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Melanoma is the deadliest form of skin cancer, and nearly 90% of melanomas are

believed to be caused by ultraviolet radiation (UVR), mainly from sunlight. UVR induces

DNA damage, forming products such as cyclobutane pyrimidine dimers (CPD) and

6-4-pyrimidone photoproducts (6-4PP) in a wavelength-dependent manner and causes

oxidative DNA damage. These DNA lesions lead to DNA mutations and contribute to

the formation of melanoma. In this review, we discuss the protective role of melanocytes

against UV-induced DNA damage and how genetic variations, including those in p53

and melanocortin-1 receptor (MC1R), or epigenetic histone modifications in melanocytes

result in a tendency toward melanoma. We also provide a summary of prevention and

treatment strategies against melanoma, including the most recent immunotherapies.

Collectively, this work contributes to the understanding of the molecular pathogenesis of

UV-induced melanoma.

Keywords: ultraviolet radiation, melanomagenesis, melanoma, immunotherapy, cytotoxic T-lymphocyte-

associated protein 4, programmed cell death protein 1

UV AND MELANOMAGENESIS

Solar ultraviolet radiation (UVR) is considered to be the main etiological factor for skin
cancer, including melanoma. UVR comprises ultraviolet C (UVC; 200–290 nm), ultraviolet B
(UVB; 290–320 nm), and ultraviolet A (UVA; 320–400 nm) (1). UVR is the major environmental
risk factor for melanoma development (2). UVB causes sunburn and damages the epidermis, thus
playing a central role in the development of skin cancer, whereas UVA penetrates the skin deeper
than UVB or UVC, but does not damage the epidermis considerably; UVC, however, penetrates
the deeper layers of the skin limitedly (3) (Figure 1). The direct consequence of solar UV is
generation of DNA photoproducts, mainly cyclobutane pyrimidine dimers (CPD) and pyrimidine
6–4-pyrimidone photoproducts (6-4PP). In addition, UV-induced reactive oxygen species (ROS)
indirectly cause oxidative DNA damage (4–6). UV-induced damage to cells and tissues includes
DNA mutations and altered DNA integrity, transcription profile, and protein modification, which
result in the dysregulation of multiple oncogenes and tumor suppressor genes (7, 8).
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FIGURE 1 | UV penetration into the skin. UV radiation has shorter wavelength

than visible light, which makes it invisible to the naked eye. Based on different

wavelengths, UV radiation is classified as UVA at 320 to 400 nm, UVB at 290

to 320 nm, or UVC at 200 to 290 nm. UVA penetrates the skin more deeply

than UVB and UVC, but does not damage the epidermis considerably. UVB

causes sunburn and damages the epidermis, thus playing a central role in the

development of skin cancer. Most UVC does not reach the earth because of

its short wavelength, and is absorbed by the ozone layer.

There are three types of skin cancers: basal cell carcinoma,
squamous carcinoma, and melanoma. Basal cell carcinoma
and squamous carcinoma, also known as non-melanoma skin
cancer, account for nearly 98% of all skin cancer cases in the
United States (9). Although melanoma accounts for the least
number of cases of all skin cancers, because of its high metastatic
potential and resistance to chemotherapy and radiation therapy,
melanoma is responsible for the majority of skin cancer-related
deaths (10). Compared to the incidence of non-melanoma
skin cancers, the incidence of melanoma is increasing. In
2020, ∼100,350 new cases of melanoma and 6,850 deaths are
expected (11). Similar to other types of solid tumors, melanoma
shows frequent alterations in MAPK and PI3K/PTEN signaling
pathways, especially with 40–60% of cultured primary melanoma
cells bearing activating BRAF mutations (12–20) (Figure 2).
Constitutive activation of BRAF kinase through mutations is the
most common way for melanoma to activate the MAPK pathway
(20). The most common oncogenic mutation for BRAF kinase is
the substitution of amino acid valine for glutamic acid at position
600 (V600E) accounting for nearly 90% of the BRAF mutations.
In addition, there are other less common V600 mutations such
as V600K, V600R, V600M, and V600D, as well as some non-
V600 mutations such as K601E and D594N (21). Targeting the
dominant activating mutation BRAF V600E, which activates the
MAPK pathway leading to uncontrolled proliferation, with type
I RAF inhibitor vemurafenib showed promising clinical benefits
(22). However, specific inhibitors of PI3K/AKT were developed
and assessed in clinical trials, providing translational potentials
(23). However, after the initial tumor response, melanoma
cells acquired resistance to the inhibitors, indicating secondary

alterations or mutations (24). Intriguingly, mutated BRAF
cooperates with alterations in PTEN/AKT to promote melanoma
progression (25). Therefore, targeting both signaling pathways
simultaneously was proposed for melanoma treatment (26).

The UV-induced DNA damage response pathway is
modulated by the tumor suppressor p53, whose functional
deletion drives UV-mediated mutagenesis in melanoma,
squamous cell carcinoma, basal cell carcinoma, and actinic
keratosis (27). Tumor suppressor p53 and its related gene
products play important roles under different cellular conditions.
Accumulation of p53, stimulated by UVR, is required for
inducing cell cycle arrest, DNA repair, and apoptosis (28, 29).
UV-irradiated p53 knockout mice show a higher incidence
of skin tumor development (30). G1/G2 arrest is required for
repairing UV-induced DNA damage (31, 32). P53 upregulation
directly induces the expression of cyclin-dependent kinase
(CDK) inhibitor p21, which mediates UV-induced DNA damage
at G1 cell cycle arrest. In addition, the accumulation of p53
also activates several genes from the xeroderma pigmentosum
(XP) gene family, including XPC and damage-specific DNA
binding protein 2 (DDB2), which is a product of XPE, to
stimulate nucleotide excision repair (NER) for efficient DNA
damage repair (33). TP53/Trp53 was also shown to cooperate
with BRAF V600E to induce melanoma in the presence of
UVR (34). Moreover, p53 was found to potently stimulate
the proopiomelanocortin (POMC) promoter and induce
the generation of melanocortin peptides in response to UV,
and research based on a transgenic knockout mouse model
demonstrated that p53 loss results in the absence of the UV-
tanning response (35). Therefore, p53 functions as a sensor
and effector for UV-induced pigmentation, providing insight
into the treatment of pathologic hyperpigmentation due to
tanning response.

Melanocytes play an important photoprotective role in
response to UV exposure via melanin synthesis. Melanocyte-
produced melanin protects nuclear DNA from UV irradiation
and reduces the generation of DNA damage (36). Melanin within
melanosomes of melanocytes is transferred to keratinocytes
where they cause tanning, which is a hallmark of UV
exposure, mediated by multiple paracrine factors synthesized
by keratinocytes (37–39). There are two major forms of
melanin generated by melanocytes, eumelanin and pheomelanin.
Eumelanin is dark brown or black, whereas pheomelanin is red
or orange. It is known that pheomelanin is associated with type
I/II skin, freckles, red hair, and an inability to tan (40). The
diversity of skin pigmentation phenotypes among individuals
from distinct ethnic groups is mainly due to the difference in the
content of eumelanin and pheomelanin in melanocytes (41, 42).
Studies show that skin cancer, including melanoma, is inversely
related to skin pigmentation, with lower skin cancer incidence
in individuals with dark skin and higher incidence in individuals
with fair skin (43–47). Consistent with these findings, increased
eumelanin content was observed to reduce the generation of
DNA photoproducts following UV exposure (48).

UVR induces the synthesis and release of melanocortin
peptides, including α-melanocyte-stimulating hormone (α-
MSH), in both melanocytes and keratinocytes to activate
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FIGURE 2 | Molecular mechanism of UV-derived melanomagenesis. Direct UV irradiation results in DNA damage, typically in the form of CPD and 6-4PP, which are

generated from UVB. α-MSH is the most important melanocortin stimulated by UV irradiation, thereby activating MC1R for melanogenesis and DNA damage repair. In

addition, α-MSH/MC1R stabilizes PTEN upon UVB stimulation. UV irradiation also activates p53 and its downstream targets, including p21 in proliferating

melanocytes arresting cell cycle at G1 or G2 prior to repair, and several genes from the xeroderma pigmentosum (XP) gene family involving XPC and damage-specific

DNA binding protein 2 (DDB2), which is a product of XPE, stimulating nucleotide excision repair for efficient DNA damage repair. DNA damage-induced mutant

melanocytes may constitute a pool of cells in which melanoma develops eventually. Moreover, UV irradiation directly activates RTKs, in turn activating several essential

pathways, including anti-apoptotic signaling through AKT and proliferation signaling through MAPK.

melanocortin 1 receptor (MC1R) signaling (49, 50). MC1R is
a highly conserved G protein-coupled receptor expressed on
the surface of melanocytes (51). MC1R transduces extracellular
signals mediated by melanocortins to downstream effectors
including microphthalmia-associated transcription factor
(MITF), to regulate skin pigmentation and control cell
proliferation and apoptosis (52). In melanocytes, the activation
of the MC1R signaling pathway stimulates tyrosinase (TYR)
activity, which is the rate-limiting enzyme of melanin production
(53). Therefore, MC1R plays a critical role in protecting the skin
from UVR.

MC1R is identified as an important factor in preventing
melanoma formation. The activation of MC1R by UVR induces
adenylate cyclase, cAMP production, protein kinase A activation,
melanin synthesis, and downstream UV protective genes such
as MITF, tyrosinase, and TRP1 (54–56). Studies show that UVR
can induce MSH expression, but fails to stimulate pigmentation
in the absence of functional MC1R in red/blonde-haired MC1R
transgenic mice. A cyclic AMP agonist forskolin was applied
topically, and the resulting chemically induced pigmentation
was protective against UV-induced cutaneous DNA damage
and tumorigenesis (50). A systematic study on the contribution
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of MC1R to somatic mutations in sporadic melanoma found
that individuals with germline disruptive variants in MC1R
have a significantly higher somatic mutational load. This study
is the first to report the role of germline MC1R variants in
influencing the somatic mutational landscape of melanoma
from human data (57). The MC1R mechanistic study showed
that the MC1R–PTEN axis serves as a central regulator in
response to UVB exposure in melanocytes, which reveals the
molecular basis underlying the association between MC1R
variants and melanomagenesis. The study indicated that MC1R
variants are defective in association with PTEN following
UV exposure, consequently failing to suppress the PI3K/AKT
signaling pathway, and the MC1R deficiency-induced elevation
in PI3K/AKT signaling drives oncogenic transformation in
melanoma (58).

Individuals carrying MC1R variants, especially those
associated with red hair color, fair skin, and poor tanning ability
[red hair color (RHC) variants], have a higher risk of developing
melanoma (59). However, how MC1R activity is modulated
by UVR and why individuals with red hair are more prone to
develop melanoma remain unclear. A recently published study
used mouse models to demonstrate a potential MC1R-targeted
intervention strategy to rescue loss-of-function MC1R for
therapeutic benefits. Studies show that MC1R palmitoylation,
primarily mediated by the protein acyltransferase ZDHHC13,
is essential for activating MC1R signaling. The activated MC1R
signaling increased pigmentation, UVB-induced G1 cell cycle
arrest, and control of senescence both in vitro and in vivo (60, 61).
Using transgenic mice expressing MC1R RHC variants, studies
showed that pharmacological activation of palmitoylation
rescues the functional defects of MC1R RHC variants and
prevents melanomagenesis. The results highlight a central role
for MC1R palmitoylation in pigmentation and protection against
melanoma (61).

UV AND IMMUNOSUPPRESSION

Besides inducingmelanomagenesis, UVR can suppress immunity
in several ways, including inhibition of antigen presentation,
the release of immunosuppressive cytokines, and apoptosis of
immune cells. UVR-suppressed immunity contributes to the
clearance of tumor cells.

Cutaneous immunity depends on the proper functioning of
epidermal Langerhans cells (LCs), which are the main antigen-
presenting cells (APCs) in the skin. UVR directly damages LCs
with decreased cell numbers and inhibition of antigen-presenting
function (62). UV-irradiated LCs lose the ability to stimulate
T-helper 1 (Th1) cells in response to foreign antigens, and
preferentially activate Th2 cells to promote suppressor T cell
function (63). Spleen cells from mice treated with UVR fail
to present antigen to Th1 cells. However, this failure could be
reversed by injecting anti-IL-10 antibodies into these mice. In
this rescue experiment, the antigen-presenting ability of LCs was
restored and the LCs effectively activated the Th1 cells. Moreover,
the administration of anti-IL-10 antibodies could significantly
inhibit UVR-induced antigen presentation of LCs to Th2 cells.

The repression may be mediated by suppressive cytokines, such
as IL-4 and IL-10, released by the induced T suppressor cells
(64, 65).

TNF-α is another UVR-modulated immunosuppressive
cytokine (66, 67). Mice treated with anti-TNF-α antibody
showed a significant decrease in LCs (68). The pro-inflammatory
cytokine IL-12 played an important role in the activation of
Th1 cells and blockade of Th2 cells. UVR exposure significantly
reduced IL-12 expression, resulting in the suppression of Th1
and de-repression of Th2 cells (69). Another study reported
similar results where treatment of mice with IL-12 strongly
inhibited UV-induced suppressor T cells in vivo (70).

Skin cancer cells are highly antigenic and could be
forcefully rejected by mice. However, UVR-treated mice fail
to reject these cancer cells, suggesting that UV-induced
immunosuppression promotes tumor growth and progression
in vivo (71). UV-induced immunosuppression results from
increased T suppressor cells or T regulatory cells, which enhances
immune tolerance to tumor antigens (72). This study also
suggests that regulatory T cells could be targeted as a vital effector
to inhibit UVB-induced immunosuppression, thus enhancing
anti-tumor immunity. Therefore, UVB-induced skin cancer is
not only caused by UV-induced DNA lesions but also fueled by
the generation and maintenance of an immunosuppressed tumor
microenvironment (73).

IMMUNOTHERAPIES IN MELANOMA

The immune system plays a critical role in clearing neoplastic
cells. Evading the immune system is crucial for tumor cell
survival and proliferation. Treatment of the most deadly
form of skin cancer, metastatic melanoma (74), has advanced
tremendously in the last decade, especially targeted therapy and
immunotherapy. Currently, several types of immunotherapies
are being studied to treat melanoma (Table 1).

Cytokines (Interferon-α and Interleukin-2)
One common method used to boost the immune system is
by treatment with cytokines. For example, both interferon-α
(IFN-α) and interleukin-2 (IL-2) are administered to melanoma
patients. A clinical study found that IFN-α shrinks advanced
melanomas with tumor response rates of about 22% and median
times to progression and survival of 1.5 and 5 months (99).
Intriguingly, tumor burden is found to affect the response. A
higher potential of response is observed among patients who
have a lower tumor burden. The different immune responses
in patients with advanced tumors from those with lower tumor
burden indicates different benefits and risk for recurrence and
death in patients treated with IFN-α. This hypothesis opened
the door for the initial evaluation of adjuvants with IFN-α in
melanoma (100). Studies report that IFN-α has a significant
effect on activating STAT signaling. The treatment with IFN-α
was involved in the significant promotion of tumor-infiltrating
dendritic cells (DCs) and T cells (101). In addition, the type I
IFN signature is associated with an effector immune response
to melanoma in both mouse models and human melanoma
patients (75).
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TABLE 1 | Key findings of immunotherapies on melanoma.

Types of

treatment

Clinical trial Phase Status Population Treatment arms Number of

patients

Primary outcome 95% CI HR P-value

Cytokines (74) II Completed Disseminated

malignant

melanoma

IFN-α, 12U × 106/m2 or

50U × 106/m2, Q3W

96 ORR (%) 22 - - -

(75) / Completed Progressive

metastatic

melanoma

IL-2, 22 or 33 or 36 or 44

µg/kg, Q8H

270 ORR (%) 16 12 to 21 - -

(76)

(NCT00287131)

II Unknown Stage IV

melanoma

Infusion of TIL + IL-2

720,000 U/kg Q8H

20 ORR (%) 50 - - -

(77) II Unknown Metastatic

melanoma

Chemotherapy + infusion

of TIL + IL-2 720,000 U/kg

Q8H

43 ORR (%) 49 - - -

2Gy of total-body

irradiation + infusion of TIL

+ IL-2 720,000 U/kg Q8H

25 ORR (%) 52 - - -

12Gy of total-body

irradiation + infusion of TIL

+ IL-2 720,000 U/kg Q8H

25 ORR (%) 72 - - -

Inhibitors of

immune

checkpoints

(78)

(NCT00324155)

III Completed Untreated

unresectable

stage III or IV

melanoma

Dacarbazine, 850 mg/m2,

Q3W + ipilimumab, 10

mg/kg, Q3W

250 OS (mo) 11.2 9.4 to 13.6 0.72 P < 0.001

Dacarbazine, 850 mg/m2,

Q3W + placebo, 10

mg/kg, Q3W

252 OS (mo) 9.1 7.8 to 10.5 - -

(79)

(NCT00094653)

III Completed Previously

treated,

unresectable

Stage III or IV

melanoma

gp100 + placebo, 3

mg/kg, Q3W

136 OS (mo) 6.4 5.5 to 8.7 - -

gp100 + ipilimumab, 3

mg/kg, Q3W

403 OS (mo) 10 8.5 to 11.5 0.68 (vs. gp100) P < 0.001

Placebo + ipilimumab, 3

mg/kg, Q3W

137 OS (mo) 10.1 8.0 to 13.8 0.66 (vs. gp100) P = 0.003

(80)

(NCT00257205)

III Completed Stage IIIc or IV

melanoma

Tremelimumab, 15 mg/kg,

Q90D

328 OS (mo) 12.6 10.8 to 14.3 0.88 P = 0.127

Investigator-choice

chemotherapy

327 OS (mo) 10.7 9.36 to 11.96 - -

(81)

(NCT01295827,

KEYNOTE-001)

I Completed Previously

treated,

progressive,

measurable,

unresectable

melanoma

Pembrolizumab, 2 mg/kg,

Q3W

89 ORR (%) 27 18 to 37 - P = 0.46

(Continued)
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TABLE 1 | Continued

Types of

treatment

Clinical trial Phase Status Population Treatment arms Number of

patients

Primary outcome 95% CI HR P-value

Pembrolizumab, 10 mg/kg,

Q3W

84 ORR (%) 32 22 to 43 - -

(82)

(NCT01704287,

KEYNOTE-002)

II Completed Previously

treated,

progressive,

advanced

melanoma

Pembrolizumab, 2 mg/kg,

Q3W

180 PFS (mo) 4.2 3.1 to 6.2 0.57 (vs. chemo) P < 0.0001

Pembrolizumab, 10 mg/kg,

Q3W

181 PFS (mo) 5.6 4.2 to 7.7 0.50 (vs. chemo) P < 0.0001

Investigator-choice

chemotherapy

179 PFS (mo) 2.6 2.5 to 2.8

(83)

(NCT01866319,

KEYNOTE-006)

III Completed Previously

treated,

unresectable

stage III or IV

melanoma

Pembrolizumab, 10 mg/kg

Q2W

279 PFS (mo) 5.5 3.4 to 6.9 0.58 (vs. ipi) P < 0.001

Pembrolizumab, 10 mg/kg

Q3W

277 PFS (mo) 4.1 2.9 to 6.9 0.58 (vs. ipi) P < 0.001

Ipilimumab, 3 mg/kg, Q3W 278 PFS (mo) 2.8 2.8 to 2.9 - -

(84)

(NCT00730639)

I Active, not

recruiting

Advanced

melanoma

Nivolumab, 1, 3, or 10

mg/kg Q2W

107 OS (mo) 16.8 12.5 to 31.6 - -

(85)

(NCT01721772,

CheckMate 066)

III Active, not

recruiting

Metastatic

melanoma

without a BRAF

mutation

Nivolumab, 3 mg/kg, Q2W 210 1-year OS rate (%) 72.9 65.5 to 78.9 0.42 P < 0.001

Dacarbazine, 1000 mg/m2,

Q3W

208 1-year OS rate (%) 42.1 33.0 to 50.9 - -

Combination

therapy with

anti-CTLA4

and anti-PD-1

(86, 87)

(NCT01927419)

II Active, not

recruiting

Unresectable,

previously

untreated, stage

III, or IV

melanoma

Ipilimumab, 3 mg/kg, Q3W

+ nivolumab, 1 mg/kg,

Q3W

94 ORR (%) 61.1 48.9 to 72.4 - P < 0.001

24-month OS rate

(%)

63.8 53.3 to 72.6 0.74 P = 0.26

Ipilimumab, 3 mg/kg, Q3W

+ placebo, 1 mg/kg, Q3W

46 ORR (%) 10.8 3.0 to 25.4 - -

24-month OS rate

(%)

53.6 38.1 to 66.8 - -

(88–90)

(NCT01844505,

CheckMate 067)

III Active, not

recruiting

Unresectable,

previously-

untreated, stage

III, or IV

metastatic

melanoma

Nivolumab 3 mg/kg, Q2W

+ placebo for ipilimumab,

3 mg/kg, Q3W

316 PFS (mo) 6.9 4.3 to 9.5 0.57 (vs. ipi) P < 0.00001

(Continued)
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TABLE 1 | Continued

Types of

treatment

Clinical trial Phase Status Population Treatment arms Number of

patients

Primary outcome 95% CI HR P-value

36-month OS (mo) 37.6 29.1 to NR 0.65 (vs. ipi) P < 0.001

60-month OS (mo) 36.9 28.2 to 58.7 0.63 (vs. ipi) P < 0.001

Nivolumab 3 mg/kg, Q2W

+ ipilimumab, 3 mg/kg,

Q3W

314 PFS (mo) 11.5 8.9 to 16.7 0.42 (vs. ipi) P < 0.00001

36-month OS (mo) NR 38.2 to NR 0.55 (vs. ipi) P < 0.001

60-month OS (mo) NR 38.2 to NR 0.52 (vs. ipi) P < 0.001

Placebo for nivolumab 3

mg/kg, Q2W + ipilimumab,

3 mg/kg, Q3W

315 PFS (mo) 2.9 2.8 to 3.4 - -

36-month OS (mo) 19.9 16.9 to 24.6 - -

60-month OS (mo) 19.9 16.9 to 24.6 - -

(91)

(NCT02977052)

II Recruiting Resectable,

stage III

metastatic

melanoma

Ipilimumab, 3 mg/kg, Q3W

+ nivolumab, 1 mg/kg,

Q3W

30 ORR (%) 63 44 to 80 - -

Ipilimumab, 1 mg/kg, Q3W

+ nivolumab, 3 mg/kg,

Q3W

30 ORR (%) 57 37 to 75 - -

Ipilimumab, 3 mg/kg, Q3W

+ nivolumab, 3 mg/kg,

Q2W

26 ORR (%) 35 17 to 56 - -

(92)

(NCT03165422)

- Unknown Unresectable

melanoma

Nivolumab to ipilimumab 61 ORR (%) 4.9 - - -

Ipilimumab to nivolumab 7 ORR (%) 20 11.4 to 31.3 - -

(93) - Unknown Treatment naïve,

unresectable

stage IIIC/IV

melanom

Ipilimumab, 3 mg/kg, Q3W

+ nivolumab, 3 mg/kg,

Q2W

60 PFS (mo) 11 6.0 to NR - -

Refractory to

first-line BRAF

therapy,

unresectable

stage IIIC/IV

melanoma

33 PFS (mo) 2 1.4 to 4.6 - -

Prior PD-1

inhibitor therapy,

unresectable

stage IIIC/IV

melanoma

57 PFS (mo) 4 2.8 to NR - -

(Continued)
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TABLE 1 | Continued

Types of

treatment

Clinical trial Phase Status Population Treatment arms Number of

patients

Primary outcome 95% CI HR P-value

Combination

therapy

based on

anti-CTLA4 or

anti-PD-1

(94)

(NCT01968109)

II Recruiting Previously

anti-PD-1/PD-

L1-treated,

progressive

melanoma

BMS-986016 + nivolumab 43 ORR (%) 16 - - -

(95)

(NCT02752074,

KEYNOTE-252)

III Completed Unresectable

stage III or stage

IV melanoma

Pembrolizumab 200mg

Q3W + epacadostat

100mg BID

354 PFS (mo) 4.7 2.9 to 6.8 1 P = 0.52

Pembrolizumab 200mg

Q3W + placebo 100mg

BID

352 PFS (mo) 4.9 2.9 to 6.8 - -

(96)

(NCT01740297)

II Active, not

recruiting

Unresectable

stages IIIB to IV

melanoma

Talimogene Laherparepvec

≤ 4ml × 108

plaque-forming U/ml +

ipilimumab 3 mg/kg, Q3W

98 ORR (%) 39 - - P = 0.002

Ipilimumab 3 mg/kg, Q3W 100 ORR (%) 18 - - -

(97) Ib Unknown Advanced

melanoma

Oncolytic viral injection,

4ml × 108 pfu/ml, Q2W +

pembrolizumab, 200mg,

Q3W

21 ORR (%) 62 38 to 82 - -

(98) - Unknown Bone metastatic,

stage IV

melanoma

Nivolumab + ipilimumab +

denosumab

13 ORR (%) 54 - - -

PD-1-inhibitor +

denosumab

16 ORR (%) 50 - - -
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Metastatic melanoma trials showed that IL-2 treatment
shrinks advanced melanomas with an objective response rate
of 16%, with a median duration of response of 8.9 months
(76). Intriguingly, a combination of IL-2 treatment with an
infusion of ex vivo expanded TIL after chemotherapy-induced
lymphodepletion or total body radiotherapy increased the
response rate to about 50–72% in metastatic melanoma patients
(77, 102). IL-2 is produced by activated CD4+ T, CD8+ T cells,
NK cells, and DCs (103). IL-2 boosts the effector lymphocyte
immune response and plays an essential role for the IL-2 receptor
in immunosuppressive regulatory T cells (104).

Inhibitors of Immune Checkpoints
To enhance anti-tumor immunity, the most successful
immunotherapeutic strategy is the use of monoclonal
antibodies to block immunoregulatory suppression in the
tumor microenvironment.

As a member of the CD28:B7 immunoglobulin superfamily,
cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) is
normally expressed at low levels on naïve effector T cells
and regulatory T cells (Tregs), but is strongly induced after
activation. The upregulated CTLA-4 competes with CD28 for
binding with B7, which suppresses T cell receptor signaling
to inhibit immunity (105). The anti-CTLA-4 monoclonal
antibodies, ipilimumab, and tremelimumab were used in clinical
trials to blockade the CTLA-4 signaling, which causes T cell
proliferation, activation, and infiltration. Amplification of T
cell-mediated immunity and enhanced anti-tumor immune
response in the tumor microenvironment were observed (78)
(Figure 3). The clinical data show that ipilimumab is a promising
drug in treating cancer. The overall survival (OS) was extended
in the treated patients (11.2 vs. 9.1 months; HR 0.72; p < 0.001)
(79). Moreover, the combination of ipilimumab with the gp100
peptide, a promising anti-tumor vaccine, has improved gp100
peptide benefits with the OS extending from 6.4 to 10.0 months
(80). In addition, another ipilimumab clinical trial showed that
the treatment improved median OS to 11.4 months (95% CI,
10.7 to 12.1 months), with a plateau at 21% in the survival curve
beginning around 3 years. Tremelimumab also shows promising
clinical activity in advanced melanoma when tested in a phase
III clinical trial (A3671009). The OS is 12.6 months with a 1-year
survival rate of more than 50%, compared to 10.7 months for
chemotherapy (106).

Programmed cell death protein 1 (PD-1) and programmed cell
death-ligand 1 (PD-L1) are also important immunotherapeutic
targets for melanoma. PD-1/PD-L1 signaling has been shown
to inhibit tumor effector CD8+ T cells. PD-L1 expression is
observed in many tumors, including melanoma (107). High
expression of PD-L1 on melanoma cells correlates with poor
prognosis and low survival rate (108). The PD-1/PD-L1-induced
immunosuppression in the microenvironment has resulted in
tumor resistance to cytotoxic T cell response (81, 107). Clinical
trials showed that treatment with pembrolizumab, an anti-PD-1
antibody, has promising benefits for cancer patients. The overall
response rate was 18–43%, and these responses were robust,
with OS of 69% at 1 year (82). Another phase II clinical trial
with KEYNOTE-002 showed a higher 6-month progression-free

survival compared to chemotherapy (38 vs. 16%) (83). Moreover,
a phase III trial with ipilimumab and pembrolizumab showed
that the overall response rate (ORR) was 33% (pembrolizumab)
vs. 12% (ipilimumab). The OS rates for 1 year were 68–
74% for pembrolizumab vs. 58% for ipilimumab. Therefore,
pembrolizumab was superior to ipilimumab in this study (84).

As a fully human anti-PD-1 monoclonal antibody, nivolumab
showed an OS of 17.3 to 20.3 months (85). Nivolumab became
the second monoclonal antibody against PD-1 receptor to
be approved by the FDA for the treatment of patients with
unresectable or metastatic melanoma and disease progression
following ipilimumab and a BRAF inhibitor (if BRAF V600
mutation-positive). The study of phase III trials on patients with
metastatic melanoma showed an overall response rate of 32% for
nivolumab treatment vs. 11% for chemotherapy (109).

COMBINATION IMMUNOTHERAPY IN
MELANOMA

Combination Therapy With Anti-CTLA4 and
Anti-PD-1
The emergence of combination immunotherapy has greatly
improved the poor survival outcome of patients with advanced
melanoma in the past with a median OS time of about 8 months,
and a 5-year survival rate of about 10% from patients diagnosed
with metastatic diseases (86). The results of a phase II trial
(CheckMate 069) showed that the combination of nivolumab and
ipilimumab demonstrated a statistically significant improvement
in objective response rate and longer progression-free survival
in treatment-naïve patients with BRAF wild-type melanoma
compared with ipilimumab alone (87). The two-year OS rate
was 63.8% (95% CI, 53.3–72.6) in the combination group and
53.6% (95% CI, 38.1–66.8) in the ipilimumab alone group (88).
Recently, a phase III trial of treatment-naïve patients with
advanced melanoma (CheckMate 067) showed that nivolumab
in combination with ipilimumab leads to longer progression-free
survival and a higher objective response rate than ipilimumab
alone (89). The results of the 3-year and 5-year overall data
reports for this trial were observed as follows. During the follow-
up period of at least 36 months, the median OS time of the
nivolumab plus ipilimumab group was not reached, and the
median OS time of the nivolumab group was 37.6 months, while
that of the ipilimumab group was 19.9 months. The overall 3-
year survival rate was 58% in the nivolumab plus ipilimumab
group, 52% in the nivolumab group, and 34% in the ipilimumab
group, and the security data were not changed from the original
report (90). During a follow-up of at least 60 months, the median
OS time was more than 60.0 months in the nivolumab plus
ipilimumab group, 36.9months in the nivolumab group, and 19.9
months in the ipilimumab group. Compared with 26% in the
ipilimumab group, the 5-year OS rate was 52% in the nivolumab
plus ipilimumab group and 44% in the nivolumab group. Patients
who received the nivolumab regimen had no significant loss of
quality of life such as new late toxic effects (110).

Although both combination therapy and nivolumab
monotherapy were more effective than ipilimumab, the

Frontiers in Oncology | www.frontiersin.org 9 July 2020 | Volume 10 | Article 951

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Sun et al. Mechanism and Immunotherapy of Melanoma

FIGURE 3 | Mechanism of action of anti-PD-1, anti-PD-L1, and anti-CTLA4. PD-1/PD-L1, CTLA-4/CD86 binding inhibits T cell killing of melanoma cells. Blocking

PD-1, PD-L1, or CTLA-4 allows T cell killing, APC–T cell interaction, and T cell stimulation (i.e., cytokine secretion, lysis, proliferation, and migration to melanoma) in a

melanoma microenvironment.

frequency of grade 3/4 adverse events (AEs) induced by
combination therapy with a dose of ipilimumab (3 mg/kg)
plus nivolumab (1 mg/kg) once every 3 weeks was higher than
that of nivolumab monotherapy. However, the difference in
grade 3/4 AEs between the two groups did not translate into
the reported difference in the clinical significance of health-
related quality of life (HRQL), further supporting the clinical
benefits of nivolumab monotherapy and the combination
of nivolumab and ipilimumab in the treatment of advanced
melanoma (91). For more extensive clinical application, the
early observations of the OpACIN-NEO trial confirmed
that two cycles of ipilimumab (1 mg/kg) plus nivolumab (3
mg/kg) once every 3 weeks intravenously could be used as
a less toxic but equally effective dose plan for ipilimumab
plus nivolumab (92). In addition to combination therapy,
sequential therapy is also common in clinical applications.
Another retrospective study describing the treatment patterns
of nivolumab and ipilimumab observed that switching from
nivolumab to ipilimumab was common in Japanese melanoma
patients, and the independent factors of high neutrophil-to-
lymphocyte ratio and high C-reactive protein before nivolumab
treatment could predict the poor prognosis of progression-free
survival (111).

To supplement the traditional survival endpoint, it is
necessary to fully capture the result measurement method of
immuno-oncology drug properties. The concept of treatment-
free survival (TFS) is proposed, which can characterize the anti-
tumor activity and refer to the period from the discontinuation of
immune checkpoint inhibitor therapy caused by adverse events
to the subsequent systemic treatment or death (112). TFS analysis
of CheckMate 067 and 069 showed that patients with advanced
melanoma treated with nivolumab plus ipilimumab had longer
TFS and less toxicity than those who received nivolumab or
ipilimumab (93).

Although the combination of ipilimumab and nivolumab is
a highly effective systematic therapy for metastatic melanoma,
patients with BRAF mutations who failed in previous target
therapy of BRAF/MEK inhibitors showed less response, and
the median progression-free survival was only 2.0 months (95%
CI, 1.4–4.6) (113). The study of ipilimumab and nivolumab in
patients with metastatic melanoma showed that soft tissue and
lung metastasis had the highest lesional response rate (79 and
77%, respectively), while liver metastasis had the lowest (46%),
suggesting that specific disease sites may have unique response
patterns and drug resistance mechanisms, and personalized
treatment should be allowed (94).
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Combination Therapy Based on
Anti-CTLA4 or Anti-PD-1
The early clinical trials of the new immunotherapy combination
also proved that blocking PD-1 combined with other new
immunoregulatory targets is safe and effective. Nivolumab
combined with anti-lymphocyte activating gene 3 (LAG-3)
antibody had an objective response in 31 patients with prior
disease progression, with an objective effective rate of 16%
and a disease control rate of 45% (95). The I/II phase trial
of pembrolizumab and indoleamine 2-dioxygenase 1 (IDO1)
inhibitor epacadostat has also shown preliminary efficacy, but
the combined randomized III phase trial did not show any
additional benefits compared with pembrolizumab alone (114).
At present, several clinical trials (NCT01968109, NCT03743766,
NCT02676869, and NCT03470922) are underway to combine
PD-1 blocking with LAG-3 blocking or IDO1 blocking.
In addition, phase I/II trials (NCT02817633, NCT02608268,
NCT03099109, and NCT03066648) are being conducted to
analyze the efficacy and safety of dual anti-T cell immunoglobulin
and mucin 3 (MBG453) and anti-PD-1 (PDR001) effects.

The effectiveness of BRAF/MEK inhibitors has been explored
to combine it with immunotherapy. However, despite the
promising combination of vemurafenib (BRAF inhibitor) and
ipilimumab, the first phase I study was discontinued early
because of unexpectedly high hepatotoxicity (96). Other
combinations that can improve the therapeutic effect are being
explored. In a phase II study, the objective response rate
of talimogene laherparepvec combined with ipilimumab was
significantly higher, without additional safety issues (97). The
combination of pembrolizumab with talimogene laherparepvec
has also demonstrated safety and effectiveness in an early phase
study (115), and a randomized phase III trial is underway
(NCT02263508). Targeting the Wnt/β-catenin signaling pathway
should be a high priority for combination therapy to improve
the efficacy of anti-CTLA4 or anti-PD-1 agents (98). In addition,
the combination of PD-1 inhibitor and denosumab that inhibits
receptor activator of nuclear factor kappa-B ligand (RANKL),
which promotes osteoclast formation and has an immunological
effect, showed good therapeutic signals in patients with bone
metastasis from melanoma (116). Although most melanoma
immunotherapy evaluation trials exclude brain metastasis
patients, it is commendable that local therapy (stereotactic
radiosurgery, surgery, or laser interstitial thermal therapy)
continues to play an important role in the treatment ofmelanoma
patients with brain metastases receiving immunotherapy (117),
and combination of radiotherapy and immunotherapy can even
improve the survival rate (118).

CONCLUSIONS AND PROSPECTS

Exposure to the sun or UVR and the sensitivity of an individual’s
skin are risk factors for melanoma. In a skin protection
behavior study, melanoma survivors were encouraged to use
sunscreen and seek shade more frequently. The study stressed
that melanoma survivors should always use sunscreen and seek
shade to protect their health (119).

It remains significantly important to understand UV-
associated skin pathology and identify therapeutic strategies
to bypass resistance and increase the proportion of response
in order to advance melanoma research. A few previously
incurable metastatic melanomas now have potential cures.
Complementary insights from melanoma and immunology
studies are essential for the development of novel therapeutic
strategies and combination rationales for melanoma
treatment (120).

Immunotherapy, especially against CTLA-4 and PD-1/PD-
L1 signaling to promote anti-tumor immunity, shows promising
progression-free survival and recovery in many patients.
However, acquired resistance is still observed and diagnosed in
PD-1 antibody treatments (121, 122). In the Sunbelt Melanoma
Trial with a high dose of interferon, the results showed no
survival benefit for patients with a single positive sentinel
lymph node (stage III) (123). Therefore, alternative strategies of
PD-1/PD-L1 inhibition therapy are also required to overcome
acquired resistance, provide more options in new therapeutic
strategies, and eventually improve clinical achievements for
patients with melanoma.
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