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Introduction: Patients with locally advanced rectal cancer (LARC) are undergoing

neoadjuvant chemoradiotherapy (NCRT) prior to surgery. Although in some patients the

NCRT is known to prevent local recurrence, it is also accompanied by side effects.

Accordingly, there is an unmet need to identify predictive markers allowing to identify

non-responders to avoid its adverse effects. We monitored circulating tumor DNA

(ctDNA) as a potential liquid biopsy-based biomarker. We have investigated ctDNA

changes plasma during the early days of NCRT and its relationship to the overall

therapy outcome.

Methods and Patients: The studied cohort included 36 LARC patients (stage II or

III) undergoing NCRT with subsequent surgical treatment. We have detected somatic

mutations in tissue biopsies taken during endoscopic examination prior to the therapy.

CtDNA was extracted from patient plasma samples prior to therapy and at the end of

the first week. In order to optimize the analytical costs of liquid-biopsy testing, we have

utilized a two-level approach in which first a low-cost detection method of denaturing

capillary electrophoresis was used followed by examination of initially negative samples

by a high-sensitivity BEAMING assay. The ctDNA was related to clinical parameters

including tumor regression grade (TRG) and TNM tumor staging.

Results: We have detected a somatic mutation in 33 out of 36 patients (91.7%).

Seven patients (7/33, 21.2%) had ctDNA present prior to therapy. The ctDNA positivity

before treatment reduced post-operative disease-free survival and overall survival by

an average of 1.47 and 1.41 years, respectively (p = 0.015, and p = 0.010). In all

patients, ctDNA was strongly reduced or completely eliminated from plasma by the

end of the first week of NCRT, with no correlation to any of the parameters analyzed.
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Conclusions: The baseline ctDNA presence represented a statistically significant

negative prognostic biomarker for the overall patient survival. As ctDNA was reduced

indiscriminately from circulation of all patients, dynamics during the first week of NCRT

is not suited for predicting the outcome of LARC. However, the general effect of rapid

ctDNA disappearance apparently occurring during the initial days of NCRT is noteworthy

and should further be studied.

Keywords: rectal cancer, neoadjuvant chemoradiotherapy, circulating tumor ctDNA, prediction, prognosis,

response, biomarker

INTRODUCTION

Current treatment of rectal cancer is based on a multimodal
approach involving surgery, radiation, and systemic therapies (1).
The actual therapeutic decision process is based on a precise
disease staging with early tumors being preferentially considered
for direct surgical treatment. Patients with locally advanced
rectal cancer (LARC), that is, stages II and III, should undergo
radiation in combination with systemic chemotherapy prior to
surgery. This neoadjuvant chemoradiotherapy (NCRT) typically
includes 5-fluoropyrimidine administered within either a “long
regimen” involving a total dosage 50.4Gy (45Gy split into 25
fractions received within 5 weeks and initial boost 5.4Gy) or a
“short regimen” of 25Gy in five fractions during the first week.
Although records show that NCRT in general does not improve
the overall survival (OS), it reduces the local recurrence of RC to
under 10% of all cases (2). Patients showing appropriate response
to NCRT have a significantly better prognosis in the long-term
perspective (3, 4).

The clinical and laboratory evaluation following NCRT
includes endoscopic examination, MRI, and histopathology (5).
The objective response to NCRT may include (i) a complete
elimination of the tumor, (ii) partial regression of the tumor size,
(iii) elimination or reduction of the number of tumor-positive
lymph nodes in themesorectum, or (iv) any combination thereof.
Although a complete clinical response is found in 15–30% of all
cases and partial response is reached in 20–5% of all patients, half
of the tumors will remain principally unaffected following NCRT
(3, 4). At the same time, however, it is known that NCRT induces
a variety of adverse side effects, most importantly development
of fibrosis due to the post-radiative pelvic damage leading to
impairment of the anal sphincter, leading to incontinence and
erectile dysfunction. It is also associated with post-operative
complications and worsening of post-operative functional results
(6, 7). In order to avoid and/or minimize the adverse effects
of NCRT, it is highly desirable to modify or even eliminate
preoperative NCRT in potential non-responders.

Abbreviations: CEA, carcinoembryonic antigen; cfDNA, cell-free DNA; CRC,

colorectal cancer; CT, computed tomography; ctDNA, circulating tumor DNA;

DCE, denaturing capillary electrophoresis; DWI, diffusion-weighted imaging;

LARC, locally advanced rectal cancer; MRI, magnetic resonance imaging;

NCRT, neoadjuvant chemoradiotherapy; RC, rectal cancer; TNM staging, TNM

Classification of Malignant Tumors; TRG, Dworak histopathological tumor

regression grade.

Identification of patients non-responding to NCRT has

recently become a focus of sustained clinical research. A
wide spectrum of approaches has been investigated including
application of various predictive markers. The traditional clinical

parameters such as tumor size and distance from anal margin
(evaluated by endoscopy and MRI) were complemented by
laboratory biomarkers comprising, for example, hemoglobin,

carcinoembryonic antigen (CEA) serum levels, or tumor-
infiltrating lymphocytes (8). Furthermore, use of a contrast MRI
with diffusion-weighted imaging (DWI), which accounts for

perfusion and cellular density and thus reflects tumor biology,
has also been utilized. However, to this point, study results have

been generally contradictory (9–15).
More recently, a role of molecular genetic markers of NCRT

response prediction was investigated. Among others, variants
of the KRAS gene (MIM# 190070), which is mutated in 30–
60% sporadic colorectal cancer (CRC), are the most frequently

studied genetic “biomarkers” (16). Activating pathogenic variants
(henceforward termed in legacy nomenclature “mutations”) in

KRAS are associated with poor response to biological therapy as
monitored by monoclonal anti-epidermal growth factor receptor

(anti-EGFR) antibodies (17). Several studies have assessed KRAS
as a predictive marker for the therapeutic effect of NCRT,
indicating better response of the wild type over its mutated

alleles (18, 19). This concept, however, has not been confirmed
by others (20, 21). In addition, because mutations in the TP53

gene (MIM# 191170) have also been frequently observed in CRC,
it was suggested that it could serve as a potential predictor of

resistance to NCRT. Several groups implied that TP53 gene wild-
type constitution and a lower expression of the p53 protein
product are both associated with proper therapeutic response

(22–24). Nonetheless, these studies have not been universally
accepted, and further studies are needed (25, 26).

Detection of DNA circulating in the blood of patients [cell-

free DNA (cfDNA)] has recently gained considerable interest
as a potentially new class of molecular markers in the area
of cancer diagnostics and management (27). CfDNA consists
of short DNA fragments released from decomposing tumor
cells mainly through necrotic and apoptotic processes as well
as active endosomal release. Its levels are significantly elevated
in organisms undergoing cellular decomposition induced by
immune response such as owing to infection or inflammation as
well as cancer. The typical levels of cfDNA range approximately
from 10 to 100 ng/ml of plasma (∼3,000–30,000 DNA copies/ml)
in healthy individuals up to mg/ml levels in cancer patients (28).
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The part originating from cancerous cells is referred to as a
circulating tumor DNA (ctDNA). CtDNA, which represents only
a very small fraction of the overall cfDNA, typically contains
somatic mutations, which are only present in tumor and not
in the “healthy” cells, hence, presents an alternative source for
predictive cancer-specific mutation detection. This fact has been
intensely investigated giving rise to a whole new area of ctDNA
“liquid biopsy-based” diagnostic strategies. Aside from being
used as an alternative source of material for tumor diagnostics,
the relative changes in ctDNA levels are known to correlate
with the overall tumor burden in a given patient, thus indirectly
reflecting the overall size and number of cancerous lesions
present in the body (29). Therefore, ctDNA evaluation has a great
potential as a marker for monitoring the disease and course of
the treatment (30). It has long been recognized that in a positive
response to chemotherapy, the ctDNA is reduced or eliminated
completely from the peripheral circulation (31–33).

According to recent reports, the natural kinetics of cfDNA
levels in blood is a bimodal process in which initially high levels
are rapidly decreasing within minutes as the cfDNA fragments
are being distributed across highly vascularized organs/tissues
and in other biological fluids followed by a period of slower
elimination processes (34). The elimination process is through
DNA degradation by ribonucleases present in the blood with a
typical half-life of 1.5–3 h. The equilibrium between release and
elimination supports the use of cfDNA as a marker of concurrent
processes taking place in the body. It is universally accepted
that tumors responding to radiotherapy exhibit cell damage
leading to necrosis by which DNA is rapidly released into the
bloodstream. Hence, upon administration of the radiotherapy,
ctDNA levels should rise momentarily before being removed
from the circulation by natural homeostatic processes.

In this study, we investigated tumor-derived DNA in plasma
(ctDNA) in a pilot cohort of patients with LARC undergoing
NCRT. The aim of the present work was to observe changes in
ctDNA levels in rectal cancer patients during the initial days of
the NCRT treatment and to correlate these to the overall clinical
outcome of RC therapy.

PATIENTS AND METHODS

Patient Cohort and Neoadjuvant
Chemoradiotherapy Therapy
Our prospective study included 36 patients with LARC who had
been recruited between 2013 and 2017. The group included 27
men and 9 women with an average age of 64.1 years, capable
of undergoing repeated blood sampling during therapy. Patient
characteristics are listed in Table 1. The study protocol was
approved by the ethics committee of Motol University Hospital,
and patients confirmed their study participation by signing an
informed consent form. Upon initial recommendation of the
committee, only patients with good performance status and
compliance were included in the study.

Initial endoscopic biopsy was performed, and the tumor was
histologically verified. Staging of the disease was determined
based on the CT andMRI (Table 1), and the respective treatment

was protocol based on these examinations. Tumor tissues
(typically a total of three samples acquired by biopsy forceps)
collected during the initial endoscopy prior to oncological
treatment were immediately post-operatively frozen at −30◦C
and sent to the collaborating laboratory for genetic testing.
Subsequently, tumor tissues were examined for the presence
of the most common mutations previously observed in CRC
(comprising KRAS /MIM# 190070/, TP53 /MIM# 191170/,
APC /MIM# 611731/, PIK3CA /MIM# 171834/, BRAF /MIM#
164757/, and CTNNB1 /MIM# 166806/). Plasma was obtained
by centrifugation from blood samples taken prior to and
during NCRT.

All patients underwent NCRT consisting of 50.4Gy of
radiation and concomitant administration of XelodaTM

(capecitabine) at a dose of 825 mg/m2. Irradiation was carried
out by 25 fractions with initial boost of 5.4Gy. At the end of the
first week of NCRT, another blood sample was taken for ctDNA
examination. A control MRI of the pelvis was performed 6 weeks
after termination of NCRT. At 8–10 weeks after the end of NCRT,
all patients with LARC underwent surgery. Biopsy samples were
evaluated in detail by an expert histopathologist using standard
TNM staging. In addition, the “Dworak histopathological tumor
regression grade” (TRG) was also determined. Patients were
followed up for at least 3 years after surgery. Standard tumor
marker examination, colonoscopy, and computed tomography
(CT) imaging were performed at regular intervals.

Tissue and Circulating Tumor DNA
Mutation Testing
DNA extraction from tumor tissue bioptates and plasma
was performed using standard spin-column procedures. A
GenEluteTM Mammalian Genomic DNA Miniprep Kit (Sigma
Aldrich, St. Louis, Missouri, USA) was used for extraction
from the tissue samples. Extraction of ctDNA from blood
plasma samples was performed using NucleoSpin Plasma XS
kit (Macherey-Nagel, Düren, Germany), the volume of plasma
processed was 600 µl, yielding typically between 5 and 50 ng of
cfDNA per sample determined by Qubit 2.0 Fluorometer (Life
Technologies, Camarillo, CA).

Similarly to works of others (31–33), the mutation analysis
of tissue samples was focused on a panel of selected oncogenes,
with the highest proportion of somatic mutations in rectal cancer
according to the international “COSMIC database” (https://
cancer.sanger.ac.uk/cosmic). This panel included the hotspots in
KRAS, BRAF, PIK3CA, and CTNNB1, as well as selected areas
of tumor suppressor genes APC (mutation cluster region) and
TP53 (exons 5–8). Mutation analyses were performed using the
denaturing capillary electrophoresis (DCE) method using the
previously described experimental parameters (35–38). Somatic
mutations detected in the tissue samples were subsequently
examined in samples of cfDNA obtained from plasma. Genetic
testing was conducted using two separate methods as discussed
further. A subgroup of ctDNA samples assigned as negative
by DCE method (39) was subsequently retested using a high-
resolution “BEAMING assay” (40) directed at the detection of
KRAS-specific ctDNA and provided by an external contracted
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TABLE 1 | Patient characteristics.

TNM staging I TNM staging II

Patient Gender Age Stage T N M T N M L TRG Mutation Baseline ctDNA

1 M 68 2 3 0 0 3 0 0 3 2 TP53 0

2 M 63 2 3 0 0 0 0 0 1 4 KRAS 0

3 M 73 3 3 1 0 3 2a 0 2 2 KRAS+APC 0

4 M 74 2 3 0 0 3 2a 0 2 1 KRAS 0

5 F 73 3 3 1 0 2 0 0 2 2 PIK3CA 0

6 M 64 3 4 1 0 3 1c 0 3 1 APC 0

7 M 62 3 3 1 0 3 2b 0 3 2 TP53+APC 0

8 F 36 3 3 1 0 2 0 0 2 2 APC 0

9 F 61 3 3 1 0 0 0 0 2 4 TP53 0

10 M 70 3 3 1 0 2 0 0 2 2 KRAS+PIK3CA 0

11 M 64 2 3 0 0 2 0 0 2 3 0 0

12 M 79 2 3 0 0 3 1a 0 2 2 TP53 0

13 F 59 2 3 0 0 3 0 0 2 1 KRAS+TP53 0

14 M 61 3 3 1 0 3 2a 0 2 1 KRAS+TP53 x

15 M 62 2 3 0 0 3 0 0 3 2 TP53/PIK3CA 0

16 M 53 3 3 1 0 3 1a 0 2 2 APC 0

17 M 79 2 3 0 0 2 0 0 1 2 KRAS 0

18 M 64 2 3 1 0 3 1a 0 2 2 TP53 0

19 M 72 3 2 1 0 2 2b 0 3 2 BRAF/TP53 0

20 F 30 3 1 1 0 1 1b 0 2 1 KRAS/TP53 x

21 F 64 3 2 1 0 1 0 0 2 2 KRAS/APC 0

22 M 60 3 3 1 0 3 0 0 2 2 0 0

23 F 74 3 3 1 0 3 2b 0 2 1 KRAS 0

24 M 63 3 3 1 0 1 0 0 2 2 TP53 0

25 M 74 3 3 1 0 1 0 0 1 2 KRAS x

26 F 66 2 4 0 0 2 0 0 3 1 KRAS x

27 M 52 3 3 1 0 2 0 0 2 1 KRAS/APC x

28 M 64 2 3 0 0 2 1c 0 2 3 KRAS x

29 M 83 3 3 1 0 3 2a 0 1 2 KRAS x

30 M 74 3 3 2 0 3 0 0 2 1 KRAS 0

31 M 62 3 3 2 0 3 2 0 2 1 TP53 0

32 F 63 3 3 1 0 0 0 0 3 4 APC 0

33 M 58 3 3 1 0 2 0 0 3 2 KRAS 0

34 M 58 3 3 0 0 3 0 0 3 2 KRAS 0

35 M 63 3 3 1 0 2 1 0 1 1 KRAS 0

36 M 62 3 3 1 0 3 0 0 3 2 0 0

ctDNA, circulating tumor DNA; Stage, clinical stage of the disease; TNM staging I, before treatment; TNM staging II, after surgery according to histopathology report; L, tumor location

(1, upper rectum; 2, middle rectum; 3, lower rectum); TRG, tumor regression grade according to Dworak (0, no response; 1, minimal response; 2, moderate response; 3, near complete

response; 4, complete response).

laboratory (Department of Pathology, Jessenius Medical Faculty
of Comenius University in Martin, Slovakia). The details of the
multilevel ctDNA testing approach are illustrated in Figure 1 and
further detailed in the Discussion section.

Statistical Methods
All statistical analyses were performed using R language for
statistical computing and graphics (41). Associations between
survival period and other predictors such as the presence of
ctDNA prior and during NCRT were analyzed using the Cox
proportional hazard model and t-tests and plotted using boxplots

and Kaplan–Meier curves, respectively. Outputs with p-values
below 0.05 were assumed to be statistically significant.

RESULTS

The objective response to NCRT is included in patient
characteristics listed in Table 1. The best response characterized
by Dworak TRG score of 3 or 4 was observed in five patients
(5/36, 13.9%), whereas 11 patients (11/36, 30.5%) showed none
or very limited tumor regression (TRG score 0 or 1). Both results
were in a range of typically observed response frequencies as
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FIGURE 1 | A multilevel cascade testing algorithm for evaluation of circulating tumor DNA (ctDNA) involving standard [denaturing capillary electrophoresis (DCE)] and

high-sensitivity (BEAMING*) approaches. *The BEAMING technology was performed using an experimental setting on a set of archived ctDNA samples. This research

setting is different from that of protocols applied in regular testing under the IVD-CE certification.

described by others (3, 4). When evaluating the effect of NCRT
on the disease stage, some patients exhibited a shift toward the
lower TNM (such as that illustrated in Figures 2, 3) mainly owing
to the reduction of tumor mass and nodal status.

As the tumor tissue biopsies were evaluated prior to therapy,
somatic mutations were detected in samples from 33 out of
36 patients (91.7%) using the six-gene panel. As expected, the
mutation testing has revealed the presence of combinations of
multiple mutations, mainly with concurrent presence of KRAS
or TP53 with another mutation type (shown in Table 1). There
was no relation between the presence of a specific mutation (or
a mutation combination) in the tumor tissue and the ultimate
outcome of NCRT evaluated by either TRG or TNM staging.

With the combination of the low-resolution and high-
resolution methods, ctDNA was detected in plasma samples of
seven patients prior to NCRT (7/33, 21.2%), and it showed a
prognostic role. Whereas, the overall probability of a 3-year
survival in all patients was 86.7%, the value was 91.2% in ctDNA-
negative subgroup and 71.4% in ctDNA-positive subgroup.
Hence, as shown using boxplots in Figure 4, comparing both
groups of patients with positive and negative ctDNA and not
considering the time-event dimension and proved by t-tests, the
ctDNA-positive status prior to NCRT was significantly associated
with an shorter disease-free survival (DFS) and a shorter OS by
an average of 1.47 and 1.41 years, respectively [t(DFS) = 2.95,
df(DFS) = 9.88, p(DFS) = 0.015 (approx.), and t(OS) = 3.15,
df(OS) = 10.31, p(OS) = 0.010 (approx.)]. The effect is further

documented within, assuming the time-event associations by
Kaplan–Meier analysis for DFS and OS (Figure 5).

The early dynamics of ctDNA revealed an interesting
phenomenon as shown in Figure 6. Surprisingly, during the first
week of NCRT, ctDNA has been indiscriminately eliminated
or significantly reduced from circulation in all patients.
Accordingly, there was no association between the change
in ctDNA levels (before and during NCRT) and TRG or
TNM staging.

DISCUSSION

In this pilot study, we aimed to provide additional evidence of
the effect of NCRT in LARC using various predictive biomarkers.
There were several reports in the literature investigating the
association between the presence of cfDNA as well as ctDNA and
the prediction of an NCRT therapeutic response in rectal tumors.
Zitt et al. evaluated cfDNA levels in LARC before and after NCRT
and following surgical interventions (42). Studied cases were
divided into NCRT non-responders and responders. The median
level of pretreatment cfDNA was 4.2 ng/ml, after termination of
CRT 1 ng/ml, and after surgery 4.1 ng/ml. The authors found that
pretreatment levels of cfDNA of non-responders and responders
do not significantly differ. At the end of treatment, cfDNA levels
were higher in the non-responder cohort. In almost all patients,
cfDNA levels substantially decreased toward the end of the NCRT
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FIGURE 2 | MRI of the rectal tumor (initially T3, N1) before (A) and after (B)

treatment. Arrows show tumor and enlarged lymph node. After treatment, no

tumor and lymph nodes are presented (complete clinical tumor response).

regimen. However, themajor limitation of this study is the overall
small number of analyzed cases (n= 26).

In 2011, Agostini et al. published a set of 67 cases with
LARC (43). These clinical investigators measured cfDNA levels
before, during, and after NCRT. They determined the total
cfDNA concentration and the proportion of long and short
DNA fragments, thus establishing a “DNA integrity index.” Like
Zitt et al., also, these authors did not observe a significant
correlation between the pretreatment cfDNA levels and the
response to NCRT. However, they provided evidence that NCRT
responders had a significantly lower DNA integrity index than
non-responders following NCRT.

Sun et al. have verified that cfDNA levels in CRC patients are
significantly higher than in healthy subjects (44). Furthermore,
they determined the plasma concentration of two DNA
fragments (100 and 400 bp) before and after NCRT, and they
found that the 400-bp fragment concentration was significantly
lower in the responder group after termination of NCRT, thus
demonstrating a higher level of fragmentation.

Carpinetti et al. performed whole-genome sequencing of
tumor DNA and thus determined specific DNA fragments
for each of four patients (19). The authors searched for
ctDNA fragments in patients’ plasma and demonstrated that in

FIGURE 3 | Illustration of a complete therapy response in a patient.

Pretreatment endoscopic examination of the tumor (A) and surgical

specimen (B).

patients with good treatment response, ctDNA levels decreased
during NCRT. When ctDNA increased again, it was associated
with cancer progression and preceded the rise of CEA and
the manifestation of recurrence detected by various imaging
approaches. However, this study suffers from a rather small
number of analyzed cases. Similarly, Li et al. detected ctDNA
levels before and during NCRT. In this study, the prediction
of treatment response based on ctDNA positivity before NCRT
was 70% (45). On the contrary, Yang et al., in a larger
group of patients, did not confirm the association between the
pretreatment level of ctDNA and the response to NCRT in
patients with RC (46).

In our study, we have hypothesized that early changes in
plasma ctDNA reflect the immediate effect of NCRT and thus
will be of utility in predicting its therapeutic efficiency. Hence,
we expected that upon evaluation of ctDNA plasma dynamics, we
will be able to differentiate NCRT non-responders, sparing them
from adverse effects of continued/aggressive cancer treatment
schemes. Accordingly, we have determined the ctDNA levels
prior to NCRT and immediately at the end of the first week of
NCRT. In addition, we aimed to find potential correlations with
mutations in a panel of six commonly examined genes.
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FIGURE 4 | Impact of pretreatment circulating tumor DNA (ctDNA) positivity

on disease-free survival (A) and overall survival (B) of locally advanced rectal

cancer (LARC) patients.

A large variation in baseline ctDNA positivity is apparent
from previous reports ranging from 15 to 77% in various
groups of LARC patients (47). In order to reduce high cost
associated with liquid biopsy testing to enable for future cost-
effective routine diagnostic approach, we have in this work
employed a “cascade” approach (Figure 1). In this regard, we
have always started evaluation with a relatively very simple and
fast singleplex PCR method that required only a relatively small
amount of samples (600 µl of plasma). This “Level 1” method,
the DCE, was capable of revealing a ctDNA presence at >1%
of minor allele fraction (MAF) (39, 47) in just 2 h. In case of

FIGURE 5 | Probability of disease-free survival (A) and overall survival (B) in

locally advanced rectal cancer (LARC) patients according to circulating tumor

DNA (ctDNA) status prior to the therapy onset.

a negative result, we performed in “Level 2” a high-resolution
BEAMING assay. BEAMING (which stands for beads, emulsion,
amplification, and magnetics) utilizes a digital droplet PCR
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FIGURE 6 | Dynamics of circulating tumor DNA (ctDNA) during the first week

of neoadjuvant chemoradiotherapy (NCRT). The ctDNA quantity is presented

as a percentage of DNA fragments bearing tumor-specific mutation detected

in plasma [denoted as minor allele fraction (MAF)].

resulting in amplified product of individual ctDNA fragments
being bound to individual magnetic beads and subsequently
detected by flow cytometry. The approach, which is performed
using a dedicated instrumentation, exhibits sensitivities down
to 0.01% (MAF) on residual amounts of archived ctDNA that
were left after DCE Level 1 testing. In this study, only patients
exhibiting tumors with KRAS mutation could be subjected to
Level 2 testing, owing to the specificity of the BEAMING
technology. Level 1 (DCE) testing revealed ctDNA positivity in
five patients (5/30, 16.7%), and Level 2 (BEAMING) revealed
ctDNA positivity in two more patients (2/4, 50%). The overall
yield from this multilevel testing approach was 23.3% (7/30),
mainly due to the limitation of BEAMING testing directed
at KRAS ctDNA mutations only. Indeed, other high-sensitivity
alternative techniques would improve this; nonetheless, the
obtained frequency is comparable with previously observed
results for stages II and III in rectal cancer (29).

Contrary to our expectations, we have not observed any
predictive correlation between the baseline ctDNA levels and
the actual outcome of NCRT in terms of TRG or TNM staging.
Yet when the prognostic effect was evaluated, patients showing
baseline ctDNA positivity have exhibited a shorter progression-
free survival and OS (Figure 6). This is in agreement with
previous work by Tie et al., who have reported ctDNA as
a negative prognostic factor for the overall patient survival
(48). For most ctDNA-positive patients, imaging has, indeed,
subsequently revealed a presence of previously unrecognized
micrometastatic sites. The ctDNA positivity should therefore be
considered to guide therapy-related decisions following surgical

treatment as similarly applied in breast (49) or colorectal cancer
(50, 51).

Intriguingly, in all patients, we have observed a strong
reduction or complete elimination of ctDNA at the end of the
first NCRT week. Counterintuitively, ctDNA levels were reduced
regardless of the eventual clinical outcome. Apparently, this
unequivocal rapid ctDNA clearance following the therapy dose
suggests presence of a more general phenomenon not related to
the actual patient characteristics or specific tumor biology. The
ctDNA removal from plasma is primarily a result of enzymatic
digestion (34, 52). It has been reported recently that some DNA
exonucleases active in DNA repair are released as a result of
radiation damage (53). It can only be speculated that such
a radiation-induced activity of exonucleases could result in a
temporal effect of ctDNA clearance following the administration
of NCRT. In order to elucidate the aforementioned phenomena,
ctDNA monitoring should be performed at even shorter
time intervals. Although most papers describing the use of
ctDNA in palliative chemotherapy (54, 55) and, more recently,
immunotherapy (56) apply monitoring with initial sampling at
day 7 or later, it may well be necessary to perform examination
at even shorter intervals of days or hours from the therapy
start, respectively. Recently, a similar approach directed at
the evaluation of ctDNA in urine has recently been recently
applied for monitoring of daily dynamics of tumor response
to targeted anticancer therapy in non-small-cell lung cancer
(NSCLC) (57). When performed during the initial phase of the
NCRT, possibly within hours from receiving the first radiation
fraction together with chemotherapy and continuing for the next
several days, such approach could substantiate ctDNA dynamics
underlying eventual transient changes in tumor morphology
and its damage, including subsequent ctDNA uptake resulting
from the administered multimodal therapy. Thus, understanding
of the detailed timing of ctDNA release and clearance may
be essential for the long-awaited applicability of the ctDNA-
based therapy outcome prediction for NCRT treatment of LARC
patients (58) and beyond.

CONCLUSIONS

In the present work, we have demonstrated the utility of
monitoring of early changes in ctDNA levels in patients with
LARC undergoing NCRT prior to surgical treatment. By applying
a multilevel ctDNA detection approach, we were able to monitor
ctDNA dynamics in seven patients receiving NCRT. We have
evaluated the previously reported preoperative presence of
ctDNA as a negative prognostic factor, which may be useful in
direction of patients for adjuvant therapy following surgery.

We have observed a clear reduction of ctDNA levels in all
patients during the initial week of NCRT, but without any direct
association to the objective clinical response evaluated by TRG
or TNM. As a consequence, we could not predict the response
to preoperative NCRT in LARC on the basis of the ctDNA
levels. Although such observations might exclude the use of early
ctDNA changes as a predictive biomarker of NCRT outcome, our
findings may open new research avenues on the mechanisms of
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ctDNA release and clearance upon cellular damage due to the
combined effects of chemoradiation.
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