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Purpose: This study aimed to explore the role of delta-radiomics in differentiating

pre-invasive ground-glass nodules (GGNs) from invasive GGNs, compared with

radiomics signature.

Materials and Methods: A total of 464 patients including 107 pre-invasive GGNs and

357 invasive GGNs were embraced in radiomics signature analysis. 3D regions of interest

(ROIs) were contoured with ITK software. By means of ANOVA/MW, correlation analysis,

and LASSO, the optimal radiomic features were selected. The logistic classifier of

radiomics signature was constructed and radiomic scores (rad-scores) were calculated.

A total of 379 patients including 48 pre-invasive GGNs and 331 invasive GGNs with

baseline and follow-up CT examinations before surgeries were enrolled in delta-radiomics

analysis. Finally, the logistic classifier of delta-radiomics was constructed. The receiver

operating characteristic curves (ROCs) were built to evaluate the validity of classifiers.

Results: For radiomics signature analysis, six features were selected from 396 radiomic

features. The areas under curve (AUCs) of logistic classifiers were 0.865 (95% CI,

0.823–0.900) in the training set and 0.800 (95% CI, 0.724–0.863) in the testing

set. The rad-scores of invasive GGNs were larger than those of pre-invasive GGNs.

As the follow-up interval went on, more and more delta-radiomic features became

statistically different. The AUC of the delta-radiomics logistic classifier was 0.901 (95%

CI, 0.867–0.928), which was higher than that of the radiomics signature.

Conclusion: The radiomics signature contributes to distinguish pre-invasive and

invasive GGNs. The rad-scores of invasive GGNs were larger than those of pre-invasive

GGNs. More and more delta-radiomic features appeared to be statistically different

as follow-up interval prolonged. Delta-radiomics is superior to radiomics signature in

differentiating pre-invasive and invasive GGNs.
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INTRODUCTION

Pulmonary nodules are one of the most common incidental findings (1). Ground-glass nodule
(GGN) is a distinct subgroup of pulmonary nodules, which is a complex diagnostic challenge,
including a broad array of benign and malignant lesions (2). GGN is defined as a hazy shadow
presenting intact bronchial structures and pulmonary vessels (3), which is generally associated with
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early-stage lung adenocarcinoma. The lung adenocarcinomas
are classified into three histological subtypes, namely,
adenocarcinoma in situ (AIS), minimal invasive adenocarcinoma
(MIA), and invasive adenocarcinoma (IAC), according
to the International Association for the Study of Lung
Cancer/American Thoracic Society/European Society of
Thoracic Surgeons classification (4). Some benign GGNs can
also be observed, such as interstitial fibrosis, inflammation,
hemorrhage, and atypical adenomatous hyperplasia (AAH) (5).

It is the malignant potential and aggressive characteristics
that make the diagnosis of GGN challenging for radiologists.
Generally, pre-invasive GGNs include AAH and AIS, while
MIA and IAC are categorized into invasive GGNs (6). Different
histopathological types of GGNs have different growth and
invasive speeds. The continuous process from AAH to IAC
has been proposed (7), showing the increase of diameter and
density in GGNs (8). The 5-years survival rate has been reported
to be almost 100% for early-stage lung cancer patients, who
were diagnosed as AAH and AIS. However, the 5-years survival
rate of patients with IAC is only 60–70% (9). Therefore,
early differentiation between pre-invasive and invasive GGNs is
important for clinical management.

The natural chronologic evolution of GGNs on CT scans
remains to be elucidated. Though the Fleischner Society
published the recommendations for management of subsolid
nodules and updated guidelines based on the latest data and
accumulated opinions from a multidisciplinary international
group (10). Both radiologists and pulmonologists are confronted
with the dilemma of choosing the most adequate diagnostic
scheme and optimalmanagement strategies for GGNs. Therefore,
it is difficult to determine proper follow-up examinations, due to
different growth patterns of GGNs.

Radiomic analysis is a newly emerging computer-assisted
approach, converting conventional visual images into numerous
quantitative features (11). The features covered voxel intensity,
three-dimensional shape, size, appearance of surface, and the
gray level co-occurrence. It has been widely employed in
the differentiation and diagnosis of breast lesions (12), renal
neoplasms (13), liver disease (14), and brain tumors (15) on CT
examination or magnetic resonance imaging (16). Several studies
have also attempted to elaborate on the radiomic characteristics
of pulmonary GGNs (17). Jing et al. developed computer-aided
radiomic analysis to improve the performance in discriminating
different subtypes of GGO nodules (18). The current study found
that radiomics signature showed good predictive performance
in differentiating IACs and non-invasive lesions (19). Moreover,
delta-radiomics analysis shows the changes in radiomics
features between baseline and follow-up examinations, during
treatment, and so on. It has been demonstrated that delta-
radiomic features combined with conventional radiomic features
improved performance of models in lung cancer screening (20).

To the best of our knowledge, there are no published studies
focused on delta-radiomics in differentiating pre-invasive and
invasive GGNs using 3D CT images. The purpose of our
study is to evaluate the progressive changes of delta-radiomics
CT analysis to differentiate pre-invasive and invasive GGNs,
compared with radiomics signature.

MATERIALS AND METHODS

Patient Selection
This retrospective study was approved by the institutional
review board of our hospital, which waived the written
informed consent.

Between January 2015 and August 2019, there were 391,985
chest CT scan examinations carried out in our institution and
195,238 cases diagnosed referring to pulmonary lesions. A total of
2,064 patients were histopathologically confirmed after surgical
resections or CT-guided percutaneous biopsies. After reviewing
all the images of 2,064 cases, 464 patients were eventually
enrolled in our study. The inclusion criteria for the selected
GGNs were as follows: (a) CT examinations were performed with
the same acquisition protocol; (b) histopathological diagnosis
was made after surgical resection; (c) the diameter of all
GGN was smaller than 3 cm in CT images; (d) there was
a single solitary lesion in the lung; (e) patients received
the same thin-section CT scans, with a slice thickness of
2.0mm. The exclusion criteria were as follows: (a) patients had
malignant tumor history; (b) patients had multiple pulmonary
lesions, such as interstitial pneumonia, pulmonary infection,
chronic obstructive pulmonary disease, and so on; (c) the
histopathological diagnosis was not lung adenocarcinoma; (d)
patients underwent neoadjuvant chemotherapy or radiotherapy;
(e) patients were diagnosed by biopsy (Table 1).

According to histopathological diagnosis, the enrolled 464
patients were divided into 107 pre-invasive GGNs (48 patients
with AAH, 59 patients with AIS) and 357 invasive GGNs (122
patients with MIA, 235 patients with IAC).

TABLE 1 | The flowchart of patient selection.
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CT Image Acquisition
All patients were examined by Somaton Definition AS 64/128
(Siemens Medical Solutions, Germany). Patients performed the
CT scan in the supine position from the apex to the lever of
adrenal glands during inspiration. The scan parameters were
as follows: slice thickness and reconstruction interval, 2.0mm;
tube voltage of 120 kVp and tube current of 200mA; detector
collimation, 64∗0.625mm; rotation speed, 0.75 s; beam pitch,
1.375; pixel matrix, 512∗512. The CT images were reconstructed
with a bone algorithm for the lung window and a soft tissue
algorithm for the mediastinal window. The same lung window
(width, 1,500 HU; level, −600 HU) and mediastinal window
(width, 350 HU; level, 50 HU) were adopted to assess the images.

GGNs delta-radiomic features were calculated as the change
of radiomic features from baseline CT scans to the final follow-up
CT scans before surgeries and then divided by the time interval
([follow-up time – baseline time]/30) in both pre-invasive
and invasive GGNs (delta-radiomics = [follow-up radiomics –
baseline radiomics]/time interval).

Region of Interest (ROI) Segmentation and
Radiomics Signature Analysis
The radiologists with 10 and 15 years of CT diagnosis experience
manually delineated ROIs of all the images independently
and the intra-class correlation coefficient (ICC) was calculated.
The data from two radiologists after discussing by consensus
or adjudication was adopted, ultimately. ROIs were manually
depicted in 3D CT images using the software “ITK-SNAP”
(Version 3.4.0, www.itksnap.org), keeping an∼2–3mm distance

away from the lesion margin to minimize the partial volume
effect (Figure 1A). The volume and mean intensity of 3D GGN
were calculated automatically (Figure 1B).

The radiomic features were analyzed by AK software
(Artificial Intelligence kit V3.0.0.R, GE Healthcare), including

FIGURE 2 | The LASSO coefficient profiles of radiomics signature.

FIGURE 1 | The ROI was semi-automatically delineated using the software “ITK-SNAP” (A). The volume and intensity of GGN were calculated subsequently (B).

TABLE 2 | Patients’ general characteristics.

Patients’ general characteristics Pre-invasive GGNs Invasive GGNs p

Gender (female/male) 74 (69.2%)/33 (30.8%) 215 (60.2%)/142 (39.8%) 0.058

Age 54.8 ± 10.8 58.1 ± 13.4 0.021

Lesion volume (mm3 ) 174.1 ± 253.9 841.2 ± 1380.8 <0.001

Intensity −342.4 ± 135.6 −355.1 ± 127.0 0.372

Location (right/left) 69 (64.5%)/38 (35.5%) 209 (58.5%)/148 (41.5%) 0.162

Follow-up patients (group A/B/C) 48 (30/8/10) 331 (173/79/79) /

Mean follow-up interval (months) 8.5 8.0 /

The gender and location characteristics were compared by Chi-square test, while age, lesion volume, and intensity characteristics were compared by ANOVA. p < 0.05 has

statistical significance.
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histogram, texture, form factor, gray level co-occurrence matrix
(GLCM), and gray level run-length matrix (RLM). Prior to
analysis, three preprocessing steps were taken to normalize
images, including resampling with 1.0mm at X/Y/Z-spacing,
denoising by Gaussian, and discretizing the gray level from
0.0 to 255.0. Then, we calculated radiomic features by AK
software, automatically.

Four steps were needed to reduce radiomic dimensions: First,
replacing the abnormal values by mean and standardization.
Second, partitioning the training and testing data with a
proportion of 7:3, randomly. Third, after the normality test,
analysis of variance (ANOVA) or Mann–Whitney U test (MW)
was used to select the radiomic features. Fourth, set the filter
threshold of 0.9 for the Spearman rank correlation coefficient
analysis to reduce the dimensions. Ultimately, use the Least
Absolute Shrinkage and Selection Operator (LASSO) Cox
regression model to identify the optimal features. The logistic
classifier of radiomics signature was constructed and the rad-
scores of pre-invasive and invasive GGNs were calculated. The
predictive accuracy of radiomics signature was quantified by
ROCs in both training and testing sets. More information about
radiomic dimensions and the LASSO algorithm can be found in
the Supplementary Data.

Delta-Radiomics Analysis
A total of 379 patients in the entire cohort of 464 patients
were detected at baseline and follow-up CT examination before
surgeries and were divided into three groups according to
different time intervals: (a) group A: follow-up interval was <6
months; (b) group B: follow-up interval was between 7 and
12 months; (c) group C: follow-up interval was between 13
and 24 months. The significance of selected radiomic features
in differentiating pre-invasive and invasive GGNs between
three groups was evaluated. The changes of selected optimal
radiomic features (delta-radiomic features) were calculated
between baseline and follow-up. Multivariate logistic classifier

of delta-radiomics was constructed to identify the predictive
accuracy in distinguishing pre-invasive and invasive GGNs.

Statistics
The methods of ANOVA/MW, Spearman rank correlation
coefficient analysis and LASSO Cox regression were made by R
software (Version 3.6.1) to select meaningful radiomic features.
A paired Student’s t-test was used if continuous variables were
normally distributed; otherwise, Wilcoxon rank sum test was
performed between different follow-up intervals in the delta-
radiomics analysis by SPSS (IBM Statistics SPSS 22.0). The delta-
radiomics classifier wasmodeled bymeans ofmultivariate logistic
regression, and the ROC curve was depicted. The ROC curves
of training/testing set in radiomics signature analysis and delta-
radiomics analysis were made with MedCalc (Version 15.8). A
p-value <0.05 was considered statistically significant.

RESULTS

Patients’ General Characteristics
The general characteristics of 464 patients are summarized in
Table 2. Of the patients, 107 (23.1%) were categorized as pre-
invasive GGNs (48 with AAH, 59 with AIS), and 357 (76.9%)
as invasive GGNs (122 with MIA, 235 with IAC). Among the
107 pre-invasive GGNs patients, 74 (69.2%) patients were female
(mean age, 51.3 ± 9.0 years) and 33 (30.8%) patients were male
(mean age, 62.7 ± 10.4 years). Among the 357 invasive GGNs
patients, 215 (60.2%) patients were female (mean age, 55.4 ±

13.0 years) and 142 (39.8%) patients were male (mean age, 62.3
± 12.9 years).

Radiomic Feature Selection and Prediction
of Radiomics Signature
By means of ANOVA/MW, Spearman rank correlation
coefficient, and LASSO Cox regression analysis, six features were
selected from 396 radiomic features (Figure 2). The selected
six features were standard deviation, inertia of GLCM, sum

FIGURE 3 | The AUCs of radiomics signature in differentiating pre-invasive and invasive GGNs in the training set and testing set.
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Entropy, high gray level run emphasis, size zone variability,
and low-intensity small area emphasis. The AUCs of radiomics
signature classifier were 0.865 (95% CI, 0.823–0.900) in the
training set and were 0.800 (95% CI, 0.724–0.863) in the testing
set (Figure 3). The rad-scores of invasive GGNs were larger than
that of pre-invasive GGNs (Figure 4).

Delta-Radiomics Analysis
Of the 107 pre-invasive GGNs patients, 48 patients were detected
at baseline and follow-up CT examination before surgeries,
including 30 patients in group A, 8 patients in group B, and
10 patients in group C. There was no statistical difference
in the six selected radiomic features in group A, while sum
entropy (p = 0.003) and size zone variability (p = 0.028)
had a significant difference between baseline and follow-up
examinations in group B. In group C, there was significant
difference in standard deviation (p = 0.005), sum entropy (p =

0.005), high gray level run emphasis (p = 0.012), and size zone
variability (p= 0.020) (Table 3).

There were 331 patients detected at baseline and follow-up CT
examinations in the 357 invasive GGNs, including 173 patients
in group A, 79 patients in group B, and 79 patients in group C.
There were statistical differences among three radiomic features,
namely, standard deviation (p= 0.007), sum entropy (p= 0.009),
and size zone variability (p = 0.013) in group A, while there was
statistical significance among four features, including standard
deviation (p = 0.007, p = 0.000, respectively), inertia of GLCM

FIGURE 4 | The rad-scores of invasive GGNs were larger than those of

pre-invasive GGNs.

(p = 0.030, p = 0.007, respectively), sum entropy (p = 0.000, p
= 0.000, respectively), and size zone variability (p = 0.000, p =

0.000, respectively) in both group B and group C (Table 3).
The delta-radiomic features between the baseline and final

follow-up CT examinations were calculated. Multivariate logistic
regression classifier of delta-radiomics in selected six features was
built. The AUC of classifier was 0.901 (95% CI, 0.867–0.928) in
differentiating pre-invasive from invasive GGNs (Figure 5).

The Intra-Observer Agreement
The radiologists with 10 and 15 years of CT diagnosis experience
delineated ROIs of all the images, respectively. The ICC was
calculated to evaluate the intra-observer agreement of feature
selection. The parameters of the selected six features from two
radiologists were compared. The intra-observer ICC ranged
from 0.782 to 0.913. ICC, which was >0.75, showed favorable
reproducibility of feature selection between different observers.

FIGURE 5 | The AUCs of delta-radiomics logistic classifier was 0.901.

TABLE 3 | The delta-radiomic features in different follow-up intervals.

p-value Standard deviation Inertia of GLCM Sum entropy High gray level Size zone Low-intensity

run emphasis variability small-area emphasis

Pre-invasive GGNs Group A 0.843* 0.351 0.792* 0.627 0.402* 0.440

Group B 0.103* 0.878* 0.003* 0.406* 0.028* 0.203*

Group C 0.005* 0.235* 0.005* 0.012 0.020* 0.952*

Invasive GGNs Group A 0.007 0.115 0.009 0.794 0.013 0.804

Group B 0.007 0.030 <0.001 0.809 <0.001 0.867

Group C <0.001 0.007* <0.001 0.931 <0.001 0.061

Group A: follow-up interval <6 months; group B: follow-up interval of 7–12 months; group C: follow-up interval of 13–24 months.

If continuous variables were normally distributed, Paired Student’s t-test was used (*), while Wilcoxon rank sum test was performed. p < 0.05 had significant difference.

Bold values signifies p < 0.05.
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DISCUSSION

With the development of CT examination, GGNs have been
more frequently detected and became a major concern. Studies
have proven that it may take several years in process from
AAH to IAC by stepwise progression (21). Early diagnosis of
GGNs has great therapeutic significance in patient management.
How to identify pre-invasive GGNs and invasive GGNs remains
a challenge for radiologists. Lee et al. concluded that the risk
of GGNs’ invasiveness gradually increased with the increase
of maximal diameter (22). However, the optimal time of
intervention based on the maximal diameter of GGN remains
to be studied. In a previous study, a significant proportion
of GGNs showed an indolent course for more than 2 years
without size increase (23). Recent evidence suggests that GGNs
have different natural histories, including growing up, shrinkage,
or remaining stable for long periods (24). Therefore, visual
evaluation of CT imaging characteristics is insufficient to
differentiate pre-invasive GGNs from invasive GGNs. Radiomics
signature as a new emerging quantitative method is necessary to
reevaluate diagnostic performance in distinguishing pre-invasive
and invasive GGNs.

In our study, we proposed a novel 3D radiomics signature
analysis to classify GGNs, with an AUC of 0.865 in the training
set and an AUC of 0.800 in the testing set. Most studies
in either radiomic analysis or conventional CT characteristics
analysis have only focused on 2D axial CT images previously.
Meanwhile, our study evaluated the natural course of GGNs
based on delta-radiomic features measured on 3D whole tumor.
Due to the asymmetric growth pattern, 3D computer-aid analysis
offers obvious advantages for accurate distinguishing. To avoid
bias, we compared the six selected radiomic features from two
radiologists. The intra-observer ICC, which ranged from 0.782
to 0.913, indicated favorable intra-observer agreement in feature
extraction. Accordingly, questions have been raised about the
low sensitivity, specificity, and AUC of conventional CT analysis
in discriminating (6). It is becoming increasingly important to
take radiomic analysis to monitor GGNs. We synchronized all
the selected radiomic features into an indicator of rad-score.
The rad-scores of invasive GGNs were higher than those of
pre-invasive GGNs.

The Fleischner Society guidelines for the management of solid
nodules were published in 2005, and separate guidelines for
subsolid nodules were issued in 2013 (25). However, awareness
and conformance to Fleischner guidelines vary considerably, and
overmanagement or additional examinations are common (1).
The management of pulmonary GGNs remains a challenge with
some controversial issues. Tumor growth may be inconstant
throughout the tumor’s natural course as it reflects the expression
of more aggressive elements (26). Nonetheless, single volume
or intensity measurements at different follow-up time points
are inadequate. Our study focuses on the delta-radiomics of
GGNs from baseline to follow-up. For invasive GGNs, three
radiomic features already have significant difference in group
A with the follow-up interval of 0–6 months, while there is no
significant difference in radiomic features for pre-invasive GGNs

in group A. Two and four radiomic features have significant
difference in group B for pre-invasive and invasive GGNs,
respectively. Thus, as the follow-up interval goes on, more and
more radiomic features become different. These results could
assist in determining management and therapeutic strategies
for both pre-invasive and invasive GGNs. Multivariate logistic
regression analysis was used to evaluate the delta-radiomics in
discriminating invasiveness of GGNs. The corresponding ROC
curve was drawn to estimate the predictive accuracy of delta-
radiomics logistic classifier. The delta-radiomics had higher AUC
than radiomics signature in identifying invasive GGNs (0.901 vs.
0.865/0.800). It is important to note that follow-up examination
is of great significance in distinguishing pre-invasive GGNs and
invasive GGNs.

This study had several limitations. First, the follow-up
intervals between two consecutive CT examinations were
heterogeneous within 2 years. Obviously, the 2-years follow-
up period is insufficient for GGNs. Second, we abandoned the
GGNs that were followed-up without surgeries. This factor may
give rise to selecting bias. Third, the small vessels located in
the GGNs cannot be excluded during the segmentation process,
though the vessels contiguous to lesion contours were removed
manually. Fourth, multi-central prospective studies are necessary
to confirm the conclusion in this study.

In conclusion, radiomics signature helps differentiate pre-
invasive GGNs from invasive GGNs. The rad-scores of invasive
GGNs are larger than those of pre-invasive GGNs. With the
follow-up interval prolongs, the delta-radiomic features increase.
The delta-radiomics analysis has a higher AUC than radiomics
signature in identifying invasive GGNs.
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