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Background: Colorectal cancer (CRC) is the result of complex interactions between the

tumor’s molecular profile and metabolites produced by its microenvironment. Despite

recent studies identifying CRC molecular subtypes, a metabolite classification system is

still lacking. We aimed to explore the distinct phenotypes and subtypes of CRC at the

metabolite level.

Methods: We conducted an untargeted metabolomics analysis of 51

paired tumor tissues and adjacent mucosa using ultra-performance liquid

chromatography/quadrupole time-of-flight mass spectrometry. Multivariate analysis

including principal component analysis, orthogonal partial least squares discriminant

analysis and heat maps, univariate analysis, and pathway analysis were used to identify

potential metabolite phenotypes of CRC. Unsupervised consensus clustering was used

to identify robust metabolite subtypes, and evaluated their clinical relevance.

Results: A total of 173 metabolites (including nucleotides, carbohydrates, free fatty

acids, and choline) were identified between CRC tumor tissue and adjacent mucosa.

We found that lipid metabolism was closely related to the occurrence and progression

of CRC. In particular, CRC tissues could be divided into three subtypes, and statistically

significant correlations between different subtypes and clinical prognosis were observed.

Conclusions: CRC tumor tissue exhibits distinct metabolite phenotypes. Metabolite

differences between subtypes may provide a basis and direction for further clinical

individualized treatment planning.

Keywords: metabolomics, subtypes, CRC, prognosis, lipid metabolism

INTRODUCTION

Colorectal cancer (CRC) is one of the leading causes of cancer-related death, both in China and
worldwide. More than one million individuals develop CRC every year and most patients are
diagnosed at advanced stages that correspond to poor prognosis (1). With the advances in the
treatment of CRC over the past 20 years, median overall survival has been steadily increasing
(2). Although the progress made thus far is encouraging, the existing treatment paradigm usually

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2020.00981
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2020.00981&domain=pdf&date_stamp=2020-06-17
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:yifan.701@163.com
mailto:wang_maoqing@126.com
mailto:yfcui777@hotmail.com
https://doi.org/10.3389/fonc.2020.00981
https://www.frontiersin.org/articles/10.3389/fonc.2020.00981/full
http://loop.frontiersin.org/people/951037/overview
http://loop.frontiersin.org/people/658824/overview
http://loop.frontiersin.org/people/925774/overview


Long et al. Metabolomic Markers of Colorectal Tumor

employs a “one-size-fits-all” approach based on the
histopathological diagnosis of CRC, which translates into
demonstrable clinical benefit from any given chemotherapeutic
regimen in only a small subset of treated patients (3).

It is now being increasingly realized that CRC is not a single
disease entity, but a heterogeneous group of tumors, both at the
inter-tumoral and intra-tumoral level (2). A major hallmark of
CRC is its association with various types of etiological factors
and its high heterogeneity in clinical presentation and underlying
tumor biology (4). Consequently, most patients with CRC are
refractory to treatment and have a dismal outcome. One of the
essential requirements to improve their outcome is to provide
biomarkers that are capable of accurately defining homogenous
molecular subtypes; each displays unique tumor biology linked
to potentially druggable driver genes to implement rational
treatment choices (5).

Nowadays, tumor genomic profiling is routinely used to
classify tumor types, identify driver or germline mutations,
perform prognostic assessments, and make therapeutic decisions
(6, 7). However, the notable heterogeneity of genomes in
cancer tissues makes it difficult to determine the underlying
causes or ascertain the optimal treatment. Furthermore, the
elevated number of mutations and multiple combinations of
tumor suppressors and oncogenes make individualized tumor
classification or customized therapy almost impossible (8).
Metabolomics is a rapidly growing field of study that endeavors
to measure the complete set of metabolites (generally considered
to be the intermediates and products of cellular metabolism
<1 kDa in size) within a biological sample (that is, the
metabolome) to achieve a global view of the state of the
system (9). In general, multiple biochemical pathways are
affected, owing to the fact that as cancer progresses, multiple
defects in biochemical pathways arise as cancer subverts normal
metabolism in an effort to survive (10). Furthermore, the
metabolite requirements of cancer cells are different from
those of most normal differentiated cells, exhibiting different
metabolite phenotypes (11). Using metabolomics to identify
the specific metabolite subtype of a particular tumor would
enable better customization or informed adjustment of cancer
therapies (12).

To present, metabolomics-based CRC phenotypic research
and molecular typing have been rarely described, and little
is known about how changes in metabolite levels relate
to the characteristics of tumor tissue. In this study, we
described a metabolomics analysis of CRC tissue samples from
a group of CRC patients with different clinicopathological
features. We aimed to analyze the differential metabolism
of tumor tissues with different clinicopathological features,
and to explore molecular typing methods for CRC based on
metabolomics markers.

Abbreviations: CRC, colorectal cancer; ESI–, negative electrospray ionization;

ESI+, positive electrospray ionization; VIP, variable important for the

projection; mClusters, metabolite clusters; FFA, free fatty acids; ANIT, adjacent

non-involved tissues.

METHODS

Study Design and Subject Recruitment
We designed a self-control study to detect the differential
metabolites between tumor tissue and adjacent non-malignant
mucosa tissue. Fifty-one pairs of tissue were obtained from
surgical resection of CRC patients.

All patients were diagnosed and recruited at the Third
Affiliated Hospital of Harbin Medical University. Any patients
with neuroendocrine carcinoma, malignant melanoma, non-
Hodgkin’s lymphoma, gastrointestinal stromal tumors, and
Lynch syndrome CRC were excluded. Only newly diagnosed
histopathologically confirmed cases were retained. Tissue
sampling included the deepest infiltration of the tumor and
the adjacent non-malignant mucosa tissues. All tissues were
immediately soaked in formaldehyde solution until use.

All procedures performed in studies involving human
participants were in accordance with the ethical standards of
the Human Research and Ethics Committee of Harbin Medical
University and with the 1964 Helsinki declaration and its
later amendments or comparable ethical standards. Informed
consent was obtained from all individual participants included
in the study.

Metabolite Profiling
A detailed description of the experimental protocol of metabolite
profiling analysis by UPLC/Q-TOF-MS/MS and the data
processing, multivariate and univariate analysis of metabolites,
as well as identification of differential metabolites, are provided
in the Supplementary Materials.

Pathway Analysis
Using an accurate m/z search under 50 ppm, metabolites from
positive and negative ionization were matched in Mummichog
software, which included metabolites from KEGG and other
databases. Mummichog software (version 1.0.9) was used to
further test pathway enrichment patterns using permutations,
and to compute the probability for each pathway (13).

Metabolite Clustering
Consensus clustering (cCluster; hierarchical clustering; Pearson
distance; complete linkage; 1,000 resampling iteration) and
unsupervised hierarchical clustering were performed to define
subtypes of CRC tumor tissue samples (14, 15). Heatmaps
were generated using the Complex Heatmap package in R to
determine the relationship among samples or cCluster-defined
subgroups (16).

Clinical Relevance Analysis of Metabolite
Subtypes
We assessed whether the metabolite subtypes had significant
associations with overall survival. The R packages “survival” and
“survminer” were used to perform the overall survival analysis
and to produce Kaplan-Meier survival plots. A log-rank test
was used to assess the significance (P < 0.05). We further
assessed whether the metabolite subtypes remained significantly
associated with overall survival after adjusting for age, sex,
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clinical stage, postoperative chemotherapy, and immunotherapy
as covariates in the Cox model.

RESULTS

Metabolite Profiling of 51 Pairs of Tumor
Tissue and Adjacent Mucosa Tissue
To identify the differential metabolites of CRC, the metabolomes
of tumor tissues were compared with that of matched adjacent
mucosa. Supplementary Table 1 shows the demographic
characteristics and clinicopathological features of 51 CRC
patients. Mass spectrometry detected 4,526 and 4,765 variables in
negative electrospray ionization (ESI-) and positive electrospray
ionization (ESI+), respectively. Multivariate analysis was
performed on the result of mass spectrometry to find metabolites
that mostly discriminated the study groups. Principal component
analysis (PCA) was the unsupervised analysis method, which
was used for dimension reduction of data through making a
linear combination of variables known as principal components.
PCA analysis can reveal trends in the data and groups of
observations and find outliers. Although a weak trend in
clustering according to the PCA plot based on tumor tissue
and adjacent mucosa was observed, the PCA analysis results
showed a separation of tumor tissue and adjacent mucosa into
two clusters (Figures 1A,D). To further study the differences
between tumor tissue and adjacent mucosa and to find potential
biomarkers, the supervisedmultivariate statistical methodOPLS-
DA was subsequently used. OPLS-DA is a supervised analysis
method that is employed to divide the samples into different
groups, including tumor tissue and adjacent mucosa, which was
performed to find metabolites that mostly discriminated the
studied groups in each comparison. The classification results
are shown in Figures 1B,E. To guard against model overfitting,
permutation tests (100 random permutations) were performed.
These permutation tests were used to contrast the goodness of
fit of the original model with the goodness of fit of randomly
permuted models. As shown in Figures 1C,F, the validation
plots strongly indicated that the original combined models were
valid. No overfitting was observed.

A total of 373 metabolites (296 higher and 77 lower) were
identified with the criteria of Variable important for the
projection (VIP) score >1.5 and P-values of <0.05 in the false
detection rate (FDR)-corrected Mann-Whitney U tests, which
displayed differential abundance between tumor and adjacent
mucosa samples (Supplementary Figure 1). The Human
Metabolome Database (http://www.hmdb.ca/) mass search
feature was used as to aid metabolite identification. A total of 173
metabolites were identified as shown in Supplementary Table 2.
Interestingly, nucleotides, carbohydrates, free fatty acids,
and choline were overrepresented and highly abundant in
tumors, such as D-ribulose 5-phosphate, D-glucose, xylulose
5-phosphate, 3’-AMP, hypoxanthine, palmitoleic acid, and
cytidine monophosphate (Supplementary Table 2).

Metabolite Landscape of CRC Tumors
Pathway analysis was performed to systematically investigate
the metabolite alterations associated with CRC pathogenesis.

Mummichog software, a pathway tool designed for untargeted
metabolomics data [13], was used to evaluate the significant
metabolite pathways utilizing metabolites that were present
at differential abundance between CRC tissues and adjacent
mucosa. The mummichog analysis was performed on the
previously identified 373 positive and negative ions, and the
results are shown in Supplementary Table 3; interestingly,
among the 34 metabolite pathways, most were involved
in lipid metabolism (n = 7) and glycan biosynthesis and
metabolism (n = 8). Other metabolite pathways included
glycolysis/gluconeogenesis, pentose phosphate pathway, and
tryptophan metabolism.

Metabolite Changes Upon CRC
Progression
Difference stage-distributed CRC samples allowed us to
investigate the association between metabolite shifts and
CRC progression. Based on the 4,526 and 4,765 variables
in ESI– and ESI+, using American Joint Committee on
Cancer (AJCC) clinical staging, the OPLS-DA analysis
of the metabolite profiles of tumor tissue could separate
clusters for each stage (Figure 2). Validation of the OPLS-
DA model was performed here by permutation testing.
Although the permutation test indicates that the OPLS-DA
model is valid, the model fitting is not very satisfactory
(Supplementary Figure 2). There were 94 metabolites exhibiting
statistically significant differential abundance between early-
(I, II) and late-stage (III, IV) tumors (VIP > 1.5 and Mann-
Whitney U-test FDR corrected P-value < 0.01), and a total
of 48 metabolites were identified (Supplementary Table 3).
Most lipid metabolites showed an increase in late-stage tumors,
while dipeptides also showed a decrease in late-stage tumors
(Supplementary Figure 3). The results of pathway analysis
by Mummichog software indicated that significant features
are enriched for pathways involved in lipid metabolism
(Supplementary Table 4).

Metabolite Alterations of CRC Pathologic
Characteristics
We also sought to determine whether we could identify
the differences in metabolite features among various
histopathological classifications of CRC. The separation of
adenocarcinoma and non-adenocarcinoma CRCs was observed
using OPLS-DA (Figure 3). Similarly, the permutation test
indicates that the OPLS-DA model is valid, but, the model
fitting is also unsatisfactory (Supplementary Figure 4).
Forty-three metabolites exhibited statistically significant
differential abundance between adenocarcinoma and
non-adenocarcinoma tumors (VIP > 1.5 and P < 0.01).
Furthermore, a total of 26 metabolites were identified
(Supplementary Table 5) and almost all these 26 metabolites
were lipids. Mummichog indicated that pathways involved
in lipid metabolism were also significantly enriched
(Supplementary Table 5).
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FIGURE 1 | Scatter score plots of the PCA and OPLS-DA model based on the tumor tissue vs. adjacent mucosa data set and their corresponding score plots of 100

permutations. (A) PCA score plot in ESI− model, R2X = 0.529, Q2
= 0.284. (B) OPLS-DA score plot in ESI− model, R2X = 0.218, R2Y = 0.817, Q2

= 0.459.

(C) Permutation test result of the OPLS-DA model in ESI− model; (D) PCA score plot in ESI+ model, R2X = 0.587, Q2
= 0.316. (E) OPLS-DA score plot in ESI+

model, R2X = 0.246, R2Y = 0.768, Q2
= 0.364. (F) Permutation test result of the OPLS-DA model in ESI+ model. t[1], t[2], t[3] and to[1] represent the first predicted

principal component (X axis), second predicted principal component (Y axis), third predicted principal component (Z axis) and first orthogonal component; The criteria

for validity are: all blue Q2-values to the left are lower than the original points to the right, or the blue regression line of the Q2-points intersects the vertical axis (on the

left) at, or below zero.

FIGURE 2 | OPLS-DA 3D scores plots of tissue from various stages CRC patients. (A) OPLS-DA score plot in ESI− model, R2X = 0.199, R2Y = 0.34, Q2
= 0.042.

(B) OPLS-DA score plot in ESI+ model, R2X = 0.2, R2Y = 0.335, Q2
= 0.0599. Q2 indicates how well the model predicts new data. A large Q2 (Q2 > 0.5) indicates

good predictivity, Q2
> 0.2 is also acceptable.
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FIGURE 3 | OPLS-DA score plots of tissue from various histopathologic classification CRC patients. (A) OPLS-DA score plot in ESI− model, R2X = 0.088, R2Y =

0.876, Q2
= 0.128. (B) OPLS-DA score plot in ESI+ model, R2X = 0.229, R2Y = 0.984, Q2

= −0.026.

Unsupervised Clustering Reveals Three
Metabolite Clusters (mClusters) With
Prognostic Value
The results of cCluster showed that CRC tumor samples
can be partitioned into clusters with distinct metabolite
phenotypes using the differential metabolites among tumor
and adjacent mucosa samples. cCluster revealed three major
subtypes of CRC according to consensus distributions and the
corresponding consensus matrices (Figure 4). Especially, the
CRC subtypes defined by cCluster can be obviously observed
through unsupervised hierarchical clustering (Figure 5), which
is much clearer than the classification effect according to the
pathological stages of tumor in Supplementary Figure 3. The
rough estimate by chi-square tests indicated that there was no
statistically significant consistency between the three mClusters
and clinicopathological features, respectively (as shown in
Figure 5). This analysis revealed unique subtypes of CRC cases
with distinct metabolite patterns that were independent of known
clinicopathological features.

For each metabolite cluster (mCluster), the clinical stages
at presentation are summarized in Supplementary Figure 5.
mCluster 1 had the highest percentage (66.7%) of early-
stage (I & II) tumors and was characterized by the low
abundance of carbohydrates, nucleotide metabolites, dipeptides,
and lipids; mCluster 2 had the highest percentage (51.9%)
of late-stage (III & IV) tumors and displayed medium levels
of all metabolites; mCluster 3, characterized by the highest
abundance of carbohydrates, nucleotide metabolites, dipeptides,
and lipids, accounted for 62.5% early-stage tumors (Figure 5 and
Supplementary Figure 5).

Additionally, we further determined the correlations of
mClusters with patients’ overall survival. As shown in Figure 6A,
the result did not reach statistical significance, likely due to the
relatively small number of events during follow-up (log-rank P=

0.099). However, regardless of clinical staging, mCluster 1 and 3
(the two groups with similar prognostic survival) were combined,

cases defined as mCluster 2 showed statistically significant poor
survival (log-rank P = 0.032, Figure 6B). More importantly, we
obtained the same results using Cox regression models adjusting
by age, sex, clinical stage, and postoperative chemotherapy and
immunotherapy (P = 0.027, Figure 6C).

DISCUSSION

Metabolomics analysis of CRC can not only distinguish tumor
tissue from adjacent mucosa, but can also discriminate CRC
patients with different clinicopathological features. What’s more,
through the high-throughput metabolomics analysis using
UPLC/Q-TOF MS mass spectrometry platform, metabolite
profiling allows a more comprehensive understanding of CRC
phenotyping. We are the first time defined molecular subtypes of
CRC based on metabolomics. The results of our study indicated
themolecular subtyping based on differential metabolites showed
much better classification effect than according to pathological
stages of tumor; especially, significant differences in survival was
observed of themetabolic subtypes. It suggested us individualized
treatment guided by molecular typing based on metabolites may
be more reasonable and effective than treatment based on the
same stage or morphological type.

Tian et al. analyzed the metabonomic signatures of 50 human
CRC tissues and their adjacent non-involved tissues (ANIT)
using high-resolution magic-angle spinning (HRMAS) 1H NMR
spectroscopy together with the fatty acid compositions of these
tissues using GC-FID/MS (17). In this study, metabonomic
phenotypes of CRC tissues differed significantly from that
of ANIT in energy metabolism, membrane biosynthesis
and degradation, and osmotic regulation together with the
metabolism of proteins and nucleotides. Diverse metabolite
pathways including N-glycan biosynthesis and degradation,
linoleate metabolism, leukotriene metabolism, butanoate
metabolism, glycosphingolipid biosynthesis, drug metabolism-
cytochrome P450 and vitamin B5-CoA biosynthesis from
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FIGURE 4 | Results of consensus clustering of 373 differential variables (identification of three metabolomic subtypes). (A) Consensus clustering matrix of 51 CRC

samples for k = 2 to k = 6. (B) Consensus clustering CDF for k = 2 to k = 6. (C) The corresponding relative change in area under the cumulative distribution function

(CDF) curves when cluster number changed from k to k + 1. The range of k changed from 2 to 6 and the optimal k = 3.

pantothenate significantly differed between tumor and normal
tissues. The UPLC/Q-TOF MS-based metabolomics approach of
this study provided additional information that complements
our current understanding of the metabolomic characteristics
between CRC tumor tissues and adjacent mucosa.

The Warburg effect is a known feature of cancer metabolism
that describes maintenance of a high aerobic glycolysis rate and
high levels of glucose uptake and lactate production during
tumor growth (18, 19). Our findings are consistent with the
Warburg effect. The difference in energy metabolism can be
clearly observed between CRC tumor tissues and adjacent
mucosa. Compared with adjacent mucosa, carbohydrates in
colorectal cancer tissues were significantly increased and the
pentose phosphate pathway and glycolysis/gluconeogenesis
pathways were identified. In cancer metabolism, glycolysis is
the preferred pathway to produce metabolite intermediates used
to support cell proliferation during de novo biosynthesis (20),
which can lead to higher levels of free fatty acids (FFA) and
nucleic acid-related metabolites. In our current study, higher
levels of nucleotides, palmitoleic acid, and hypoxanthine were
observed in tumor tissues. Nucleotides are critical components
of DNA and RNA structures, and disorders in their biosynthesis

have profound effects on cell physiology, which may lead to
tumor transformation in cells (21). CRC tumor tissues showed
higher levels of choline metabolites such as choline, PC, and PE
than adjacent mucosa, which have also been reported in other
malignancies (22–24).

Glycosylation changes are some of the most common post-
translational modifications of proteins and are considered
markers of cancer. N-glycans can regulate cell migration, cell
adhesion, cell signaling, proliferation, and metastasis. Many
carbohydrate-mediated cellular mechanisms, including those
important for tumor progression, are regulated by N-glycans
(25). Stephanie et al. compared the glycosylation profiles of tumor
tissues and corresponding control tissues in 13 CRC patients
(26). Multivariate data analysis showed significant differences in
glycosphingolipids between tumors and corresponding adjacent
tissues using MALDI-TOF(/TOF)-MS and 2-dimensional LC-
MS/MS; the main changes included elevated fucosylation,
reduced acetylation and sulfation, and reduced expression of
globular glycans, as well as disialyl gangliosides. In our study,
seven metabolite pathways were identified as being involved
in the biosynthesis and metabolism of glycans, including
biosynthesis of N-glycans, degradation of N-glycans, and
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FIGURE 5 | Identification of CRC metabolite-based tumor subtypes. A heatmap of CRC subtypes is shown based on consensus clustering. The x-axis represents

CRC subtype consensus clusters. CRC samples are represented in columns, grouped by the dendrogram into three main clusters, and metabolites (n = 373) are

represented in rows. Clinical data of the samples are included below the heatmap and the chi-square tests were used to estimate the difference between the three

mClusters and clinicopathological features, respectively.
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FIGURE 6 | Kaplan-Meier and Cox analysis for the survival of patients with different mclusters. (A) Survival analyses were evaluated by Kaplan-Meier survival curve for

the three subtypes’ patients (mCluster 1, mCluster 2, and mCluster 3) (P-value = 0.099, log-rank test). (B) Survival analyses were evaluated by Kaplan-Meier survival

curve after combing the mCluster 1 and mCluster 3 into one group (P-value = 0.032, log-rank test). (C) Survival analyses were performed using Cox regression

methods after combing the mCluster 1 and mCluster 3 into one group (P-value = 0.027).

metabolism and biosynthesis of glycosphingolipids, confirming
the changes in characteristic tumor-associated glycosylation.

To date, there have been few studies analyzing the differences
in the metabolism of CRC with different clinicopathological
features. In this study, it was reported for the first time that
the early tumors of CRC have higher abundance of dipeptide
characteristics. A large increase in dipeptides may be produced
through protein degradation/reutilization processes, such as
lysosomal degradation, phagocytosis, endocytosis, pinocytosis,
and autophagy (27–30). Brauns et al. (31) have shown that cyclic
dipeptides, especially those containing proline, have important
biological activities. Their results indicated that phenylalanine–
proline inhibits the proliferation of HT-29, MCF-7, and HeLa
cells, as well as inducing apoptosis in HT-29 colon cancer cells,
which has potential anti-tumor activity (31).

Higher levels of lipid metabolites observed in the current
study in advanced CRC tissues have been reported in other
studies (17, 32). Results of the Mummichog software pathway
analysis showed that most pathways are lipidmetabolism-related,
consistent with previous studies by Zhang et al. and Tian et al.
(17, 33). Abnormal lipid metabolism is a metabolite marker
of cancer cells (34, 35), and many studies have reported that
cancer cells have strong lipid and cholesterol affinities (35), by
activating the exogenous (or dietary) lipid and lipoprotein uptake
or by enhancing the reticular fat from the cytosol acetyl-CoA
Biosynthesis of cholesterol and cholesterol, highly proliferative.
Changes in lipid metabolism in CRC tumor tissues suggest
enhanced lipogenesis is one of the most important features in
CRC tumor tissues (36). Recent studies have also found that
tumor tissue can use fatty acids and lipolytic pathways to obtain
fatty acids to promote tumor cell proliferation (37).

We further observed that the metabolite differences
between adenocarcinoma and non-adenocarcinoma CRCs
were mainly related to lipid metabolism. Lipid metabolism
is regulated by complex signaling networks in CRC tumor
cells, which are closely related to cell growth, proliferation,
differentiation, survival, and apoptosis (38). Several studies

have indicated that some fatty acid metabolism pathways are
associated with the development and progression of colorectal
adenocarcinoma (39, 40). Beatriz et al. also showed that
changes in fatty acid metabolism are a crucial factor in the
progression from colorectal adenoma to adenocarcinoma
(41). Although our results are consistent with previous
studies, there have been no studies on the metabolite
differences of adenocarcinoma and non-adenocarcinoma
thus far.

TNM staging system is currently recognized as an important
independent indicator that can comprehensively reflect the
progress of malignant tumor and judge the prognosis. It is also
the main basis for determining the surgical resection scope,
surgical method and formulation of adjuvant treatment plan.
But, limitations cannot be ignored. TNM staging was determined
based on the depth of invasion, lymph node metastasis and
distant metastasis of the tumor in the intestinal wall. The essence
of TNM staging is the clinical observable morphological index
of the invasion and metastasis ability and degree of tumor, as
well as adenocarcinoma and non-adenocarcinoma. Some recent
studies have also indicated that, based on TNM staging and
histological features, the sensitivity and prognosis of the same
group of patients to the same treatment regimen vary greatly (42).

Our results, for the first time, showed that CRC could be
divided into three subtypes at the metabolomics level, and
the heterogeneity of metabolomic changes between different
subtypes lead to inconsistent prognosis of tumors. Lipids,
nucleotides, and carbohydrates have important roles in the
biology of a subset of tumors. The differences in these metabolite
levels between subtypesmay point to different pathophysiological
mechanisms for the development and progression of CRC.
Understanding the pathogenesis of CRC is critical to developing
personalized treatment strategies. As every CRC covers a
specific, heterogeneous metabolite profile, the question rises if
metabolomics (and other “omics”) approaches could become
the new standard in adequately categorizing CRC on a
molecular basis. This molecular classification could offer patients
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a personalized therapy schedule, depending on the type of
molecular defects that their colorectal tumor has acquired.

For example, many anticancer drugs are based on
lipid metabolism, such as irinotecan, which can affect the
accumulation of ceramide by inducing ceramide synthase to
catalyze ceramide synthesis or by activating sphingomyelinase to
catalyze the degradation of sphingomyelin (43, 44). At the same
time, the use of drugs is also dependent on the sensitivity and
intrinsic drug resistance of cancer cells. Studies have shown that
omega-3 polyunsaturated fatty acids can improve the efficacy of
chemotherapy and radiotherapy. Omega-3 fatty acids also reduce
CD133+ colon cancer stem cell-like cells markers and increase
sensitivity to chemotherapy (45). A eicosapentaenoic acid-free
fatty acid(EPA-FFA) phase II double-blind, placebo-controlled
trial of patients undergoing liver resection for CRC liver
metastases showed that EPA-FFA treatment is anti-angiogenic,
safe, and well tolerated (46). Backshall et al. evaluate the effect
of pretreatment serum metabolite profiles generated by 1H
NMR spectroscopy on toxicity in patients with inoperable
CRC receiving single agent capecitabine (47). Their study
suggests that metabolite profiles can delineate subpopulations
susceptible to adverse events and have a potential role in the
assessment of treatment viability for cancer patients prior to
commencing chemotherapy.

This study still has some limitations. Our study is based on a
relatively small sample of CRC patients in northeastern China.
Tissue samples of patients with CRC are based on the continuous
collection of clinical cases in the same hospital; the selection
of samples may be biased. Moreover, the UPLC/Q-TOF MS
metabolomics platform used in the study was used in isolation
and some metabolites may not have been detected. Therefore,
confirmation is necessary based on large samples from multiple
populations and platforms.

In summary, our metabolomics study indicates that
CRC tumor tissue exhibits distinct metabolite phenotypes.
Metabolomics provides a new window into the study of CRC
phenotypes and molecular typing as CRC can be divided
into three subtypes at the metabolite level. When integrated
with other platforms, we can provide a more comprehensive

explanation of the complex biology associated with CRC and
malignant transformation. A deeper understanding of abnormal
metabolism will provide a framework for the design and
implementation of personalized approaches to CRC treatment
through metabolite regulation.
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