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Cancer is an umbrella term that includes a range of disorders, from those that are

fast-growing and lethal to indolent lesions with low or delayed potential for progression

to death. One critical unmet challenge is that molecular disease subtypes characterized

by relevant clinical differences, such as survival, are difficult to differentiate. With the

advancement of multi-omics technologies, subtyping methods have shifted toward data

integration in order to differentiate among subtypes from a holistic perspective that takes

into consideration phenomena at multiple levels. However, these integrative methods

are still limited by their statistical assumption and their sensitivity to noise. In addition,

they are unable to predict the risk scores of patients using multi-omics data. Here,

we present a novel approach named Subtyping via Consensus Factor Analysis (SCFA)

that can efficiently remove noisy signals from consistent molecular patterns in order to

reliably identify cancer subtypes and accurately predict risk scores of patients. In an

extensive analysis of 7,973 samples related to 30 cancers that are available at The

Cancer Genome Atlas (TCGA), we demonstrate that SCFA outperforms state-of-the-art

approaches in discovering novel subtypes with significantly different survival profiles. We

also demonstrate that SCFA is able to predict risk scores that are highly correlated with

true patient survival and vital status. More importantly, the accuracy of subtype discovery

and risk prediction improves when more data types are integrated into the analysis. The

SCFA software and TCGA data packages will be available on Bioconductor.

Keywords: multi-omics integration, risk score prediction, cancer subtyping, survival analysis, factor analysis

1. INTRODUCTION

After 20 years of cancer screening, the chance of a person being diagnosed with prostate
or breast cancer has nearly doubled (1–4). However, this has only marginally reduced
the number of patients with advanced disease, suggesting that screening has resulted in
the substantial harm of excess detection and over-diagnosis. At the same time, 30–50%
of patients with non-small cell lung cancer (NSCLC) develop recurrence and die after
curative resection (5), suggesting that a subset of patients would have benefited from
more aggressive treatments at early stages. Although not routinely recommended as the
initial course of treatment, adjuvant and neoadjuvant chemotherapy have been shown to
significantly improve the survival of patients with advanced early-stage disease (6–8). The
ability to prognosticate outcomes would allow us to manage these diseases better: patients
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whose cancer is likely to advance quickly or recur would receive
the necessary treatment. The important challenge is to discover
the molecular subtypes of disease and subgroups of patients
(9–12).

Cluster analysis has been a basic tool for subtype discovery
using gene expression data. These include hierarchical clustering
(HC), neural networks (13–17), mixture model (18–20), matrix
factorization (21, 22), and graph-theoretical approaches (23–
25). Arguably, the state-of-the-art approach in this area is
Consensus Clustering (CC) (26, 27), which is a resampling-based
methodology of class discovery and cluster validation (28–30).
However, these approaches are not able to combine multiple
data types. Although analyses on a single data type could reveal
some distinct characteristics for different subtypes, it is not
sufficient to explain the mechanism that happens across multiple
biological levels.

With the advancement of multi-omics technologies, recent
subtyping methods have shifted toward multi-omics data
integration. The goal is to differentiate among subtypes
from a holistic perspective, that can take into consideration
phenomena at various levels (e.g., transcriptomics, proteomics,
epigenetics). Thesemethods can be grouped into three categories:
simultaneous data decomposition methods, joint statistical
models, and similarity-based approaches. Methods in the
first category (data decomposition) include md-modules (31),
intNMF (32), and LRAcluster (33). These methods assume that
there exist molecular patterns that are shared across multiple
types of data. Therefore, these methods aim at finding a low
dimensional representation of the high-dimensional multi-omics
data that retains those patterns. For example, both md-modules
and intNMF utilize a joint non-negative matrix factorization
to simultaneously factorize the data matrices of multiple data
types. In their design, the basis vectors are shared across all
data types while the coefficient matrices vary from data type to
data type. These two methods, md-modules and intNMF, only
differ in the way they iteratively estimate the coefficient matrices.
Another method is LRAcluster, which applies the low-rank
approximation and singular vector decomposition to generate
low dimensional representations of the data and then performs
k-means clustering to identify the subtypes. These methods
strongly rely on the assumption that all molecular signals can be
linearly and simultaneously reconstructed.

Methods in the second category (statistical modeling) include
BCC (34), MDI (35), iClusterBayes (36), iClusterPlus (37), and
iCluster (38, 39). These methods assume that each data type
follows a mixture of distributions and then integrate multiple
types of data using a joint statistical model. The parameters of
the mixture models are estimated by maximizing the likelihood
of observed data. These methods strongly depend on the
correctness of their statistical assumptions. Also, due to a large
number of parameters and iterations involved, the computation
complexity of statistical methods is usually extensive. Therefore,
these methods often rely on pre-processing and gene filtering to
ease the computational burden.

Methods in the third category (similarity-based) typically
construct the pair-wise connectivity between patients (that
represents how often the patients are grouped together) for

each data type and then integrate multiple data types by fusing
the individual connectivity matrices. As these methods perform
data integration in the sample space, their computational
complexity depends mostly on the number of patients, not
the dimensions of features/genes. Therefore, these methods are
capable of performing subtyping on a genomic scale. Methods
in this category include SNF (40), rMKL-DR (41), NEMO (42),
CIMLR (43), and PINS (44, 45). SNF creates a patient-to-patient
network by fusing connectivity matrices and then partitions
the network using spectral clustering (46). rMKL-DR projects
samples into a lower-dimensional subspace and then partitions
the patients using k-means. NEMO follows a similar strategy
with the difference is that it incorporates only partial data into
the integrative analysis. Though powerful, these methods do
not account for the noise and unstable nature of quantitative
assays. PINS and CIMLR follow two different strategies to
address noise and instability. PINS introduces Gaussian noise
to the data in order to obtain subtypes that are robust against
data perturbation. CIMLR combines multiple gaussian kernels
per data type to measure the similarity between each pair of
samples. The resulted similarity matrix is then subjected to
dimension reduction and k-means to determine the subtypes.
Though powerful, the similarity metrics used in these methods
(i.e., Gaussian kernel, Euclidean distance) make them susceptible
to noise and the “curse of dimensionality” (47) from the high-
dimensional multi-omics data.

Here we propose a novel approach, named Subtyping via
Consensus Factor Analysis (SCFA), that follows a three-stage
hierarchical process to ensure the robustness of the discovered
subtypes. First, the method uses an autoencoder to filter out
genes with an insignificant contribution in characterizing each
patient. Second, it applies a modified factor analysis to generate
a collection of factor representations of the high-dimensional
multi-omics data. Finally, it utilizes a consensus ensemble to
find subtypes that are shared across all factor representations.
The software package also includes a model based on Cox
regression and Elastic net that is able to predict the risk
scores of new patients. In an extensive analysis using 7,973
samples related to 30 different cancer diseases, we demonstrate
that our method outperforms other state-of-the-art methods in
discovering subtypes with significantly different survival profiles.
We also demonstrate that data integration indeed improves the
subtyping procedure as subtypes obtained from multi-omics
data have more significant Cox p-values than subtypes obtained
from individual data types. Finally, we demonstrate that the
method is able to predict the risk factor of new patients with
high accuracy.

2. METHODS

The high-level workflow of SCFA is shown in Figure 1. The
framework consists of two main modules: disease subtyping
(Figure 1A) and risk assessment (Figure 1B). The input of
the subtyping module is a list of data matrices (e.g., mRNA,
methylation, miRNA) in which rows represent patients while
columns represent genes/features. For each matrix, the method
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FIGURE 1 | Overall SCFA pipeline. (A) Cancer subtyping using multi-omics data. For each of the data matrix, SCFA repeatedly performs factor analysis to generate

multiple data representations with different numbers of factors. For each representation, SCFA clusters the data to construct a connectivity matrix. The method next

merges all connectivity matrices using an ensemble strategy to obtain the final clustering. (B) Risk prediction. SCFA is able to learn from training data (patients with

survival information) in order to predict risk scores of patients in testing data (patients without survival information). SCFA first merges training and testing sets together

and then performs factor analysis. Using the factor representations of the training set, the method trains a Cox regression model, which will be utilized to predict risk

factor of patients in the testing set.

first performs a filtering step using an autoencoder and then
repeatedly performs factor analysis (48) to represent the data
with different numbers of factors. By representing data with
different numbers of factors, we can improve on situations
where the projected data do not accurately represent the
original data due to noise. Using an ensemble strategy, SCFA
combines all of the factor representations to determine the
final subtypes.

In the second module, SCFA focuses on predicting the risk
scores of patients with unknown survival information. In this
module, SCFA combines factor analysis with Cox regression (49,
50) and elastic net (51) to build a prediction model. The method
first performs factor analysis on both training (patients with
survival information) and testing data (patients without survival
information) and then builds a Cox regression model, which can
be used to predict the risk scores of patients from the testing
data. By default, our software package includes data obtained
from The Cancer Genome Atlas (TCGA) that can be used as
the training data by default. However, users are free to provide
new training data. Using the training data, users can train the
model and then predict the risk score of new patients using
molecular data.

In the following sections, we will describe in detail the
techniques used in the SCFA framework: (i) dimension reduction
and factor analysis, (ii) the ensemble strategy for subtyping, and
(iii) Cox model and elastic net for risk assessment.

2.1. Dimension Reduction and Factor
Analysis
Bothmodules start with dimension reduction and factor analysis.
The purpose of dimension reduction is to remove features/genes
that play no role in differentiating between patients. This
technique was originally introduced in our scDHA method for
single-cell analysis (52). Briefly, we utilize a non-negative kernel
autoencoder which consists of two components: encoder and
decoder. The encoder aims at representing the data in a low
dimensional space whereas the decoder tries to reconstruct the
original input from the compressed data. By forcing the weights
of the network to be non-negative, we capture the positive
correlation between the original features and the representative
features. Selecting features with high variability in weights would
result in a set of features that are informative, non-redundant,
and capable of representing the original data.

After the filtering step using the non-negative autoencoder,
we perform another dimension reduction step using Factor
Analysis (FA) (48). In general, factor analysis aims at minimizing
the difference of feature-feature correlation matrix between the
latent space and original data. Correlation is a standardized
metric, where it takes into account the number of observations
and variance of the features during the calculation process.
This makes factor analysis robust against scaling and high
number of dimensions compared to traditional decomposition
such as principle component analysis (PCA), which uses
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Euclidean distance as the distance metric. To further improve the
performance of factor analysis, we adjust the objective of FA to
maintain the patient-patient correlation.

Starting with the original correlation matrix, FA finds k
(number of factors) largest principle components and tries to
reproduce the original matrix using those principal components
(model matrix). FA iteratively fits the model matrix to the
original matrix using optimization algorithms. In our model, we
employ the Minimum Residual (MINRES) optimization because
it copes better with the small and medium sample size of the
input data (53). Also, instead of preserving the relationship
between variables, we aim to maintain the overall patient-patient
relationships by preserving their Pearson correlations in the
representations. By changing the objective, the computational
power required is significantly lower as the number of patients (in
the scale of hundreds) is much lower than the number of features
(in the scale of tens of thousands). Moreover, maintaining the
distance between patients in the low dimensional representation
would be more beneficial for our desired applications. To
avoid overfitting, we repeatedly perform factor analysis with
different numbers of factors, resulting inmultiple representations
of each input matrix. In the clustering module (Figure 1A),
all factor representations of all data types (data matrices)
are combined using an ensemble strategy to determine the
subtypes. In the risk prediction module (Figure 1B), the factor
representations of the training data are combined to build the
prediction model.

2.2. Subtyping Using Consensus Ensemble
Given a collection of factor representations from all data types,
we aim at finding patient subgroups that are consistently
observed together in all representations (Figure 1A). For each
representation, we first determine the optimal number of clusters
using two indices: (i) the ratio of between sum of squares over the
total sum of squares, and (ii) the increase of within sum of squares
when the number of cluster increases (52). After the optimal
number of clusters is determined, we use k-means to cluster the
underlying factor representation to build a connectivity matrix.
To avoid the convergence to a local minimum, we perform k-
means clustering using multiple starting points and choose the
results with the smallest sum of square error. This process is
repeated for all of the representations to obtain a collection of
connectivity matrices for all data types.

Finally, we use the Weighted-based meta-clustering
algorithm (54) to combine all clustering results from each
data representation to determine the final subtyping. In short,
the meta-clustering first calculates the weight for each pair of
patients regarding their chance to be grouped together. Next, it
assigns a weight for each patient by accumulating the weights of
all pairs containing this patient. It then computes the weighted
cluster-to-cluster similarity from all connectivity matrices.
Finally, it partitions the cluster-to-cluster similarity matrix using
hierarchical clustering to determine the final subtypes.

2.3. Risk Score Prediction
The goal of this module is to calculate the risk score of new
patients using their molecular data. This is a supervised learning

method that learns from a training set in order to predict the
risk scores each patient in the testing set. More specifically, the
training set consists of a set of patients with molecular data (e.g.,
mRNA, methylation, miRNA) and known survival information
while the testing set consists of patients with only molecular data.
By default, we provide TCGA datasets in our package as training
data, but users are free to provide training data if necessary.
Using the training data, this module will train the Cox regression
model that can be used to predict the risk scores of new patients.
Below is the description of the method for one data type and for
multi-omics data.

Given a single data type as input, we merge the testing data
with training data and then perform dimension reduction and
factor analysis to generate multiple representations of this data.
For each representation, we use the training data to train the Cox
regression model. This model aims at estimating a coefficient βi

for each corresponding predictor xi of the input data. After the
model is trained, the risk scores for new patients can be calculated
as exp(

∑n
i=1 βixi), where n is the number of features in the factor

representation. In the Cox model, the risk score is defined as
h(t)
h0(t)

, where h(t) is the expected hazard at time t, and h0(t) is the

baseline hazard when all the predictors are equal zero. Patients
with a higher risk score are likely to suffer the event of interest
(e.g., vital status or disease recurrence) earlier than the one with
a lower risk score. Here we use elastic net (51) implemented in
the R-package “glmnet” (55) to fit the model to better cope with
the dynamic number of predictors. Elastic net linearly combines
Lasso and Ridge penalty during the training process to select only
the most relevant predictors that have important effects on the
response (the risk scores in this case). We use five-fold cross-
validation to select the parameters for the model. The final risk
score for each patient is the geometric average of the risk scores
resulted from all representations.

In the case of multi-omics data, we repeat the same process
(described above) for each data type. We perform factor analysis
to produce multiple representations, resulting in a collection
of representations from all data types. For a new patient, each
representation will produce an estimated risk score. The final risk
score for the patient is calculated as the geometric average of all
predictions from all representations.

3. RESULT

Here we assess the performance of SCFA using data obtained
from 7,973 patients related to 30 different cancer diseases
downloaded from The Cancer Genome Atlas (TCGA). For each
of the 30 cancer datasets, we downloaded mRNA, miRNA, and
methylation data. We also downloaded the clinical data for these
patients, which includes vital status and survival information.
Using clinical information, we assess the ability of SCFA in both
unsupervised subtyping and supervised risk prediction.

3.1. Subtypting on 30 TCGA Datasets
Here we compare the performance of SCFA with four state-of-
the-art methods: Consensus Clustering (CC) (26, 27), Similarity
Network Fusion (SNF) (40), Cancer Integration via Multikernel
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TABLE 1 | Cox p-values of subtypes identified by SCFA, CC, SNF, iClusterBayes

(iCB), and CIMLR for 30 TCGA datasets.

SCFA CC SNF iCB CIMLR

ACC 3.4e-03 5.4e-04 4.3e-05 9.2e-04 3.4e-01

BLCA 7.2e-03 1.1e-01 1.1e-01 5.1e-01 4.7e-01

BRCA 3.2e-04 2.9e-02 1.2e-01 2.7e-02 4.9e-03

CESC 9.4e-03 5.8e-02 5.1e-01 2e-02 1.9e-01

DLBC 4.3e-06 5.1e-01 7.5e-01 2.9e-01 7.4e-01

ESCA 7.3e-05 7.7e-01 3.9e-01 7.9e-01 5.6e-01

GBM 2.3e-03 3.2e-01 2.1e-02 1.1e-01 8.1e-02

GBMLGG 5.8e-14 1.6e-04 4.8e-14 8e-02 6.4e-10

HNSC 4e-02 5e-01 3.7e-01 3.7e-01 4e-01

KICH 2.3e-13 8.7e-01 7e-01 6.9e-01 4.6e-01

KIPAN 1.4e-19 9.3e-08 2.1e-07 1.6e-09 9.8e-05

KIRP 1.7e-03 4.5e-01 5.3e-03 3e-03 1.9e-02

LAML 5.8e-04 3.9e-02 1.7e-03 9e-01 1.4e-04

LGG 6.5e-15 6.6e-07 1.6e-14 1.1e-01 8.3e-15

MESO 1.6e-04 3.1e-01 4.2e-04 3.7e-02 1.1e-02

PAAD 6.9e-04 1.1e-02 7.4e-04 2.3e-03 2e-03

SARC 3.3e-03 2.4e-01 4.4e-02 4.3e-02 5.6e-02

SKCM 1.6e-03 6.3e-01 4.8e-01 8.4e-03 7.4e-05

STES 3.9e-02 2e-01 1.6e-01 4.1e-03 3.4e-02

THCA 7.8e-03 7.9e-01 6.2e-01 7.8e-01 8.6e-03

THYM 8.1e-04 1.5e-01 9.7e-02 9e-03 1.2e-01

UCEC 6.5e-03 8.9e-02 1.8e-02 5.9e-02 4.6e-02

UCS 3.4e-02 1.6e-01 8.6e-01 9.6e-01 3.6e-01

UVM 1.3e-06 6.1e-04 1.7e-04 6.6e-02 5.8e-04

CHOL 3.1e-01 7.9e-02 5.7e-01 9.1e-01 3.4e-01

COAD 4.7e-01 5.8e-01 1.3e-01 2.2e-01 5.6e-01

KIRC 1e-01 8.3e-01 6.9e-01 8.3e-01 9.1e-02

LIHC 3.8e-01 8.8e-01 3.3e-01 9.3e-02 1.9e-01

OV 4.2e-01 6.1e-01 4.4e-01 4.6e-01 5.4e-01

TGCT 3.9e-01 7.4e-01 8.4e-01 7.1e-01 8.4e-01

#Significant 24 8 12 11 13

The cells highlighted in yellow have Cox p-values smaller than 5%. In each row, cells

highlighted in green have the most significant p-value. SCFA outperforms other methods

by having significant p-values in most datasets (24 out of 30 datasets).

LeaRning (CIMLR) (43), and iClusterBayes (iCB) (36). CC is a
resampling-based approach, while SNF and CIMLR are graph-
theoretical approaches. The fourth method, iClusterBayes is a
model-based approach and is the enhanced version iClusterPlus.
These methods were selected to represent three distinctively
different subtyping strategies. Among these methods, CC is the
only method that cannot integrate multiple data types. For CC,
we concatenate the three data types for the integrative analysis.
We demonstrate that SCFA outperforms these methods in
identifying subtypes with significantly different survival profiles.

Note that here we focus on unsupervised learning, in
which each dataset is partitioned independently without using
any external information. For example, when analyzing the
glioblastoma multiforme (GBM) dataset, we use only the
molecular data (mRNA, miRNA, and methylation) of this dataset

to determine the subtypes. For each cancer dataset, we first
use each of the five methods (SCFA, CC, SNF, CIMLR, and
iClusterBayes) to integrate the molecular data (mRNA, miRNA,
and methylation) in order to determine patient subgroups.
For each method, we calculate the Cox p-value that measures
the statistical significance in survival differences between the
discovered subtypes. The Cox p-values of subtypes discovered by
the five methods for the 30 datasets are shown in Table 1. Among
the 30 datasets, there are 6 datasets (CHOL, COAD, KIRC, LIHC,
OV, and TGCT) for which no method is able to identify subtypes
with significant survival differences. In the remaining 24 datasets,
SCFA is able to obtain significant Cox p-values in all of them
while CC, SNF, iClusterBayes, and CIMLR have significant p-
values in only 8, 12, 11, and 13 datasets, respectively. Also,
SCFA has the most significant p-values in 19 out of 24 datasets.
Regarding time complexity, SCFA, CC, SNF, and CIMLR are able
to analyze each dataset in minutes, whereas iClusterBayes can
take up to hours to analyze a dataset.

To better understand the usefulness of data integration,
we also calculated the Cox p-values obtained from individual
data types and compared them to Cox p-values obtained from
data integration (when mRNA, miRNA, and methylation are
analyzed together). For each dataset, we perform subtyping
using SCFA for each data type and report the Cox p-value
of the discovered subtypes. The distributions of Cox p-values
for data integration and for individual data types using SCFA
are shown in Figure 2. Among 30 cancer datasets, the Cox p-
values obtained from data integration has the median −log10(p)
of 2.6, compared to 1.7, 1.1, and 1.1 from gene expression,
methylation and miRNA data. Interestingly, subtypes discovered
using gene expression data have significantly different survival in
18 over 30 datasets, compared to 10 and 14 of methylation and
miRNA data, respectively. The figure also shows that the Cox p-
values obtained from gene expression data are more significant
than those obtained from methylation and miRNA data (p =

0.046 using one-sided Wilcoxon test). However, we note that
miRNA and methylation also provide valuable information in
data integration, when all data types are analyzed together.
As shown in Figure 2, the Cox p-values obtained from data
integration are more significant than those of any individual data
type (including mRNA) with a one-sided Wilcoxon test p-value
of 0.004. This means that each of the three data types provides
meaningful contributions to the data integration. To understand
how other methods perform with respect to each data type, we
also plot the distributions of Cox p-values obtained from each
data type using CC, SNF, iClusterBayes, and CIMLR (Figure S1).
CC is the only method that produces comparable Cox p-values
across the three data types. SNF and CIMLR perform better using
miRNA, while iClusterBayes favors mRNA and miRNA data.

There are four important clinical variables that are available
in more than 10 TCGA datasets: age (21 datasets), gender (25
datasets), cancer stages (24 datasets), and tumor grades (12
datasets). To understand the association between these variables
and the discovered subtypes, we perform the following analyses:
(1) Fisher’s exact test to assess the association between gender
(male and female) and the discovered subtypes; (2) ANOVA test
to assess the age difference between the discovered subtypes;
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FIGURE 2 | Cox p-values of subtypes identified by SCFA. To better

understand the usefulness of data integration, we calculate the Cox p-values

obtained from individual data types and compared them to Cox p-values

obtained from data integration (when mRNA, miRNA, and methylation are

analyzed together). The horizontal axis shows the data types while the vertical

axis shows the minus log10 p-values. Overall the Cox p-values obtained from

data integration are significantly smaller than those obtained from individual

data types (p = 0.004 using one-sided Wilcoxon test).

and finally (3) calculate the agreement between the discovered
subtypes and known cancer stages/tumor grades using Adjusted
Rand Index (ARI) and Normalized Mutual Information (NMI).
Figure S2 and Tables S1, S2 show the p-values obtained for
gender and age. Overall, the four methods, SCFA, CC, SNF, and
CIMLR, are not biased toward gender with only some significant
p-values (Table S1). In contrast, iClusterBayes is subject to
gender bias with significant p-values in 12 out of 25 datasets
(Table S1). The p-values of iClusterBayes are significantly smaller
than those of other methods (p = 0.0007 using one-sided
Wilcoxon test). Regarding age, all methods have comparable p-
values (Table S2). Figure S3 and Table S3 show the ARI values
that represent the agreement between the discovered subtypes
and known cancer stages and tumor grades. The median ARI of
SCFA and SNF are comparable and they are higher than those of
CC, iClusterBayes, and CIMLR. Regarding tumor grade, the ARI
values of SCFA are higher than the rest. Figure S4 and Table S4

show the NMI values. SCFA has higher NMI values in both
comparisons. However, the low NMI and ARI values show that
there is a low agreement between the discovered subtypes and
known stages/grades.

We perform an in-depth analysis for the Pan-kidney (KIPAN)
dataset. For this dataset, SCFA discovers five subtypes, each with
a very different survival probability (Figure 3). Subtype 1 has
the lowest survival probability while Subtype 5 has the highest
survival probability. All patients of Subtype 1 die within 3 years
whereas 85% of patients in Subtype 5 survive at the end of the
study (after 15 years). We also perform variant analysis to look
for mutations that are highly abundant in the short-term survival

FIGURE 3 | Kaplan–Meier survival analysis of the Pan-kidney (KIPAN) dataset.

The horizontal axis represents the time (day) while the vertical axis represents

the estimated survival probability.

groups (Subtypes 1, 2, and 3) but not in the long-term survival
groups (Subtypes 4 and 5), and vice versa. In Figure 4, each point
represents a gene and its coordinates represent the number of
patients having at least a variant in that gene in each group.
In principle, we would look for mutated genes in the top left
and the bottom right corners. From this figure, we can identify
four notablemarkers: VHL, PBRM1,MUC4, and FRG1B. Among
these, MUC4 has been reported to be associated with exophytic
growth of clear cell renal cell carcinoma (56) while VHL linked
to a primary oncogenic driver in kidney cancers (57). PBRM1 is
also a major clear cell renal cell carcinoma (ccRCC) gene (58). See
Supplementary Section 2 and Figures S5–S8 for details.

3.2. Risk Score Prediction Using
Multi-Omics Data
We also use the same set of data to demonstrate the ability of
SCFA in predicting risk score of each patient. For each of the
TCGA datasets, we randomly split the data into two equal sets
of patients: a training set and a testing set. We use the training
set to train the model and then predict the risk for patients
in the testing set. The predicted risk scores are then compared
with the true vital status and survival information using Cox p-
value and concordance index (C-index) (59). Concordance index
represents the probability that, for a pair of randomly chosen
patients, the patient with higher predicted risk will experience
death event before the other patient. On the other hand, Cox p-
value measures how significant the difference in survival when
correlating with predicted risk scores. This process is repeated 20
times for each dataset, and the average C-index and−log10(p) for
each dataset are calculated using results from these 20 runs. We
note that some datasets do not have enough patients with either
event (survive or death), which leads to errors for Cox regression.
For that reason, we removed five datasets (DLBC, KIRP, TGCT,
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FIGURE 4 | Number of patients in each group for each mutated gene for KIPAN. The horizontal axis represents the count in subtypes with low survival rate (subtype

1, 2, and 3), while the vertical axis shows the count for subtypes with high survival (subtype 4 and 5) rate.

FIGURE 5 | Evaluation of risk prediction using concordance index (C-index) and Cox p-values. For each dataset, we calculate the C-index and Cox p-values between

predicted risk scores and known survival of patients. To better understand the usefulness of data integration, we calculate the C-index and Cox p-value obtained from

individual data types and compared them to those obtained from data integration. (A) Distributions of C-indices for data integration and individual data types. (B)

Distributions of Cox p-values for data integration and individual data types. SCFA is able to predict risk scores that are highly correlated to true survival with a median

C-index of 0.62 and Cox p-value of 0.01. In addition, the prediction is more accurate when all data types are analyzed together. The C-indices are significantly higher

and the p-values are significantly smaller when all data types are combined (p = 0.0007 and p = 0.002 using one-sided Wilcoxon test).

THYM, UCEC) from the analysis, and report survival prediction
for only 25 datasets without errors.

Figure 5 shows the distributions of C-indices and Cox p-
values (in minus log10 scale), while Table 2 shows the exact
values calculated for each dataset. We calculate the C-index and
Cox p-value obtained from individual data types and compared
them to those obtained from data integration (when mRNA,
miRNA, and methylation are analyzed together). As shown in
Figure 5A, the accuracy of the prediction using data integration
is generally higher than the accuracy obtained from individual
data types. Predictions using data integration have a median
C-index of 0.62, compared to 0.57, 0.54, and 0.57 when using
mRNA,methylation, andmiRNA, respectively. Similar results are

also observed in the evaluation using Cox p-values (Figure 5B).
The Cox p-values obtained from data integration has the median
−log10(p) of 1.9, compared to 1.0, 0.7, and 0.9 for mRNA,
methylation, and miRNA. The results demonstrate that we can
potentially predict the risk score of each patient using only
molecular data. More importantly, the prediction using multi-
omics data is generally more accurate than using individual
data types.

4. CONCLUSION

In this article, we presented a novel method (SCFA) for disease
subtyping and risk assessment using multi-omics data. The

Frontiers in Oncology | www.frontiersin.org 7 June 2020 | Volume 10 | Article 1052

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Tran et al. Subtyping via Consensus Factor Analysis

TABLE 2 | Risk score prediction evaluated by concordance index (C-index) and Cox p-values.

Dataset C-index −log10(p)

Integration mRNA Methylation microRNA Integration mRNA Methylation microRNA

ACC 0.78 0.79 0.59 0.72 3.32 3.84 0.66 2.73

BLCA 0.59 0.55 0.55 0.54 2.44 1.1 0.9 0.73

BRCA 0.62 0.55 0.52 0.51 1.38 0.77 0.28 0.14

CESC 0.68 0.63 0.54 0.64 3.42 2.15 1.4 2.02

CHOL 0.56 0.56 0.51 0.55 0.38 0.36 0.2 0.24

COAD 0.56 0.52 0.51 0.57 0.52 0.09 0.09 0.48

ESCA 0.53 0.52 0.5 0.51 0.35 0.09 0.18 0.06

GBM 0.55 0.51 0.53 0.53 2.44 0.3 1.04 1.12

GBMLGG 0.77 0.79 0.72 0.73 14.1 11.56 4.83 5.14

HNSC 0.59 0.59 0.51 0.55 1.41 1.81 0.22 0.48

KICH 0.68 0.6 0.63 0.57 1.35 0.62 2.3 1.31

KIPAN 0.79 0.77 0.73 0.74 24.42 14.53 11.65 20.54

KIRC 0.58 0.59 0.54 0.6 0.79 1.24 0.5 0.94

LAML 0.63 0.61 0.56 0.59 2.45 1.94 1.06 1.16

LGG 0.77 0.78 0.73 0.73 14.02 11.44 5.21 7.53

LIHC 0.62 0.53 0.55 0.57 1.9 0.36 0.86 0.9

MESO 0.72 0.69 0.53 0.63 4.46 3.72 0.22 2.93

OV 0.54 0.51 0.53 0.51 0.41 0.12 0.72 0.14

PAAD 0.71 0.67 0.56 0.59 3.35 2.58 0.79 1.75

SARC 0.62 0.57 0.53 0.53 1.19 0.98 0.19 0.26

SKCM 0.61 0.53 0.53 0.52 2.32 0.55 0.32 0.24

STES 0.54 0.51 0.52 0.51 0.4 0.11 0.29 0.16

THCA 0.66 0.53 0.54 0.51 1.26 0.44 0.33 0.57

UCS 0.58 0.53 0.51 0.51 0.68 0.15 0.06 0.08

UVM 0.83 0.67 0.69 0.72 2.62 1.14 2.87 1.33

contribution of SCFA is two-fold. First, it utilizes a robust
dimension reduction procedure using autoencoder and factor
analysis to retain only essential signals. Second, it allows
researchers to predict risk scores of patients using multi-omics
data—the attribute that is missing in current state-of-the-art
subtyping methods.

To evaluate the developed method, we examined data
obtained from 7,973 patients related to 30 cancer diseases
downloaded from The Cancer Genome Atlas (TCGA).
SCFA was compared against four state-of-the-art subtyping
methods, CC, SNF, iClusterBayes, and CIMLR. We
demonstrate that SCFA outperforms existing approaches
in discovering novel subtypes with significantly different
survival profiles. We also demonstrate that the method is
capable of exploiting complementary signals available in
different types of data in order to improve the subtypes.
Indeed, the Cox p-values obtained from data integration
are more significant than those obtained from individual
data types.

To further demonstrate the usefulness of the developed
method, we also performed a risk assessment using molecular
data. We demonstrate that SCFA is able to predict risk scores that
are highly correlated with vital status and survival probability.
The correlation between predicted risk scores and survival

information has amedian of 0.62 and can be as high as 0.83.More
importantly, we demonstrate that the risk prediction becomes
more accurate when more data types are involved.
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