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Transcription factor brachyury, with a DNA-binding T-domain, regulates posterior

mesoderm formation and notochord development through binding with highly conserved

palindromic consensus sequence in a variety of organisms. The absence of brachyury

expression in majority of adult normal tissues and exclusive tumor-specific expression

provides the potential to be developed into a novel and promising diagnostic and

therapeutic target in cancer. As a sensitive and specific marker in the diagnosis of

chordoma, brachyury protein has been verified to involve in the process of carcinogenesis

and progression of chordoma and several epithelial carcinomas in various studies, but the

mechanism by which brachyury promotes tumor cells migrate, invade andmetastasis still

remains less clear. To this end, we attempt to summarize the literature on the upstream

regulatory pathway of brachyury transcription and downstream controlling network by

brachyury activation, all of which involve in both the embryonic development and tumor

progression. We present the respective correlation of brachyury expression with tumor

progression, distant metastasis, survival rate and prognosis in several types of tumor

samples (including chordoma, lung cancer, breast carcinoma, and prostate cancer), and

various brachyury gain-of-function and loss-of-function experiments are summarized

to explore its specific role in respective tumor cell line in vitro. In addition, we also

discuss another two programs relating to brachyury function: epithelial-to-mesenchymal

transition (EMT) and cell cycle control, both of which implicate in the regulation of

brachyury on biological behavior of tumor cells. This review will provide an overview

of the function of master transcriptional factor brachyury, compare the similarities and

differences of its role between embryonic development and carcinogenesis, and list

the evidence on which brachyury-target therapies have the potential to help control

advanced cancer populations.
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INTRODUCTION

The T-box genes encode a family of transcription factors,
characterized by a highly conserved DNA-binding domain of
about 180 amino acid residues, which is designated as T-
domain (1, 2), and are essential in controlling many aspects
of embryogenesis in a wide variety of organisms (3). Eighteen
different mammalian T-box genes have been identified so
far. T-box transcription factors preferentially bind to 24-
nucleotide palindromic consensus sequence: AATTTCACACCT
AGGTGTGAAATT (2).

The first of the T-Box family molecularly characterized is
BRACHYURY (3, 4). Brachyury (“short tail” from Greek) origins
from the phenotype of this gene mutant mice, most striking
defect with a truncated tail, which was first described by
Dobrovolskaia-Zavadskaia in 1927 (3). Orthologs of Brachyury
have been identified in a large amount of multicellular organisms,
such as ascidians, zebrafish, Xenopus, mouse, human, and others
(4–6), which are required for posterior mesoderm formation
and notochord differentiation, normal cell movements during
gastrulation and tail outgrowth, and establishment of left–right
asymmetry (4, 7). BRACHYURY encodes a protein of 435 amino
acids, which functions as a transcription factor to bind with half
site of abovementioned consensus sequence: TCACACCT.

Miettinen et al. (8) performed an immunohistochemical study
of 5,229 cases, demonstrating nuclear BRACHYURY expression
to be a sensitive and fairly specific marker for chordoma. Beyond
that, BRACHYURY has been reported to express in various types
of tumors (9–14), especially highly expressed in several tumors
of epithelial origin. BRACHYURY expression is negative among
most normal tissues, with the exception of testis and thyroid (15–
17). The cause why BRACHYURY is absent in majority of adult
non-neoplastic tissue and exclusively expressed in tumor-specific
manner (18) drives researchers to discover the underlying role
played by BRACHYURY on tumorigenesis.

THE FUNCTION OF BRACHYURY IN

MESODERM AND NOTOCHORD

DEVELOPMENT

The BRACHYURY (T) gene is required for the formation of
posterior mesoderm and axial development. In all vertebrates,
the gene is initially expressed throughout the presumptive
mesoderm, and during later stage, the expression is gradually
restricted to the developing notochord and tail bud (3, 19, 20).
Mutant embryos lacking Brachyury gene function demonstrate
deficiency in notochord differentiation and the formation of
posterior mesoderm but develop normal anterior mesoderm
(3, 21). BRACHYURY expression is lost with maturation of
the notochord, which disappears largely before birth. But some
residual notochordal cells may persist in the intervertebral disks
of the spine until early childhood and possibly throughout life in
some people (15, 22).

Mice homozygous with Brachyury mutations will die
shortly after gastrulation and display several mesodermal
abnormalities (3, 4). BRACHYURY encodes sequence-specific

activator that contains a T DNA-binding domain, through
which BRACHYUYR exerts its mesoderm-inducing effects
by directly activating downstream mesoderm-specific genes
(4, 23). In addition, the role of BRACHYURY gene in developing
mesoderm, morphogenesis, and cell fate is evolutionarily
conserved (3).

THE REGULATORY NETWORK BY

BRACHYURY IN EMBRYONIC

DEVELOPMENT AND TUMORIGENESIS

Upstream Regulatory Pathway of

BRACHYURY Transcription
Fibroblast growth factor (FGF) and fibroblast growth factor
receptor (FGFR) signaling has been implicated in the patterning
of mesoderm and activated Brachyury expression (24–28).
In Xenopus embryos, the expression of Xbra, the Xenopus
homolog of Brachyury, requires an intact FGF signaling pathway.
Formation of mesoderm tissue requires a regulatory loop in
which Xbra activates the expression of a member of the FGF
family and FGF maintains the expression of Xbra (27, 29).

Another study in embryos of the ascidian found that
Brachyury is expressed in a manner dependent on the
FGF-mitogen-activated protein kinase kinase (MEK)-mitogen-
activated protein kinase (MAPK)-Ets signaling pathway and on
the intrinsic factors Zic and FoxA. Binding of Ets and ZicN at the
5
′

upstream of Brachyury promoter region is required for FGF-
responsive Brachyury gene activation in notochord precursor
cells (30). In the chordoma cells, FGFR/MEK/extracellular
signal-regulated kinase (ERK)/BRACHYURY pathway represents
a novel therapeutic target (31). FGF2 induces MEK/ERK
phosphorylation and upregulates BRACHYURY expression,
BRACHYURY knockdown blocks the effects of FGF signaling,
suggesting a positive feedback loop between FGF/FGFR and
BRACHYURY could be required for chordoma cells’ growth
and survival.

The study by Hu et al. (32) suggests that FGFR1/MAPK
signaling is also important for BRACHYURY activation in
lung cancer cells. FGF1/FGFR1 signaling promotes ERK
phosphorylation in the nucleus followed by transcriptional
activation of BRACHYURY, which is further verified to be
important for facilitating epithelial-to-mesenchymal transition
(EMT), tumor cell growth, and invasion.

In addition, basic fibroblast growth factor (bFGF) has
been reported to induce notochord formation and Brachyury
expression in ascidian embryogenesis (26). Activin, BMP-4,
1p63, WNT3, WNT8A, BMP/Nodal pathway (33–37) have also
been shown to regulate transcriptional activation of Brachyury
in mouse, Xenopus, and zebrafish embryo and in tumor cells,
human embryonic cardiomyocyte, etc.

Downstream Regulatory Network by

BRACHYURY Activation
BRACHYURY exerts its regulatory role by controlling
transcription of a large number of target genes (23). Using
ascidian Ciona, an invertebrate chordate, which is a commonly
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used model to study BRACHYURY function, over 50 validated
genes have been identified to be controlled by BRACHYURY
(38) In the embryo of Ciona intestinalis, Hotta et al. (20) showed
that 20 of the putative BRACHYURY target genes encoded
components for regulation of the cytoskeletal architecture,
the extracellular matrix (ECM), proteins implicated in signal
transduction and cell cycle control, etc. Morley et al. (7)
investigated targets and gene regulatory network of No tail (Ntl),
a zebrafish BRACHYURY ortholog, in mesoderm formation,
discovering an in vivo binding site for Ntl, which accords with
the conserved T-box binding site: TCACACCT. Ntl acts in
combination with other factors, including other T-box factors
and several signaling pathways, to mediate its activities in
mesoderm development (7).

Further study by Katikala et al. (39) in 2012 revealed that
transcriptional regulator BRACHYURY can establish multitiered
transcriptional output and temporal readouts of target gene
expression in ascidian Ciona. This molecule regulates most of
its targets by directly activating early- and middle-onset genes,
respectively, while indirectly controlling late-onset genes via
transcriptional intermediaries.

The chief transcriptional targets of BRACHYURY in humans
were firstly identified by Nelson et al. (40), integrating
transcriptome data from chordoma U-CH1 cell line in which
BRACHYURY was silenced with ChIP-seq data generated
from the same cell line. Enriched gene sets controlled by
BRACHYURY are mainly involved in the regulation of cell
cycle and the production of ECM, multiple growth factors,
and cytokines.

Yes-associated protein (YAP), an effector of the Hippo
pathway and a master regulator of organ development (41), was
recently found to be directly transactivated by BRACHYURY
in chordoma cells through binding to the proximal region
of the YAP promoter. Interestingly, BRACHYURY regulates
YAP signaling through a non-transcriptional mechanism
in lung carcinoma (18). Both BRACHYURY and YAP
expressions were found to be elevated in glioblastoma and
brain metastases originating from lung carcinomas, and
BRACHYURY knockdown resulted in a significant decrease in
YAP protein and mRNA expression in primary glioblastoma
cells. BRACHYURY was identified as a positive regulator of YAP
in various types of cancers (18).

THE CORRELATION OF BRACHYURY

WITH CLINICAL TUMORS

Chordoma
Although it is still unclear what role BRACHYURY could be in
the tumorigenesis of chordoma, gene duplication mutation and
overexpression in samples verified by previous various studies
suggest that BRACHYURY might be a crucial molecular driver
in the initiation and propagation of chordoma (42).

BRACHYURY/BRACHYURY expression in chordoma

Henderson et al. (43) performed a comprehensive study
of the gene expression profile from 96 tumor samples
with representatives of all mesenchymal tissues, BRACHYURY

gene was found to be uniquely expressed in chordomas.
By screening 53 chordomas, over 300 other neoplasms,
and 33 normal tissues, BRACHYURY was found to be
expressed in the embryonic notochord and all chordomas,
labeling both chondroid and chordoid areas, and absent
in all other neoplasms and non-neoplastic tissues (44).
BRACHYURY is the first identified molecule to link notochord
formation and chordoma pathogenesis (21). Miettinen et al.
(8) immunohistochemically evaluated 5,229 different tumors
for nuclear BRACHYURY expression, and all chordomas
(75/76) were positive except a sarcomatous one. Another report
(45) revealed that BRACHYURY was positively expressed in
about 90% of all pathologically confirmed chordomas. As for
exceptionally rare extra-axial skeletal chordomas and soft tissue
chordomas, BRACHYURY was also reported to be a useful
diagnostic tool (15, 46). All the above mentioned studies
demonstrated that BRACHYURY expression (especial nuclear
positivity) is a sensitive and fairly specific marker for the
diagnosis and differential diagnosis of chordoma.

Our previous study on chordoma specimens inadvertently
found two types of pathological components coexisting in
the same one specimen, chordoma tumor elements with
strong BRACHYURY expression and notochordal cell rests
with rarely and no expression (47, 48). BRACHYURY was
shown to be a sensitive (100%) and specific (100%) marker in
distinguishing coexisting notochordal cell rests from chordoma
tumor components (48).

The Role of BRACHYURY/BRACHYURY in Chordoma

JHC7 is the first chordoma cell line established with stable
BRACHYURY expression. Silencing of BRACHYURY expression
by using shRNA led to complete growth arrest and inability
to be passaged serially in vitro (49). Similarly, U-CH1 cell
line, which shows polysomy of chromosome 6 involving 6q27,
was validated as representing chordoma by the generation of
xenografts in the mouse model, demonstrating typical chordoma
morphology and immunohistochemistry characteristics.
Silencing of BRACHYURY in this cell line led to cell growth
arrest and acquisition of a senescence-like phenotype (50).

The Genetic Basis of BRACHYURY Expression in

Chordoma

Using combined genetic linkage and comparative genomic
hybridization analyses, germline BRACHYURY duplication
was identified to associate with the familial risk of developing
chordoma (51), which is the first report of BRACHYURY
copy number gain (CNG) in any disease type. Nevertheless,
BRACHYURY duplication is extremely rare in sporadic
chordoma (52).

Presneau et al. (50) and Dei Tos (53) demonstrated that
close to half of the investigated chordoma cases showed a gain
of chromosome band 6q27 (the locus wherein BRACHYURY
locates) either through polysomy of the entire chromosome
6 or structural rearrangements, which indicates that cCNGs
of BRACHYURY are pathogenetically relevant in sporadic
chordoma. Cho et al. (35) and Pillay et al. (54) demonstrated that
a common single-nucleotide polymorphism (SNP) located in the
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BRACHYURY gene, rs2305089, has strong association with the
risk of sporadic chordoma.

In the following case-control comparison study (52), the risk
estimated for rs2305089 was similar in familial and sporadic
chordoma. Another common variant, rs1056048, was identified
to strongly associate with familial chordoma with BRACHYURY
duplication, and rs3816300 was significantly correlated with
earlier age onset, which further corroborates the importance
of genetic variations of BRACHYURY gene in the pathogenesis
of both familial and sporadic chordoma. Recently, Sharifnia
et al. (55) revealed that regulation of BRACHYURY by super-
enhancers is a dominant feature of the chordoma gene-regulatory
landscape. Chordoma JHC7 cells had a focal amplification at
BRACHYUYR locus that encompassed proximal super-enhancers
and a 1.5Mb upstream region with broad H3K27ac occupancy,
and patient-derived chordoma tumors were also found to have
this hyper-acetylated region.

Lung Carcinoma
Various studies have demonstrated that BRACHYURY is
positively associated with the motility and invasiveness ability of
lung tumor cell in vitro and highly expressed in late-stage lung
tumor tissue, which supports BRACHYURY could be developed
into a potential therapeutic target (12, 17, 56).

In addition, 37.5–62.5% of human lung cancer tissues
are positive for BRACHYURY mRNA expression, which has
a significantly higher percentage than normal lung tissue
with 12.5% (10, 17). Moreover, BRACHYURY expression is
significantly positively correlated with tumor stage (10) and
no obvious relationship with histological type (12). High
BRACHYURY mRNA expression significantly correlates with
poor prognosis in both 5 year disease-free survival (DFS) and
overall survival rate in primary lung carcinoma samples (12).

BRACHYURY protein expression was detected in ∼41–60%
of primary lung carcinoma tissues (17, 57) and 40% of non-
small-cell lung carcinomas (NSCLCs) (16, 17), all of which
demonstrated intense nuclear staining and weak, more diffuse
cytoplasmic staining. BRACHYURY protein expression in the
nuclei is significantly related to its mRNA level expression in lung
cancer tissues (12). High expression of BRACHYURY protein is
significantly associated with poor prognosis in overall survival
(58) and high tumor stages, as well as lymph nodemetastases (59)
in NSCLC samples.

BRACHYURY/BRACHYURY has been proved to play an
important role in promoting lung tumor cell progression
and metastasis in vitro (56). Seventy percent of lung cancer
cell lines are positive for BRACHYURY mRNA expression
(16, 17). BRACHYURY-inhibited lung H460 (10) and A549
cells (59) showed significantly reduced migratory and invasive
capability. In addition, inhibition of BRACHYURY in H460 cells
resulted in diminished capability to invade ECM and reduced
expression of genes encoding for matrix metalloproteinase
(MMP)2 and MMP24 (10), both of which participate in the
ECM degradation. BRACHYURY expression did not influence
primary tumor growth, whereas inhibition of BRACHYURY
expression significantly diminished the ability of lung H460
cells developing experimental lung metastasis in vivo, whether

by subcutaneous injection or by intravenous injection (10). All
the above results suggest BRACHYURY is involved in several
key steps of metastatic process in lung cancer cells: invasion,
migration, adhesion, and colonization in the target organ.

BRACHYURY confers survival advantage to the lung cancer
cells in response to treatment with various doses of the
epidermal growth factor receptor (EGFR) inhibitor (17).
Silencing of BRACHYURY in A549 cells increases cell sensitivity
to cisplatin (59).

Breast Carcinoma
BRACHYURY/BRACHYURY expression has been reported to
positively associate with the invasive and metastatic capability of
breast carcinoma cells in vitro and with the risk of recurrence
and distal metastasis in breast patients (9, 60). Different studies
have demonstrated the potential of BRACHYURY as a target
for the treatment of breast carcinoma using cancer vaccines or
immunotherapy approaches (61, 62).

BRACHYURY/BRACHYURY is obviously highly expressed
at the mRNA and protein levels in breast cancer tissues and
cell lines compared to negativity in normal breast cancer
tissues and cells (9, 60, 63–66). Hormone receptor status
of breast cancer is an important and recognized prognostic
factor and can reflect different stages (67), including estrogen
receptor (ER) and progesterone receptor (PR). BRACHYURY
mRNA level expression in breast carcinomas with negativity
for ER and/or PR is statistically significantly higher than
those with positivity for ER and/or PR (9, 61), and triple-
negative breast cancer (TNBC) is significantly higher than triple-
positive and non-TNBC (61). Immunohistochemistry detection
showed 90% of primary infiltrating ductal carcinomas were
positive for BRACHYURY expression, comparing with almost
absence of BRACHYURY in benign breast lesions. No significant
differences were found between BRACHYURY protein level
and various clinical parameters (grade, lymph node status,
et al.) (9). Primary and metastatic TNBC samples showed 92–
100% positive BRACHYURY protein expression, contrasting
with <1% positive expression in adjacent normal breast tissue
(61). Nuclear BRACHYURY protein expression is significantly
higher in tumors of advanced stages III–IV than that of stages
I–II (61) and an independent prognostic factor for DFS, while
BRACHYURY cytoplasmic expression has no correlation with
prognosis (68).

BRACHYURY gain-of-function and loss-of-function
experiments were performed in various studies to investigate
its role in breast carcinoma tumorigenesis, progression, and
resistance to therapeutic intervention in vitro. Silencing
of BRACHYURY in breast MDA-MB-436 cells statistically
significantly reduced the ability to invade the ECM and form
mammospheres in primary and secondary cultures (9). Our
study (60) demonstrated that BRACHYURY promoted breast
cancer cell invasion, migration, adhesion, and colonization in
bone microenvironment in vitro, and BRACHYURY knockdown
in MDA-MB-231 cells decreased the colonization and survival
capability in bone tissue in vivo. BRACHYURY-high breast
tumor cells were more resistant to the cytotoxic effects of
docetaxel in vitro (9). BRACHYURY has also been confirmed
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to enhance breast cancer cell survival capability in response to
tamoxifen therapy, and BRACHYURY silencing demonstrated
more sensitive and higher apoptosis than control group upon
tamoxifen treatment (63). Collectively, all the results of in
vitro assays indicate that BRACHYURY-targeting therapeutic
approaches under clinical trials and laboratory could have
the potential to help control advanced breast carcinomas and
improve prognosis.

Prostate Cancer
BRACHYURY was shown to express in prostate cancer tissues,
which increased with tumor malignancy and aggressiveness and
was positively associated with Gleason score and TNM stage (69).
Besides, BRACHYURY/BRACHYURY was also associated with
tumor chemotherapy resistance (70). Targeting BRACHYURY
is becoming a promising therapeutic option for advanced and
metastatic prostate cancer patients.

Pinto et al. (14) demonstrated BRACHYURY nuclear
staining was present in a comparable positive rate in prostatic
intraepithelial neoplasia (PIN) lesions and prostate cancer tissue,
contrasting with 100% positivity for metastatic prostate cancer.
BRACHYURY nuclear expression is highly associated with the
occurrence of metastasis (14, 69). There is a strong correlation
between BRACHYURY expression and well-established markers
of prostate cancer progression, such as Bcl2, ETS-related gene
(ERG), and phosphatase and tensin homolog (PTEN) loss (70).
A high level of BRACHYURY is verified to associate with
poor prognosis (4, 69, 71). In addition, prostate cell lines
with endogenous BRACHYURY/BRACHYURY expression were
demonstrated to be more resistant to docetaxel and cabazitaxel
treatment than that with negative expression (70).

Androgen receptor (AR) is the mediator of androgen activity
in normal and malignant prostate cells. The BRACHYURY
protein level in the nucleus of primary prostate cancer cells is
statistically associated with the presence of AR (70), and the
enhanced AR expression in the nucleus may be activated by
BRACHYURY protein (70). Moreover, a genome-wide analysis
on AR in prostate cancer cells revealed that BRACHYURY
binding motif is highly enriched in AR-bound promoter region
(72), suggesting that BRACHYURY is involved in AR regulation
on target.

Although androgen-targeted therapy demonstrates
recognized a therapeutic benefit in advanced prostate
cancer, following castration-resistant prostate cancer (CRPC)
develops and tumor progression occurs due to the induced
epithelial-to-mesenchymal plasticity (EMP) and neuroendocrine
transdifferentiation (NEtD) programs by androgen deprivation
(71, 72), the mechanism through which has yet to be
elucidated. Overexpression of BRACHYURY is strongly
associated with NEtD markers, including chromogranin
A (CHGA) and synaptophysin (SYP) (70), and targeting
BRACHYURY/BRACHYURY has become a potential promising
option in such a tricky scenario. A phase I/II trial (NCT03493945)
testing a BRACHYURY-targeted antitumor vaccine has been
performed in metastatic CRPC recently (73).

Although the specific role of BRACHYURY/BRACHYURY on
the tumorigenesis and progression of prostate cancer has been

recognized, more details need to be further investigated and
unveiled, for instance, the mechanism of BRACHYURY involved
in NEtD, the biological significance of BRACHYURY binding
with the regulatory elements of the marker genes (AMACR, AR)
of prostate cancer.

Colorectal Cancer
BRACHYURY mRNA expression was found to elevate in
tumors of the small intestine and in the majority of cell lines
derived from the colon (16). Nearly 90% of the colorectal
adenocarcinomas were immunohistochemically positive for
BRACHYURY expression (74), which is demonstrated as distinct
nucleus staining or widespread cytoplasmic staining (74, 75).
The heterogeneity of BRACHYURY distribution suggests that
it may have region-specific functions (75). High BRACHYURY
expression correlates significantly with higher tumor stage, grade,
and lymph nodemetastasis. Early-stage colorectal cancer samples
(Dukes A) with BRACHYURY expression showed a significantly
decreased survival and poor prognosis, while no correlation was
observed in later tumor stages (74).

Oral Cancer
Immunohistochemical studies demonstrated that BRACHYURY
was positively expressed in 71.0% of oral squamous cell
carcinoma (OSCC), including cytoplasmic and nuclear staining
(76). BRACHYURY expression in OSCC tissue is significantly
associated with lymph node metastasis (76), distant metastasis,
and Anneroth scores (77). High BRACHYURY expression is also
significantly associated with decreased disease-specific survival
and DFS in OSCC patients, which may represent a valuable
prognostic marker of OSCC (76, 77).

THE MECHANISM OF BRACHYURY TO

PROMOTE TUMOR PROGRESSION

Epithelial-to-Mesenchymal Transition
The process of EMT, converting immotile epithelial cells to
migratory mesenchymal cells, is associated with enhancement
of invasive and metastatic potential of tumor cells, as well as
resistance to therapeutic interventions (78, 79). BRACHYURY
has been identified as a driver of EMT in a wide variety
of tumors, including lung cancer (59), breast cancer (66),
prostate cancer (14), hepatocellular carcinoma (80), oral
squamous cell carcinoma (76), adenoid cystic carcinoma (81),
among others, which is responsible for the acquisition of
mesenchymal-like phenotype and positively correlates with
aggressive characteristics of tumor cells (9, 10, 14, 16, 81–83).

Some other mediators have been reported to be involved in
tumor EMT process, such as Slug, Snail, MMPs, fibronectin,
interleukin (IL)8, and transforming growth factor (TGF)-β1,
among others. Various studies have attempted to investigate
the correlation between the expressions of these genes and
BRACHYURY (12, 84, 85). As mesenchymal markers, Snail and
Slug have been shown to act as transcriptional repressors of E-
cadherin expression during the EMT process (86, 87). Fernando
et al. (10) reported BRACHYURY could directly bind to the T-
box half-site consensus sequence (TCACACCT) located at the
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promoter of E-cadherin, resulting in silencing of E-cadherin
expression. BRACHYURY can directly enhance the Snail and
Slug expression, through which can indirectly repress E-cadherin
expression in several types of lung carcinoma cell lines (10, 82).
In chordoma cells, loss of BRACHYURY resulted in a significant
decrease of Snail and Slug (31, 49), and the upregulation of Snail
and Slug by FGF2 was blocked by BRACHYURY knockdown,
suggesting that BRACHYURY plays a critical role in the direct
regulation of Snail and Slug expressions and EMT process of
chordoma (31). BRACHYURY can directly bind with the T-Box
binding sites at the promoter of Snail and fibronectin in prostate
cancer cells (70).

Wan et al. (11) firstly revealed that BRACHYURY upregulated
MMP12 expression in lung NSCLC cells to promote tumor
cell migration and invasion, and a potential T-box binding site
was found in the promoter of MMP12. In addition, Slug and
IL-8 expressions were positively correlated with BRACHYURY
expression at mRNA and protein levels in primary andmetastatic
lung tumor tissues and associated with poor prognosis (12, 58).
In TNBC MDA-MB-436 cell line, silencing of BRACHYURY
resulted in diminished vimentin and fibronectin expression and
increased epithelial ZO1 expression (61). In prostate cancer
cells, BRACHYURY expression was associated with a decrease of
the epithelial marker and increased expression of mesenchymal
signature genes, as well as upregulation of the MMP14, MMP24
(14, 70).

The Effect of BRACHYURY on Tumor Cell

Proliferation and Cell Cycle
Regulating of cell cycle progression is another paramount
mechanism to modulate tumor cell biological behavior
(88). Various studies have reported divergent effects of
BRACHYURY on cell proliferation. Some demonstrated
BRACHYURY promoted tumor cell growth and proliferation
in vitro, including chordoma, prostate cancer, colorectal
cancer, adenoid cystic carcinoma, and breast carcinoma
cells (14, 31, 40, 42, 49, 50, 60, 75, 81). Whereas, others
showed that BRACHYURY inhibited tumor cell growth and
proliferation, including breast carcinoma, lung, and colorectal
cells (9, 10, 82). The lower proliferation rate may protect tumor
cells from stressful conditions, such as nutrient deprivation
and genotoxic injuries induced by radiation or chemotherapy
(79), accordingly, attain a certain survival advantage. The
reported divergent roles of BRACHYURY on cell proliferation
in specific cell line, for instance, breast carcinoma cell lines, need
to be further elucidated, whether it is cell type-dependent or
context-dependent or other causes.

In regard to the mechanism by which BRACHYURY inhibits
cell proliferation in lung carcinoma cells, Fernando et al. (10)
has revealed BRACHYURY blocks the cell cycle progression

likely at the G1-S transition through suppressing cyclin D1
expression and activity of cyclin/CDK complexes. Huang et al.
(82) have reported BRACHYURY impairs cell cycle progression
and reduces tumor cell proliferation by transcriptional silencing
of P21, through directly binding with the T-box half-site binding
sequence located at position −14 relative to the transcription
initiation site in the promoter of P21.

THE TUMOR SUPPRESSOR ROLE OF

BRACHYURY

Unlike the established oncogenic function in some types of
solid tumors, BRACHYURY has been reported to play a tumor
suppressor role in lung cancer (89) and glioma (90). Pinto et al.
(90) recently reported that glioma patients with absence or low
level of BRACHYURYwere associated with tumor aggressiveness
and poor survival. BRACHYURY could have different functions
in tumorigenesis and progression depending on the cofactors and
specific context.

CONCLUSION

The T-box transcription factor BRACHYURY, which is required
for mesoderm formation and notochord development, has
been recognized as a sensitive and fairly specific marker for
chordoma and reported to be expressed in various types of
tumors, especially in tumors of epithelial origin (lung, breast,
prostate, colorectal, oral, et al.). BRACHYURY promotes tumor
metastasis through modulating the EMT process and regulating
cell cycle and closely correlates with patient poor prognosis.
BRACHYURY/BRACHYURY has become an attractive target
in the study of tumorigenesis and therapy not only because
multiple signaling pathways converge to activate its expression
(10) but also it regulates a complex downstream network.
With the development of several clinical trials of therapeutic
cancer vaccine (62, 91, 92), BRACHYURY/BRACHYURY will
become a potential paramount target to help control advanced
cancer populations.
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