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Ovarian cancer is one of the top gynecological malignancies that cause deaths among

females in the United States. At the molecular level, significant progress has been

made in our understanding of ovarian cancer development and progression. MicroRNAs

(miRNAs) are short, single-stranded, highly conserved non-coding RNA molecules

(19–25 nucleotides) that negatively regulate target genes post-transcriptionally. Over

the last two decades, mounting evidence has demonstrated the aberrant expression

of miRNAs in different human malignancies, including ovarian carcinomas. Deregulated

miRNAs can have profound impacts on various cancer hallmarks by repressing

tumor suppressor genes. This review will discuss up-to-date knowledge of how the

aberrant expression of miRNAs and their targeted genes drives ovarian cancer initiation,

proliferation, survival, and resistance to chemotherapies. Understanding themechanisms

by which these miRNAs affect these hallmarks should allow the development of novel

therapeutic strategies to treat these lethal malignancies.

Keywords: microRNA, ovarian cancer, proliferation, biomarkers, chemoresistance, diagnosis, prognosis, target

genes

INTRODUCTION

Ovarian cancer is the eighth leading cause of cancer-related deaths among females worldwide, with
an estimated 295,414 new cases and 184,799 deaths as of 2018 (1). Even though the 5-year relative
survival rate at stages I–II ranges between 75 and 92%, in the western world, for instance, the rate
remains <30% for patients presenting at the clinic with advanced peritoneal dissemination and
massive ascites (2). One of the main reasons for the high mortality rates is the lack of an efficient
and sensitive method that can detect ovarian cancer at early stages. Current diagnostic approaches,
including serum levels of CA125, pelvic examination, and transvaginal ultrasonography, have failed
to detect this disease at the early stages (3).

Approximately 90% of primary malignant ovarian tumors arise from the ovarian surface
epithelium (OSE). Morphologically, epithelial ovarian carcinomas are divided into four major
types (serous, endometrioid, clear cell, and mucinous) (4). The heterogeneity of ovarian
cancer is suggested to account for the high mortality rates caused by this disease (5).
Ovarian carcinomas are also classified into low-grade and high-grade cancers based on their
expression profiles of signature proteins or their characterized mutations, which define their
aggressiveness and response to chemotherapies. At the molecular level, low-grade ovarian tumors
characterized by several signature mutations, including PTEN, PIK3CA KRAS, BRAF, ERBB2,
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and ARID1A, whereas the more aggressive high-grade tumors
are associated with TP53 mutations (6). In addition to the
importance of these protein-coding genes, advances in genetics
revealed that the mammalian genome transcribes thousands of
short non-protein-coding RNAs that regulate various biological
processes, among which are microRNAs (miRNAs). Extensive
analysis of more than 1493 small RNA deep sequencing datasets
estimated that the human genome transcribes about 1917miRNA
precursor sequences, generating 2654 mature miRNA sequences
(7). MiRNAs are short, single-stranded, highly conserved non-
coding RNA molecules (19–25 nucleotides) that negatively
regulate the targeted protein-coding genes post-transcriptionally
through binding with their 3′-UTR (untranslated region). Such
binding facilitates the degradation of these genes’ mRNAs or
blocks their translation (8). The synthesis and processing of
miRNAs are illustrated elsewhere (9). Briefly, miRNAs are
first transcribed in the nucleus by the RNA polymerase II
into long, double-stranded precursors called primary miRNA
transcripts (pri-miRNAs), which are then processed by the
nuclear RNase III microprocessor complex Drosha and DGCR8
to produce 60–70-nucleotide RNA hairpin-like intermediates
called premature miRNAs (pre-miRNAs). The pre-miRNAs are
then translocated primely to the cytoplasm by a RNA.GTP-bound
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factor 2; EIF4EBP1, eukaryotic translation initiation factor 4E binding protein
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1α, hypoxia-inducible factor 1 alpha; HMGA2, high mobility group AT-hook
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RNA-binding protein1; mTOR, mechanistic target of rapamycin kinase; MXI-

1, MAX-interacting protein 1; NF-κB1, nuclear factor kappa B subunit 1;
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ribosomal protein S6 kinase A3; RUNX1/2, runt-related transcription factor 1/2;
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STAT3, signal transducers and activators of transcription3; TAZ, tafazzin; TEAD,
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protein, exportin-5, where the latter is cleaved by another RNase
III enzyme, the Dicer complex, into 19–25-nucleotide RNAs
(mature miRNAs). Mature miRNAs are then incorporated into a
ribonucleoprotein complex known as the RNA-induced silencing
complex (RISC), which, in collaboration with the Argonaute
(AGO) protein, directs the miRNA complex to the targeted
mRNA and facilitates its binding through perfect or imperfect
base pairing. Since the miRNA binding to the 3′-UTR of the
targeted mRNA does not require perfect complementarity, in
addition to its ability to recognize strands as short as 2–8
nucleotides complementary to their 5′-seeding region, it has
been estimated that one miRNA is capable of regulating the
expression of several 100 genes and that one mRNA is regulated
by multiple miRNAs.

Recent bioinformatic analysis has predicted that
approximately two-thirds of all human genes are regulated
by more than 1,000 miRNAs (10), which has prompted scientists
in the last decade to investigate the roles of these miRNAs in
many diseases, including cancer. Emerging evidence suggests
that deregulated miRNAs play important regulatory roles
in the initiation, progression, and dissemination of different
types of cancer (11). It has become well-established that
miRNAs can either be upregulated or downregulated in various
human cancers, including ovarian cancer. Oncogenesis can be
initiated either by the overexpression of oncogenic miRNAs,
which downregulate tumor suppressor genes, or by the loss
of specific tumor-suppressive miRNAs, which negatively
regulate oncogenes (12). Since the first report establishing a
connection between miRNAs and cancer (13), the importance
of aberrant miRNA expression in different malignancies has
been firmly established (47,009 PubMed hits in February 2020).
Of these, 1,714 PubMed hits report diagnostic, prognostic, and
therapeutic implications of miRNAs in ovarian cancer. This
review summarizes the mechanisms by which miRNAs drive the
transformation and tumorigenesis of different types of ovarian
carcinomas. This work provides a deeper understanding of how
miRNAs and their respective, experimentally verified target
genes control different aspects of ovarian cancer pathogenesis.

ABERRANT EXPRESSION OF MIRNAS:
POTENTIAL DIAGNOSTIC AND
PROGNOSTIC BIOMARKERS OF OVARIAN
CANCER

miRNA Expression Profiles in Ovarian
Cancer Tissues
A substantial number of studies have investigated the differential
expression profiles of miRNAs in the serum, plasma, exosomes
in serum, ascites fluids, and tissues of ovarian cancer patients
and normal counterparts to identify potential diagnostic and
prognostic biomarkers. One of the first reports investigating
the miRNA expression profiles in tissues obtained from
ovarian cancer patients and normal subjects revealed signature
expression patterns between the two groups. Among the
commonly upregulated miRNAs regardless of the morphological
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histotypes reported in this study were miR-141and miR-
200a-c, whereas miR-125b, miR-140, miR-145, and miR-199a
were among the downregulated miRNAs in ovarian cancer
tissues. This study also reported distinctive expression profiles
of miRNAs within ovarian cancer tissues with different
histopathologic features (serous, endometrioid, clear cell,
and mucinous). For example, when compared with serous,
endometrioid histotype seems to significantly upregulate miR-
212 and miR-302b∗, and downregulate miR-222 (14). The
Lower number of samples of clear cell and mucinous carcinoma
subtypes makes it harder to draw solid conclusions or safely
distinguish between expression profiles. In another study,
Zhang et al. have also assessed the alterations in the expression
levels of miRNAs and their association with the malignant
transformation of the OSE, the origin of EOC (15). This study
compared the mature miRNA expression profiles of 18 EOC
cell lines and four immortalized non-malignant human ovarian
surface epithelium (IOSE) primary cell lines using multiple
comprehensive miRNome techniques. Their results showed that
31 miRNAs were downregulated in the EOC lines compared
with the IOSE cell lines, including the tumor suppressor miRNAs
lethal-7 (let-7d) (16) and miR-127 (17). Analysis of primary
human ovarian cancer specimens revealed that late-stage tumors
significantly downregulated tumor suppressors miRNAs, miR-
15a, miR-34a, and miR-34b, when compared with early-stage
specimens. In an attempt to discriminate between primary and
recurrent ovarian cancers, Laios et al. utilized TaqMan RT-PCR
assay to quantify the miRNA expression profiles of primary
and recurrent serous papillary adenocarcinomas. Their study
revealed significant up and downregulation of miR-223 and miR-
9, respectively, in recurrent tumors relative to the primary ones
(18). Kaplan-Meier analysis of 20 patients with serous ovarian
carcinomas revealed that higher expression of miR-18a, miR-93,
and miR-200 family members (miR-141, miR-429 miR-200a-c),
and lower expression of let-7b, and miR-199a were significantly
correlated with decreased progression-free survival (PFS) and
overall survival (OS) (19). The similarity between identified
miRNAs in this study and the dysregulated miRNAs reported by
Iorio et al. (14) further insinuate the importance of miRNAs as
prognostic biomarkers. A few years later, Calura et al. confirmed
the results demonstrated by previous studies when they analyzed
the miRNA profiles for each EOC histotype at early stages to
identify signature biomarkers for different ovarian carcinoma
subtypes. This study demonstrated histotype-specific miRNA
signatures for clear cell and mucinous ovarian cancer tissues.
The clear cell histotype was characterized by high expression of
miR-30a-5p and miR-30a-3p, whereas miR-192 and miR-194
were upregulated in the mucinous histotype (20).

A recent study examined the differentially expressed miRNAs
in high-grade serous ovarian carcinoma (HGSC), clear cell
ovarian carcinoma (CCC) and OSE. Both malignant subtypes
mostly overexpressed miR-200 family members and miR-182-
5p, whereas miR-383 was significantly underexpressed relative
to OSE expressions. Higher expression of miR-509-3-5p, miR-
509-5p, miR-509-3p, and miR-510 distinguished CCC from
HGSC. Despite the relatively small number of subjects, higher
miR-200c-3p expression was associated with poor PFS and
OS in HGSC patients (21). More subtypes-oriented research

is needed with a larger number of participants to validate
signature miRNA biomarkers for the diagnosis and prognosis
of ovarian cancer patients. The increasing number of reports
that miRNAs expression profiles could be influenced by ethnicity
and genetic backgrounds (22–24), urges for considering such
a factor in the future studies aiming for identifying miRNA-
based biomarkers for ovarian carcinomas. In addition to the two
reasons pointed out above, the discrepancies of reported miRNA
signature profiles in the tissues of ovarian cancer patients can
be attributed to the heterogeneity of dissected tissue sample,
the way these samples were processed, the number of miRNAs
analyzed, the molecular assays used to detect these miRNAs, and
the lack of standard methods for normalization (25). A more
consistent, non-invasive, and less biased source of sampling is
likely to produce more robust, reliable, and unified results that
could help in the diagnosis, prognosis, and treatment of ovarian
cancer patients.

Circulatory miRNA Expression Profiles
The quest for finding more reliable and distinctive diagnostic
biomarkers for ovarian cancer, especially in the early stages, has
been a priority of the scientific community for years (12). The
differential expression of circulatory miRNAs has long been a
more appealing approach for identifying clinical biomarkers for
several reasons. miRNAs are found in the plasma and serum
encapsulated in extracellular vesicles or bound with special lipid
proteins, which make them resistant to RNase digestions (26).
Several lines of evidence reported that these miRNAs have faster
biogenesis and activation rates, and longer half-lives relative to
mRNA and proteins, which make them suitable for detection
at early stages (diagnostic), during progression or treatment
selection (prognostic) (27, 28). One of the pitfalls of using
single circulatory miRNA is the lack of specificity. For instance,
several miRNAs such as miR-21-5p, miR-155-5p, and miR-210-
3p have shown different expression patterns in different types
of cancers, including lung, colorectal, and breast cancer (29).
Therefore, the is an urgent need to employ advances in cancer
genetics to identify specific miRNA signature patterns instead of
stand-alone miRNA for the clinical diagnosis of ovarian cancer.
Yokoi et al. have developed a miRNA-based detection method
using comprehensive expression profiles of 10 serum-isolated
miRNAs specific to ovarian tumors and helped discriminate
ovarian tumors from other types of solid tumors and non-cancer
cells (miR-320a, miR-665, miR-3184-5p, miR-6717-5p, miR-
4459, miR-6076, miR-3195, miR-1275, miR-3185, and miR-4640-
5p) (30). More specifically, a recent study identified miR-508-3p
as a master regulator of the mesenchymal subtype of ovarian
cancer and a promising prognostic biomarker that could help to
diagnose this lethal disease in its early stages (31). Most of the
studies that have investigated the expression profiles of miRNAs
in the circulation of ovarian cancer patients are summarized
in Table 1. Only studies that used samples from more than 20
ovarian cancer patients were included in this table. Some of these
miRNAs showed consistent expression patterns in the circulation
of ovarian cancer patients. For example, miR-25 was reported
by two independent studies to be downregulated in the serum
samples of ovarian cancer patients (40, 41). Pathway enrichment
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TABLE 1 | MicroRNA expression profiles in different ovarian cancer subtypes in relation to normal controls.

Study design (n) Specimen Decreased miRNAs Elevated miRNAs References

Tumor histotype Controls

SOC (50) HC (10)

BOA (10)

Serum exosomes – miR-21, miR-141, miR-200

family (a,b,c), miR-203, miR-205,

miR-214

(32)

SOC (17), Mixed EOC

& MOC (5), COC (6)

HC (15) Serum miR-99b, miR-127, miR-155 miR-21, miR-29a, miR-92,

miR-93, miR-126

(33)

SOC (20), EOC (2),

Unspecified solid

tumors (2)

HC (15) Whole blood miR-181a*, miR-342-3p,

miR-450-5p

miR-30c1* (34)

HGSOC (28) HC (28) Serum – miR-200 family (a,b,c) (35)

SOC (21), COC (7),

EOC (6), Mixed EOC &

COC (1)

HC (20)

EM (33)

Plasma – SOC: miR-16, miR-191,

miR-4284

EOC: miR-16, miR-21,

miR-191, miR-195

(36)

SOC (42) HC (23)

BOA (36)

Plasma >10-fold: miR-16, miR-17,

miR-19b, miR-20a, miR-24,

miR-92a, miR-106a, miR-126,

miR-146a, miR-150, miR-223

<10-fold: miR-30a-5p, miR-30b,

miR-30c, miR-106b, miR-191,

miR-193a-5p,

miR-320, miR-328

miR-625-3p, miR-720,

miR-1274a

(37)

SOC (16), COC (14),

EOC (15) MOC (12),

Unspecified (17)

HC (50) Serum – miR-141, miR-200c (38)

SOC (18), COC (17),

EOC (24) MOC (12),

Unspecified (13)

HC (135)

BOA (51)

Serum miR-145 – (39)

SOC (25) BOA (25) Serum let-7i-5p, miR-25-3p, miR-122,

miR-152-5p

– (40)

EOC (180) HC (66) Serum miR-25, miR-93 miR-7, miR-429 (41)

(163) mainly Serous HC (32)

BOA (20)

Serum exosomes – miR-200 family (a,b,c), miR-373 (42)

Unspecified (32) HC (10) Serum – miR-376a (43)

HGSOC (168) HC (65) Serum – miR-595, miR-1246, miR-2278 (44)

SOC (112), COC (19),

EOC (13) MOC (11)

HC (63)

BOA (43)

Serum – miR-26a-5p, miR-130b-3p,

miR-142-3p, let-7d-5p,

miR-200a-3p, miR-328-3p,

miR-374a-5p, miR-766-3p

(45)

HGSOC (56) HC (30) Serum – miR-375 (46)

HGSOC (39)

Non HGSOC (9)

BOA (10)

BOT (10)

Serum exosomes miR-141, miR-200a, miR-200b miR-93, miR-145, miR-200c (47)

SOC, Serous Ovarian Cancer; HGSOC, High-Grade Serous Ovarian Carcinoma; COC, Clear Cell Ovarian Cancer; EOC, Endometrioid Ovarian Cancer; MOC, Mucinous Ovarian Cancer;

BOA, Benign Ovarian Adenoma; HC, Healthy Control; EM, Endometriosis; BOT, Borderline Ovarian Tumor.

analysis revealed that miR-25-3p targets the oncogenic Toll-
like receptor-4 (TLR-4)/MD88 pathway, which could result in
overexpression of the latter (40). On the other hand, the vast
majority of studies report significant upregulation of the miR-
200 family members in the circulation of ovarian cancer patients
except for one study that showed only miR-200c family member
to be upregulated (47). The variability in sample processing and
quantification techniques utilized in this study might count for
undetectable levels of other family members, including miR-
141, miR-200a, and miR-200b. This study differs from others
that showed upregulated miR-200 family in two little details,

the lower number of qRT-PCR cycles and the absence of the
cDNA preamplification step. In addition, results from Table 1

were used to determine which miRNAs could serve as diagnostic
and/or prognostic biomarkers. As shown in Figure 1, of the 50
dysregulated miRNAs that are reported here in ovarian cancer
patients relative to healthy individuals, only 13 miRNAs (16.7%)
demonstrated the ability to serve as diagnostic and prognostic
biomarkers in ovarian cancer patients, among which are the miR-
200 family members. Further extensive studies with a higher
number of subjects are needed to investigate the expression
patterns of those 13 miRNAs at different stages of the disease,
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FIGURE 1 | Venn diagram of potential diagnostic and prognostic miRNAs in ovarian cancer.

their ability to distinguish different ovarian cancer subtypes,
and their utilization as predictors of the disease outcomes and
biomarkers for disease relapse.

MICRORNAS REGULATE THE INITIATION
OF OVARIAN CARCINOMAS

The initiation of cancer is a complex multi-step process
that requires inactivation of tumor suppressor genes and the
activation of oncogenes. The regulatory roles of miRNAs in the
initiation of ovarian cancer comprise a rich area of research
that has yet to be further explored. Substantial evidence has
linked dysregulation in miRNAs expression with the early stages
of ovarian cancer transformation. In humans, for example, the
consensus let-7 family of tumor suppressor miRNAs has been
suggested by numerous studies to be downregulated in several
types of cancer, including breast, lung, stomach, colon, and
ovarian cancer (48, 49). Among the reported target genes of the
let-7 family are the early embryonic genes HMGA2 and IMP-
1 (50) as well as oncogenic NRAS (16). The embryonic high

mobility group AT-hook 2 (HMGA2), a direct target of let-7 (51–
53), is a non-histone, nuclear-binding, oncofetal protein that has
been shown to be overexpressed in embryonic tissue and many
malignancies, including high-grade ovarian carcinomas (54, 55).
In addition, HMGA2 functions as a crucial regulator of cell
growth and differentiation (56). Shell et al. have provided the first
direct association in human cancer between the downregulation
of let-7 and the upregulation of HMGA2. Their study revealed
that ovarian cancer patients with high HMGA2 and low let-
7 expression in their cancer tissues had lower survival rates
than patients with low HMGA2 and high let-7 expression
(57). In another study, Wu et al. reported that overexpressing
HMGA2 initiated the malignant transformation of OSE cell
lines in vitro and in vivo and induced more aggressive tumor
cell growth (55). Taken together, this evidence suggests that
the downregulation of the let-7 family of miRNAs may serve a
critical function in the malignant transformation of OSE into
EOC. However, further loss and gain of function experiments are
needed to demonstrate the direct impact of the tumor suppressor
let-7 on the initiation and malignant transformation of
ovarian cancer.
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Previous studies have reported that ovarian cancer tissues
had significantly lower miR-199a expression profiles relative to
normal ovarian cells, which has been associated with poor PFS
and OS in patients with serous ovarian carcinoma (14, 19).
CD44+/CD177+ cells are ovarian cancer-initiating stem cells
(CIC), which are known to be highly proliferative and resistant
to chemotherapeutics, with low differentiation capabilities (58–
60). Findings from a recent study by Cheng et al. revealed that
miR-199a targets CD44 in these cells resulting in significant
suppression of cell cycle, proliferation capacity, and invasiveness

in vitro and tumor growth in vivo (61). These data suggest that the
deregulation of miR-199a expression may serve as a prerequisite
for the initiation of ovarian cancer.

During the differentiation process, tumor-initiating stem

cells lose their stemness and acquire the characteristics of

fast-growing, chemoresistant mature cancer cells. For instance,

twist-related protein 1 (Twist1)-mediated upregulation of miR-

199a/214 has been shown to be essential for the transformation
of ovarian cancer stem cells (Type I/CD44+) into mature,
fast-dividing cancer cells (Type II/CD44−) (62). At the
molecular level, the upregulation of miR-214 and miR-199a
resulted in a reduction of the tumor suppressors PTEN and

IKKβ, which led to the activation of the AKT and NFκB
pathways, respectively. All these independent findings further
suggest that miRNAs can serve as vital regulators of the
initiation of ovarian cancer. Further studies are needed to
better elucidate the direct regulatory roles of miRNAs on
the stemness, growth, and differentiation of ovarian cancer-
initiating cells. Other critical components of the tumor initiation
and progression process, including enhanced proliferative
capabilities, evading immunocompetent cells, uncontrolled cell
division, and maintaining survival (63), and how miRNAs
regulate each step will be discussed in more detail later.

MICRORNAS REGULATE PROLIFERATION,
CELL CYCLE, AND SURVIVABILITY OF
OVARIAN CARCINOMAS

The ability of cancer cells to maintain active proliferation and
survive in harsh and continuously changing environments are
two of the most critical hallmarks of neoplastic diseases (64).
Cell cycle progression is a multifaced process heavily guarded
by several growth factors and suppressors, including cyclins and

FIGURE 2 | Cell cycle progression and major regulatory miRNAs in ovarian cancer. This figure was drawn based on the information from Liu et al. (183), Shi et al.

(190), Qie et al. (221), and Liu et al. (224).
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their protein kinases and inhibitors (65). These proteins regulate
the cell quiescence (G0 phase), cell cycle re-entrance (G0-G1),
and cell cycle progression through different phases (G1, S, G2,M)
(Figure 2) Over the years, an increasing number of studies has
aimed to understand the mechanisms of how miRNAs influence
tumor suppressors and oncogenes to regulate cell proliferation
and cell cycle progression pathways in ovarian cancers.

The cyclin-dependent kinases (CDKs), CDK4/6 and CDK14,
have emerged as important targets for miRNAs that have
decreased expression in ovarian cancer, namely, miR-506
(66), miR-211 (67), miR-542-3p (68). Ectopic expression of
these tumor-suppressive miRNAs inhibits ovarian cancer cell
proliferation and cell cycle progression through different phases
by engaging multiple downstream pathways. Mechanistically,
the abundant CDK4/6 can promote cell cycle progression via
two major mechanisms, as illustrated in Figure 2. First, CDK4/6
phosphorylates and releases the retinoblastoma (Rb) tumor

suppressor protein and thus enables E2F transcription factors to
upregulate downstream targets involved in cell cycle transition
from G1 into S phase. Second, CDK4/6 reactivates cyclin E-
CDK2 kinase by sequestering CDK inhibitors p21CIP1 and
p27KIP1 (69). In another study, miR15a/ miR-16 were reported
to be downregulated in ovarian cell lines and primary ovarian
tissues. The resultant overexpression of their target proto-
oncogene Bmi-1 promoted cell cycle progression by suppressing
CDK4/6 repressors p16INK4a and p19INK4d, and thus drive
the cell cycle forward at G1/S phase (70). CDK14, on the
other hand, is reported to activate several cell cycle-controlling
targets, downstream of Wnt/β-catenin signaling pathway, by
phosphorylating the co-receptor lipoprotein receptor-related
protein 6 (LRP6) (71).

In addition to the increased expression of CDKs, miRNAs
can also modulate the expression of several cell cycle-regulating
cyclins directly or indirectly. For instance, Salem et al.

FIGURE 3 | Expressions of oncogenic and tumor suppressor miRNAs and their reported downstream targets associated with cellular proliferation and survival in

ovarian cancer.
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TABLE 2 | Mechanisms by which microRNAs enhance ovarian cancer cell cycle and proliferation.

References miRNA miRNA expression in

ovarian cancer cells

Target gene Possible mechanisms

Creighton et

al. (82)

miR-31 Down C/EBPα

E2F2

Activated C/EBPα upregulates cdk2/4 and activates the AKT signaling

pathway, which stimulates cell cycle progression, presumably by facilitating

transitions through the S and G2/M phases (83). Activated E2F2 stimulates

cell cycle progression, as demonstrated above.

Jia et al. (84) miR-30c-2* Down BCL9 The resultant overexpression of the oncogene BCL9 increases cell

proliferation through upregulating cyclin D1 expression.

Semaan et al.

(85)

miR-101 Down EzH2 The overexpressed enhancer of EzH2 represses the tumor suppressor

protein P21Cip1, thus promoting G1/S phase transition.

Guan et al.

(86)

miR-125b Down BCL3 Similar to BCL9, the overexpressed proto-oncogene BCL3 can form a

complex with the NF-κB p50 and p52 isoforms. This complex activates the

cyclin D1 promoter, increasing the rate of cell proliferation.

Cheng et al.

(61)

Sun et al. (87)

miR-199a

miR-3129

Down

Down

CD44 CD44 is a transmembrane glycoprotein that is overexpressed in ovarian

cancer and has been shown to promote cell proliferation by signaling

through the MAPK pathway.

Liu et al. (88) miR-182 Up PDCD4 Downregulation of the tumor suppressor protein (programmed cell death 4,

PDCD4) enhances cell proliferation by either inhibiting the cell cycle

repressors p21Cip1 and p27kip1 (89) or upregulating cyclin D1 (90).

Liu et al. (91) miR-106a Up in HGSOC p130 (RBL2) As a member of the Rb family of proteins, RBL2 typically forms a complex

with E2F2, preventing cell cycle progression and inducing cell cycle arrest at

the G0/G1 phases. As a result of the miR-106a-mediated downregulation of

RBL2 in ovarian cancer, these cells become highly proliferative due to the

absence of this complex.

Lenkala et al.

(92)

miR-22 Up MXI-1 MXI-1 is a member of the Mad family of transcription factors that directly

represses the transcriptional activity of the c-Myc oncogene promoter,

resulting in the suppression of cell proliferation (93). Inhibition of the MXI-1

transcription factor could allow c-Myc to activate downstream

proliferation-related genes (94).

Li et al. (95) miR-210 Up in hypoxic EOC PTPN1 One of the mechanisms by which EOC adapts to hypoxic conditions is

through inhibiting the pro-apoptotic PTPN1 (96). When present, PTPN1

induces cell death by different mechanisms, including activation of caspases

8/9 and potentiation of inositol-requiring enzyme (IRE1) receptor signaling

during endoplasmic reticulum stress, in addition to the downregulation of

several pro-survival receptor-tyrosine kinases such as EGFR.

Ying et al. (97) miR-939 Up APC2 APC2 is a tumor suppressor that negatively regulates the Wnt/β-catenin

signaling pathway. Downregulation of this tumor suppressor stimulates the

Wnt/β-catenin pathway, which promotes cellular proliferation by

upregulating and activating downstream genes, such as Cyclin-D1, c-Myc,

and T cell factor (TCF) proteins.

Lin et al. (98) miR-26b Down KPNA2 The resultant overexpression of the nuclear transport protein KPNA2 can

positively regulate cell cycle transition at the S/G1 phase through

upregulation of and enhancing the transcriptional activity of c-Myc, Akt, and

cdk regulator cyclin D1 and by downregulation of cyclin-dependent kinase

inhibitors p21Cip1 and p27Kip1 and FOXO3a activity (79).

Sun et al. (99) miR-26a Down CDC6 Cdc6 is an oncogene that plays a crucial role in regulating the cell cycle

transition between the G1/S phase.

Xiaohong et

al. (100)

miR-203 Up PDHB Downregulation of PDHB allows cancer cells to maintain active proliferative

status by enhancing cytosolic glycolysis and lactate production in the

surrounding tumor microenvironment (101).

Bi et al. (102) miR-127-3p Down BAG5 Upregulated BAG5 binds the tumor-promoting protein mutant p53, which

prevents E3 ubiquitin ligases-mediated degradation and the ubiquitination of

the latter. Accumulation of mutant p53 has recently been reported to

enhance tumor cell proliferation (103).

Yang et al.

(43)

miR-376a Up KLF15 Several studies have reported the reciprocal relationship between KLF15

expression and cell cycle regulators, such as E2F1 and cyclin-cdk inhibitors

p21Cip1/p57kip2, in different types of cancer (104–106).

Li et al. (107) miR-205 Up SMAD4 Downregulation of the intracellular effector protein SMAD4 prevents

TGF-β-mediated cell cycle arrest, presumably by repressing downstream

p21Cip1 and p27Kip1 (108).

(Continued)
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TABLE 2 | Continued

References miRNA miRNA expression in

ovarian cancer cells

Target gene Possible mechanisms

Chen et al.

(109)

miR-193a-3p Down GRB7 GRB7 is a multidomain adaptor protein that transduces EGFR proliferative

and anti-apoptotic signals by MAPK/ERK activation, Bcl-2 upregulation,

and, Bax repression (110).

Wang et al.

(111)

miR-30a-5p,

miR-200a-5p

Up FOXD1 The resultant downregulation of the tumor suppressor FOXD1 drives the cell

cycle forward by maintaining low expression and activity of the cell

cycle-inhibitor, p21Cip1, in a p53-independent manner.

Sheng et al.

(112)

miR-206 Down KIF2A KIF2A is a non-motile microtubule depolymerase that plays a crucial role in

depolarizing microtubule ends during cell division.

Jia et al. (113) miR-34 Down Notch 1 Several proliferation-related genes respond positively to Notch signaling,

including cyclin-dependent kinase inhibitors p21Cip1 and p27Kip1, cyclin D1,

and oncogenic c-Myc (114).

Hu et al. (115) miR-204-5p Down USP47 USP47 is a member of the deubiquitinating enzyme family and is suggested

to regulate cell proliferation through stabilizing β-catenin in Wnt signaling

(116).

recently reported that miR-590-3p enhanced ovarian cancer cell
proliferation by directly binding and suppressing the cell cycle
repressor, cyclin G2 (72). Furthermore, ovarian cancer cells
perhaps “strategically” keep the tumor suppressor miR-23b at
lower expression to maintain proliferative status by increasing
the expression of its oncogenic target CCNG1 (cyclin G1)
to sufficient levels to activate Mdm2 and ultimately override
inhibitory effects of the wild-type p53 (73, 74). Other cyclins
have been shown to bemodulated indirectly when their upstream
controlling proteins are directly affected by miRNAs. For
example, several lines of evidence reported that overexpressed
HMGA2 conversely correlates with the expression levels of its
regulators let-7 and miR-145, in the ovarian cancer tissues and
cell lines (53, 57, 75). As shown in Figure 2, HMGA2 can
drive the cancer cell cycle forward by multiple mechanisms
(56). Briefly, HMGA2 directly binds and suppresses p120E4F

transcriptional repressor, thus inducing cyclin A2 expression,
a cell cycle regulator at the S and G2/M phases. HMGA2 can
also induce cyclin A2 transcription by upregulating its upstream
regulator activator protein-1 (AP1). In addition, HMGA2
facilitates the cell cycle G1-S phase transition by releasing E2F1
transcription factors from the suppressor protein Rb. More
recently, miR-27a-mediated inhibition of the E3 ubiquitin ligase
Cullin-5 (CUL5) might result in maintaining high levels of cyclin
A and B1, which are required for G2-M phase transition and cell
proliferation (76).

In addition to the direct impacts of miRNAs on the cell
cycle checkpoint regulators, other signaling targets upstream
of the cell cycle and proliferation have been shown to be
manipulated by miRNAs in ovarian cancer. For example, the
class O of forkhead box transcription factors (FOXO) and
the extracellular signal transducers, SMADs, exhibit suppressive
roles by inducing cell cycle arrest (65). Mechanistically, FOXO1
inhibits cell proliferation, apparently by inducing the expression
of the CDK inhibitor p21Cip1 (77). A recent study revealed
that oncogenic miR-27a could stimulate ovarian cancer cell
proliferation by suppressing the expression of FOXO1 (78).
The tumor suppressor FOXO3 can also induce cell cycle arrest

by increasing the transcription of CDK inhibitors p21CIP1 and
p27KIP1 (79, 80), and cyclin G2 (72). Multiple studies suggest that
ovarian cancer cells maintain lower levels of FOXO3 presumably
by upregulating several oncogenic miRNAs, including miR-182
(81) and miR-590-3p (72).

More studies that have investigated different miRNAs, their
validated targets, and the downstream modulated targets that
play essential roles in ovarian cancer proliferation and survival
capabilities are listed in detail in Figures 2, 3. In addition, Table 2
summarizes more possible mechanisms by which miRNAs
regulate the cell cycle progression and proliferation in ovarian
cancer cells based on the reported targets. Since some of these
mechanisms were not demonstrated in ovarian cancer cells per
se, more studies are encouraged to validate that what has been
shown in other cancers can be applied to ovarian cancer.

ROLES OF MICRORNAS IN OVARIAN
CANCER CHEMOSENSITIVITY AND
RESISTANCE

miRNA-200 Family
The miR-200 family consists of five miRNA members (miR-
141, miR-200a, miR-200b, miR-200c, and miR-429), whose
expressions are reported to be significantly deregulated in
different ovarian cancer tissues and cell lines (14, 19, 32, 35).
Recent studies have linked miR-200 family members with the
responsiveness of ovarian cancer patients to chemotherapeutic
drugs. For example, p38α MAPK was previously shown to play
an important role in reducing tumorigenesis by regulating cell
proliferation, survival, and stress response (117, 118). Mateescu
et al. identified p38α MAPK as a direct target for two of the
most highly expressed miRNAs in ovarian cancer tissues, miR-
141 and miR-200a (119). Both miR-141 and miR-200a increased
paclitaxel sensitivity in a ROS-dependent manner by repressing
p38α MAPK in vivo. More recently, a study by Liu et al. also
reported that ectopic expression of miR-200a sensitized the
ovarian cancer cell line OVCAR-3 to paclitaxel (120). MiR-200c
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TABLE 3 | Examples of the mechanisms of miRNA-mediated resistance in ovarian cancer.

References miRNA Expression in

resistant cells

Target gene Suggested mechanism

Xu et al. (148) miR-497 Down mTOR/P70S6K1 The resultant activation of mTOR/P70S6K1 positively affects several

downstream effectors to regulate cell growth, proliferation, and survival

(149).

Chen et al. (150) miR-133b Down GST-π GSTs have the ability to detoxify cytostatic drugs (151). Therefore,

chemotherapy-resistant ovarian cancer cells might develop resistance by

upregulating the miR-133b-target gene GST-π.

van Jaarsveld et al. (152) miR-634 Down CCND1, GRB2,

ERK2, and

RSK2

Upregulation and activation of these MAPK pathway components produce

undesirable effects on several fundamental cellular processes, including cell

cycle progression and inhibition of apoptosis (153).

Dwivedi et al. (154) miR-15a

miR-16

Down BMI1 Bmi1, a member of the Polycomb Repressor Complex 1, is a crucial

regulator of the self-renewal and malignant transformation of many cancers

(see Table 2).

Cui et al. (155) miR-146a Down SOD2 Resistant cells have shown higher levels of the antioxidant SOD2, which

scavenge any reactive species produced by the chemotherapy and thus

resist death (156).

Guo et al. (157) miR-100 Down mTOR and PLK1 Cells are able to develop resistance by enhancing the functions of the

mitotic regulator gene Polo-like kinase 1 (Plk1) (158), in addition to the other

oncogenic roles of mTOR (see above).

Zhu et al. (159) miR-186 Down Twist1 Twist1 can confer chemoresistance in different cancers by regulating several

downstream signaling proteins, including mTOR and Bcl2. In addition,

Twist1 binds and activates ABC transporters, mediates EMT-induced

resistance, and positively regulates PI3K/AKT pathway (160).

Han et al. (161) miR-30a/c-5p Down Snail DNMT1-mediated silencing of miR-30a/c-5p upregulates

E-cadherin-transcriptional repressor Snail, thereby promoting

EMT-mediated resistance to cisplatin.

Vera et al. (162) miR-7 Down MAFG Recent evidence suggests that MAFG confers antioxidant activity against

free radicals produced as a result of cisplatin treatment, which might be the

mechanism behind MAFG-induced cisplatin resistance (163).

Jiang et al. (164) miR-139-5p Down C-Jun The resultant overexpression of the proto-oncogene c-Jun promotes the

expression of the anti-apoptotic protein Bcl-XL, thereby suppressing the

apoptotic death of these cells.

Kanlikilicer et al. (165) miR-1246 Up Cav1 Upregulated miR-1246 potentiates resistance toward paclitaxel through the

downregulation of Cav1, a protein that directly binds and inhibits the kinase

activity of the platelet-derived growth factor receptor PDGFRβ, which

correlates with induction of the p-glycoprotein (MDR1) levels.

Chen et al. (166) miR-139-5p Down RNF2 Evidence suggests that ovarian cancer cells can develop resistance by

upregulating the ring finger protein 2, RNF2, an E3 ligase that targets the

tumor suppressor p53 for degradation, thereby inhibiting cellular apoptosis

(167).

Zhang et al. (168) miR-1294 Down IGF1R See Table 2

Xu et al. (169) miR-378a-3p Down MAPK1/GRB2 See above

Jiang et al. (170) miR-383-5p Down TRIM27 See above

Sun et al. (171) miR-137 Down EZH2 EZH2 functions as a transcriptional suppressor or a transcriptional

co-activator through epigenetic regulation of histone methylation. Evidence

has shown that the upregulation of EZH2 strongly correlates with cisplatin

resistance (172, 173).

Park and Kim (174) miR-503-5p Down CD97 CD97 is a member of the epidermal growth factor (EGF)-seven

transmembrane family that signals through Janus-activated kinase 2(JAK2),

a signal transducer and activator of transcription 3 (STAT3), to induce

paclitaxel resistance in ovarian carcinoma.

Nakamura et al. (175) miR-194-5p Down MDM2 Upregulation of the E3 ubiquitin ligase, MDM2, blocks the transcriptional

activity of several tumor suppressor genes, including p53 and p21.

Li et al. (176) miR-142-5p Down XIAP See Table 2.

Zhang et al. (177) miR-574-3p Down EGFR Cells might confer resistance toward chemotherapies by activating several

signaling cascades involved in proliferation and survival that are

downstream of the oncogenic EGFR (178).

Dai et al. (179) miR-195-5p Down PSAT1 PSAT1-promotes inactivating phosphorylation of GSK3β, allowing the

accumulation and nuclear translocation of β-catenin, which might help in

conferring resistance by upregulating the stress-related gene, HIF-1α.
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is one of the most comprehensively investigated miRNAs in
ovarian cancer. Although the majority of studies have shown
that miR-200c is highly expressed in the tumor tissues as well
as serum of ovarian cancer patients (32, 35), other studies have
demonstrated that miR-200c was significantly downregulated in
many advanced, poorly differentiated ovarian adenocarcinomas
(121, 122). It seems that what controls the expression of these
miRNAs are the disease stage, the type of specimen, and whether
or not these cells have been exposed to treatment. Cochrane et al.
reported that exogenous overexpression of miR-200c in different
ovarian cancer cell lines resulted in a dramatic reduction in the
expression of class III β-tubulin (TUBB3), a highly prevalent
mechanism of resistance tomicrotubule-binding chemotherapies
in many solid tumors (123–125). A study by Leskela et al.
confirmed the previous findings by demonstrating that highly
resistant ovarian tumors had high levels of the TUBB3 protein
and significant downregulation in the expression of miR-141,
miR-429 and miR-200c (126). Studies at the other end of the
spectrum revealed that high expression of miR-141 and miR-
200c was strongly correlated with ovarian cancer resistance
to platinum-based therapy. Ectopic overexpression of miR-141
induced cisplatin resistance in ovarian cancer cells by directly

suppressing the expression of the tumor suppressor Kelch-like
ECH-associated protein 1 (KEAP1) and subsequently activating
its downstream NF-κB pathway (127).

Epithelial-mesenchymal transition (EMT) is another
biological process by which cancer cells confer resistance to
chemotherapy (128). Increasing evidence suggests that the
expression of key EMT-associated genes is directly regulated by
several members of the miR-200 family. For instance, Zinc-finger
E-box binding homeobox 1, ZEB1 (also known as δEF1), and
zinc finger E-box-binding homeobox 2, ZEB2 (also known as
SIP1), the upregulation of which facilitate EMT and tumor
metastasis by downregulating E-cadherin, were identified
as direct targets of all five members of the miR-200 family.
Intriguingly, inhibition of these microRNAs was sufficient to
induce EMT and reduce adhesion by upregulating E-cadherin
transcriptional repressors, ZEB1, and/or SIP1 (121, 129). In
agreement with these studies, two independent research groups
have demonstrated that resorting to the expression of miR-429
and the other miR-200 family members induced mesenchymal-
to-epithelial transition (MET), reverted the EMT phenotype, and
sensitized different ovarian cancer cells to Taxol and platinum-
based chemotherapies (130, 131). Furthermore, a study by

FIGURE 4 | Venn diagram of reported miRNAs that strongly modulate ovarian cancer sensitivity to chemotherapeutic agents.
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Chen et al. demonstrated that miR-200c was significantly
downregulated in the more aggressive and chemoresistant
phenotype CD117+/CD44+ ovarian cancer stem cells compared
with the CD117−/CD44− cells. Ectopic overexpression of
miR-200c in the CD117+/CD44+ cells inhibited EMT and
induced tumor suppression by directly repressing ZEB1 and
Vimentin, which resulted in a subsequent upregulation of the
E-cadherin expression (122). Collectively, these observations
support the notion that the miR-200 family of microRNAs
influences the sensitivity of ovarian cancer cells to conventional
chemotherapies through multiple mechanisms, including, but
not limited to, interference with cellular microtubule assembly,
regulating NF-κB signaling, and the EMT/MET processes.

miRNA-214/199a Cluster
The upregulation of miR-214 in various human malignancies,
including ovarian cancers, and its roles in chemosensitivity and
resistance have been extensively studied and documented. One
of the earliest works by Yang et al. demonstrated a significant
upregulation of miR-214 expression (8.63-fold) in late-stage,
high-grade tumors compared to the normal ovarian tissues.
Mechanistic experiments revealed that miR-214 negatively
regulated PTEN by binding to its 3′-UTR, leading to the
repression of its translation and subsequent activation of its
downstream Akt signaling cascade. The resulting activation
of the AKT pathway by miR-214 promoted ovarian cancer
cell survival and cisplatin resistance. Furthermore, miR-214
knockdown abrogated cisplatin resistance in the cisplatin-
resistant cells (132). Since then, several studies have reported
a reciprocal relationship between miR-214 expression and
the degree of resistance to multiple therapies in numerous

malignancies, including pancreatic (133) and gastric cancers
(134, 135).Wang et al. have recently demonstrated that exosome-
containing anti-miR-214 resensitized cisplatin-resistant gastric
cancer cells in vitro and in vivo, serving as a promising treatment
approach for refractory gastric cancer (136).

MiR-199a∗ (also known as miR-199a-5p) is another
downregulated miRNA in ovarian cancer tissues relative to
normal ovarian counterparts and has been implicated as
playing an important role in ovarian cancer sensitivity to
chemotherapeutics. In 2008, a study conducted by Chen et al.
identified for the first time the functional role of miR-199a∗ as a
direct inhibitor of IKKβ expression, a kinase that phosphorylates
IκB proteins, causing their proteasomal degradation and
subsequent nuclear translocation of NF-κB. They reported that
Type I/MyD88 positive EOC cells had the capacity to develop
resistance to cytotoxic drugs such as paclitaxel and TNF-α due
to lower miR-199a∗ expression and higher IKKβ expression
(137). In another study, HIF-1α and HIF-2α were identified
as direct targets for miR-199a∗. High expression of these two
hypoxia-responsive factors and low expression of miR-199a∗

mediated ovarian cancer cell resistance to carboplatin. This
observation was validated when exogenous overexpression
of miR-199a∗ in the EOC cell line (A2780) disrupted cells’
peritoneal seeding and sensitized them to carboplatin treatment
in vivo (138). CD44+/CD117+ cells are ovarian cancer-initiating
cells (CIC) that are characterized by their highly proliferative
capabilities and their resistance to chemotherapies (58, 59).
Cheng et al. found that miR-199a significantly enhanced the
chemosensitivity of ovarian CICs to Adriamycin, cisplatin, and
paclitaxel, and reduced the mRNA expression of the multidrug
resistance gene ABCG2 (61). Most recently, Liu et al. have

FIGURE 5 | Venn diagram of overlapping miRNAs reported to regulate different aspects of ovarian carcinoma.
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reported that miR-199b∗ (also known as miR-199b-5p) was
significantly downregulated in cisplatin-resistant ovarian cancer
cells relative to cisplatin-sensitive cells. They found that the loss
of miR-199b-5p activated the JAG1-mediated Notch1 signaling
cascade, a reported chemoresistance and survival-regulating
pathway in different types of human malignancies (139, 140).
Restoration of miR-199b-5p expression resensitized the ovarian
cancer cells to cisplatin-induced cytotoxicity both in vitro and in
vivo. Findings from these studies further insinuate the diversity
of targets of these miRNAs and their pivotal roles in modulating
cellular response to chemotherapies.

Let-7 Family
The let-7 (lethal-7) family of miRNAs consists of 13 human
homologs that are located on nine different chromosomes
(48, 141). Several studies have reported that the expression
profiles of the let-7 family members were significantly reduced
in various human cancer tissues and cell lines, including
ovarian cancer (49–53, 57, 142). In addition to the roles of
let-7 family members in the initiation and progression of
ovarian cancer as mentioned above, studies have also shown
a strong correlation between dysregulation in let-7 expression
and the development of resistance to chemotherapeutic drugs.
For example, Yang et al. have demonstrated that let-7i
expression was significantly reduced in the tumor tissue samples
derived from chemotherapy-resistant ovarian cancer patients.
Loss-of-function (let-7i inhibition) and gain-of-function (let-7i
overexpression) studies revealed that ovarian cancer resistance
to cisplatin was significantly increased in the absence of let-7i,
whereas ectopic expression of let-7i resensitized cells to treatment
(142). Similarly, Boyerinas et al. reported that the sensitivity
of multidrug resistant ovarian cancer cells to microtubule-
targeting drugs (Taxanes) was increased by overexpressing let-
7g in those cells. This effect was mediated by repressing
IMP-1, which in turn causes destabilization of multidrug
resistance (MDR1) at the mRNA and protein level, thereby
increasing the sensitivity of the multidrug-resistant ovarian
cancer cell to Taxanes but not carboplatin, a non-MDR1
substrate (143). Let-7e is another member of the let-7 family
that has been reported recently to play an important role in
the development of cisplatin resistance in ovarian cancer cells.
Findings by Cai et al. demonstrated that let-7e expression was
significantly downregulated in cisplatin-resistant human EOC
cells compared to parental ones. Exogenous overexpression
of let-7e resensitized the former to cisplatin by reducing the
expression of cisplatin-resistant related proteins EZH2 and cyclin
D1 (144). Deregulation of some members of the let-7 family
of miRNAs have also been suggested to serve as potential
biomarkers to predict the responsiveness of ovarian cancer
patients to different chemotherapeutic agents. For instance,
Lu et al. reported that ovarian cancer patients with higher
let-7a expression did not respond well to paclitaxel/platinum
combination therapy and had worse overall survival rates
compared to patients with low let-7a expression (145). More
recently, analysis of human EOC tissue specimens revealed
that the tumor suppressors let-7g and let-7d-5p were strongly
associated with acquired resistance to cisplatin (146, 147). Other

individual miRNAs, their identified targets, and examples of
the mechanisms by which these miRNAs could modulate the
responsiveness of ovarian cancer cells to chemotherapy are listed
in Table 3. Approximately 53% of the miRNAs reported in
this review modulate ovarian cancer responsiveness to cisplatin,
whereas ∼25% play a significant role in cell resistance against
taxanes-based therapy. As shown in Figure 4, members of the
let-7 family, miR-214/199a cluster, and miR-200 family were
among the 12 miRNAs that appear to be critical regulators of
chemoresistance to cisplatin and paclitaxel. Furthermore, five
chemoresistance-associated miRNAs in ovarian cancer patients
(miR-141, miR-146a, miR-200c, miR-429, and miR-7) have been
suggested to serve as novel prognostic biomarkers. Interestingly,
only two miRNAs (miR-106a and miR-16) showed the ability to
modulate proliferation and chemosensitivity of ovarian cancer
cells and to function as prognosis indicators in ovarian cancer
patients (Figure 5).

CONCLUDING REMARKS

The treatment of patients with ovarian cancer faces multiple
challenges ranging from late diagnosis, due to the lack of reliable
markers, to the development of resistance to current therapeutics
owing to the heterogeneity of the disease. Over the last 20 years,
substantial progress has been made in our understanding of how
miRNAs regulate different cancer hallmarks and how we can
utilize such knowledge to improve the diagnosis and prognosis
of cancer patients. However, several challenges could affect the
confidence in utilizing miRNAs as diagnostic and prognostic
biomarkers, including diversified sampling methods, detection
techniques, gender, and ethnicity or genetic background. More
studies are needed with a larger number of patients to investigate
the impact of each of the above factors on the identified miRNA
signatures. Research on how miRNAs regulate the pathology of
ovarian cancer is still in its infancy, representing<4% of the total
published reports. The bulk of these studies deal with expression
profiling, identification of target genes, determination of affected
cellular pathways, resistance to conventional chemotherapeutics,
and their utilization as therapeutic tools. As demonstrated in
this review, overexpressing tumor suppressor miRNAs, using
synthetic miRNAs mimics, or inhibiting the activity of oncogenic
miRNAs, using anti-miRNA oligonucleotides, have a strong
potential to serve as a therapeutic approach for the treatment of
ovarian cancer.
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