metabolic course (Figure 1), and it is often
transported in its oxidized dimer, cystine. Amongst cystine
transporters, the cystine/glutamate antiporters are the most
studied in cancer context, but mainly on their role in glutamate
export (100, 101), showing a correlation between glutamate
export and increased cancer cells aggressiveness (100, 102–
106). However, for glutamate export to occur cystine import
is mandatory, thus the increased intracellular levels of cysteine
must be relevant for cancer poor prognosis. This evidence is
reinforced by the activation of cysteine endogenous synthesis
(56, 107) in cancer cells upon xCT downregulation (108–110).

xCT is an undeniable linker between cysteine and the whole
metabolic network. Cancer cells overexpressing xCT present
an overactivation of the glucose-dependent PPP, as a mean
of replacing NADPH consumed in the imperative conversion
of cystine into cysteine (76). Furthermore, xCT makes a
bridge between cysteine uptake and glutamine metabolism, since
glutamine is the main precursor of glutamate, whose export is
essential for xCT-mediated import of cysteine (17). The role
of xCT, as a facilitator of cyst(e)ine protective antioxidant role
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FIGURE 2 | Cysteine transport and catabolism ensures cell functioning- new cues on metabolism based therapies. In a cyst(e)ine rich tumor microenvironment,

cancer cells express high levels of cyst(e)ine transporters and the catabolism of cysteine is activated by the action of cystathionine β-synthase (CBS); cystathionine

γ-lyase (CSE), or 3-mercapto-pyruvate sulfurtransferase (MST), which works together with cysteine aminotransferase (CAT). De novo synthesis of cysteine

(transsulfuration pathway—TSP) will be diminished and the syntheses of serine (serine synthesis pathway—SSP) and glycine will supply the one-carbon metabolism

(folate and methionine cycles), in order to support the synthesis of nucleotides and methyl groups, respectively, needed for cell proliferation and epigenetic regulation.

Serine-derived glycine together with cysteine and glutamate constitute the glutathione molecule, crucial for the maintenance of the redox state needed for cellular

metabolic functioning. Glutamate itself can be cysteine-derived, since α-ketoglutarate (α-KG) results from cysteine degradation and is directly converted into

glutamate. Cysteine as a source of pyruvate contributes for biomass production, through the TCA cycle and the syntheses of FA and AA. Cysteine-derived pyruvate

can be a substrate to produce glucose through gluconeogenesis, making a bridge between cysteine and glucose-dependent pathways, as phosphate pentose

pathway (PPP). Electron donors generated in the metabolic pathways and cysteine-derived H2S contributes to oxidative phosphorylation and ATP production. The

inhibition of cysteine uptake and catabolism will affect the metabolic pathways dependent on cysteine. TSP will be activated but without the uptake of cysteine, the

ability to maintain the glutathione levels and reactive oxygen species (ROS) scavenging capacity will be decreased. The augment of the oxidative stress will induce

DNA, membranes and mitochondria damages and endoplasmic reticulum (ER) stress. Ultimately cell injury and death will be triggered.

in cancer cells, is evidenced by the regulation of its expression
by Nrf2 (111) and by signaling pathways activated by oxidative
stress, including PI3K/AKT/mTOR (56, 112, 113) and MAPK
pathways (110). Since augmented glutathione contributes for
chemoresistance, the expression of xCT is also associated with
resistance to drugs, platinum-salts (9) and epigenetic modulators
(114), and with cell death evasion (115, 116). Considering a
new cell death process, called ferroptosis, xCT is an important
inhibitor, since the accumulation of lipid peroxides activates
ferroptosis and cysteine-derived glutathione is the substrate used
by glutathione peroxidase 4 (GPX4) in the dissipation of lipids
peroxides (117).

The cysteine direct import (118) is mediated by cysteine
transporters, and the expression of some of them have been
addressed in cancer. Albeit, the promiscuity of these transporters
in transferring different AA (e.g., cysteine, glutamine, and
glutamate) impedes the direct association between their

overexpression and cysteine uptake. Even though, their
expression is relevant in cancer as it happens with AT-B0,+

(SLC6A14), which is the transporter with the broadest selectivity
for AA, including cysteine (119–123).

In brief, EAAT3 (SLC1A1) overexpression was detected in
brain and prostate cancer cells (124–126), being associated with
increased chemoresistance in colorectal cancer models (127).
As mentioned above, LAT1 can affect the bioavailability of
cysteine since it is the main methionine transporter, being its
expression related to chemoresistance (128). ASCT1 (SLC1A4) is
overexpressed in prostate cancer (129), however, its expression
and relevance in cancer was addressed considering glutamine or
glutamate transport. Because glutamine/glutamate and cysteine
metabolic pathways are deeply connected (130, 131) and cysteine
is also considered a modulator of glutamine transport (132, 133),
certainly these transporters are crucial in the cysteine metabolism
reliance of cancer cells.
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DISCUSSION

The increased intracellular bioavailability of cysteine is itself
a stimulus for metabolic remodeling. Considering the role of
cysteine as a carbon source in a scenario of high concentrations
of cysteine, with no limitation in cyst(e)ine uptake, most part of
cysteine will enter the degradation route, reducing the need for
cysteine synthesis, dependent on the deviation of homocysteine
from the one-carbon metabolism (Figure 2). This would imply
the accumulation of serine that is very important for glycine
synthesis and the activity of folate and methionine cycles,
in order to supply the synthesis of nucleotides and methyl
groups, respectively, needed for cell proliferation and epigenetic
regulation. Serine-derived glycine together with cysteine and
glutamate constitute the glutathione molecule, essential for the
maintenance of the redox state allowing cellular metabolic
functioning and chemoresistance. Glutamate can be a product of
cysteine conversion into pyruvate, with α-ketoglutarate consume.
Further, glutamate can be converted into glutamine, which is
considered the main substitute of glucose (134).

Cysteine as a source of pyruvate can liberate the cell from the
dependency of glucose, and contribute for biomass production,
through the TCA cycle and the syntheses of FA and AA. As
aforementioned, cysteine-derived pyruvate can be a substrate
to produce glucose, making a bridge between cysteine and
glucose-dependent pathways, as glycolysis and PPP. All the
metabolic pathways that generate electron donors participating
in the oxidative phosphorylation can be supplied by cysteine. In
another hand, cysteine degradation releases H2S, which is itself
an electron donor for ETC.

In brief, cysteine metabolic route is full of cues to find
biomarkers for prognosis, recurrence and response to therapy,
as well as suitable therapeutic targets to trigger cancer cell
death due to cysteine starvation (Figure 2), as pointed out
in different papers (135, 136). In certain type of cancer, it

may be an unsuccessful strategy, since many cancer cells upon
cysteine scarcity or the inhibition of cys(e)ine transport can
upregulate TSP for endogenous cysteine production (137, 138).
However, the need of methyl groups for epigenetic regulation, in
some tumors, prevents the activation of cysteine synthesis and
activates one-carbon metabolism (138). Therefore, the systemic
decrease of cysteine levels is proposed as a suitable strategy
in cancer clinical management, being supported by pre-clinical
studies with promising results in breast and prostate carcinomas
and leukemia. These studies showed that systemic treatment
with cyst(e)inase decreases the levels of cysteine together
with tumor burden (139). Cyst(e)inase degrades extracellular
cysteine and cystine, leading to reduced intracellular cysteine
and glutathione levels, affecting cancer cells redox capacity (44,
140), inducing the accumulation of ROS (26) and consequent
ferroptosis (135, 136).

This review has also the objective of highlighting that efforts
must be made to clarify the actual role of cysteine catabolism in
cancer biosynthesis and bioenergetics, beyond H2S production.
Cysteine catabolism may not be a core metabolic pathway but
deviation of cysteine-derived compounds into other metabolic
pathways is pivotal in cancer cells metabolic drift and survival.
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