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Radiotherapy has been used in the clinic for more than one century and it is recognized

as one of the main methods in the treatment of malignant tumors. Signal Transducers

and Activators of Transcription 3 (STAT3) is reported to be upregulated in many

tumor types, and it is believed to be involved in the tumorigenesis, development and

malignant behaviors of tumors. Previous studies also found that STAT3 contributes to

chemo-resistance of various tumor types. Recently, many studies reported that STAT3

is involved in the response of tumor cells to radiotherapy. But until now, the role of the

STAT3 in radioresistance has not been systematically demonstrated. In this study, we will

review the radioresistance induced by STAT3 and relative solutions will be discussed.
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INTRODUCTION

With the development of technology and our understanding of tumors, there are multiple
methods for the treatment of tumors, such as surgical resection, chemotherapy, radiotherapy
and immunotherapy. Among all these approaches to treatment, radiotherapy is one of the most
cost-effective methods for the treatment of various cancers. Since its introduction into the clinic,
radiotherapy has existed for more than one century, which shows that its efficiency is well-approved
(1). But for some tumor types, radiotherapy doesn’t work so well. Until now, we have recognized
that after irradiation treatment, tumor cells develop complicated mechanisms, like DNA repair,
cell cycle arrest, and autophagy, to protect themselves so as to survive (2–4). As a result, most
tumor cells will develop radioresistance, which leads to the failure of radiotherapy. Although
many methods have been used to overcome radioresistance, their efficiency is not as what we
have expected (5, 6). Thus, more research is needed to help us have a better understanding
of radioresistance.

Signal Transducers and Activators of Transcription 3 (STAT3), one of the most important
intracellular transcription factors, is reported to be constitutively activated in most tumor types
(7, 8). Many cytokines, hormones and growth factors are involved in the activation of STAT3,
among which canonical Janus kinase (JAK) is the most studied (9). STAT3 plays an important role
in cell proliferation, and is also involved in anti-apoptosis process (9). Besides, STAT3 also promotes
angiogenesis, invasiveness and immunosuppression in cancer (10–12). All these functions are
related to STAT3’s role in controlling gene transcription. Previously, STAT3 was recognized as a
direct transcription factor. For example, STAT3 regulates pro-survival gene expression to increase
apoptotic resistance in cancer. But more andmore recent studies discover that STAT3 also regulates
gene expression through DNA methylation and chromatin modulation (9).
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Previously, STAT3 is reported to be involved in chemo-
resistance and this is well-reviewed by Tan et al. (13). Recently,
more and more studies showed that STAT3 contributed to
radioresistance. Huang et al. showed that sorafenib and its
derivative could increase the anti-tumor effect of radiotherapy
by inhibiting STAT3 (14, 15). Lau et al. found that blocking
STAT3 could inhibit radiation-induced malignant progression,
such as increased migration and invasion (16). These studies
have shown that STAT3 is not only involved in tumorigenesis
and tumor development, but also leads to chemo- and radio-
resistance. Here, wemainly review the role of STAT3 inmediating
radioresistance from points of apoptosis, aggressive behaviors,
DNA damage repair, cancer stem cells. And novel modalities to
reverse the failure of radiotherapy will be discussed.

INHIBITING STAT3 INCREASED
RADIATION-INDUCED APOPTOSIS

Apoptosis is essential for the maintenance of normal
physiological functions in normal cells. But anti-apoptosis
process could be induced in tumor cells after chemo- or
radio-therapy, so as to help them survive (17).

The B cell lymphoma-2 (BCL-2) family of proteins are
important among all the factors that are involved in regulating
programmed cell death or apoptosis (18). BCL-2 family of
proteins are mainly mitochondria localized and involved in the
release of cytochrome C, an essential mediator of apoptosis
(19, 20). They possess BH 1–4 domains and have the function
of maintaining mitochondrial integrity. STAT3 is involved
in tumorigenesis by activating anti-apoptotic proteins, like
surviving (17, 21). Conversely, inhibiting STAT3 increases
apoptosis (22, 23). Besides, a study found that heat shock protein
70 (Hsp70) has anti-apoptosis effect by preventing JNK-induced
phosphorylation and inhibiting BCL-2 and BCL-XL, so as to
maintain the stability of mitochondria (24). STAT3 can affect
the Hsp70 promoter and increases its expression in cancer cells,
mediating the upregulation of antiapoptotic proteins (25). As
a result, we assume that inhibiting STAT3 could decrease the
expression of antiapoptotic proteins, leading to apoptosis.

Until now, there are a large number of studies showing that
inhibiting STAT3 increases radiosensitivity in numerous tumor
types (14, 15, 26–31), which are summarized in Table 1.

Studies showed that STAT3 is one of the most important
regulators of survivin (33, 34). Survivin, a member of the
inhibitor of apoptosis protein (IAP) family and one of the most
important anti-apoptotic proteins, is found highly expressed
in various cancer types, making it a potential anticancer
target (35, 36).

Several studies found that inhibiting survivin could enhance
radiosensitivity in various tumor types. Grdina et al. found that
the expression of survivin upregulated after irradiation treatment
and increased survivin promoted cell survival, while knocking
down survivin with siRNA abrogated this adaptive response
(37). Iwasa et al. showed that YM155, an inhibitor of survivin,
enhanced radiosensitivity in non-small cell lung cancer cell lines
(38). Qin et al. showed that YM155 increases radiosensitivity in

TABLE 1 | A summary of pre-clinical studies in which STAT3-targeted

compounds are used to enhance the radiosensitivity of malignant tumors by

inducing apoptosis.

Compounds/

Genes

Cancer type Mechanisms References

Sorafenib Hepatocellular

carcinoma

Inhibiting STAT3 (14)

SC-59 Hepatocellular

carcinoma

Inhibiting SHP-1/STAT3

pathway

(15)

Dovitinib Hepatocellular

Carcinoma

Inhibiting SHP-1/STAT3

pathway

(26)

GRIM-19 Gastric cancer cells Suppressing

accumulation of STAT3

(27)

Stattic Head and neck

squamous cell

carcinoma

Inhibiting STAT3 (28)

Casticin Human renal clear cell

carcinoma, neck

squamous cell

carcinoma

Inhibiting IL-6/STAT3

pathway

(29)

Zoledronic

acid

Human pancreatic

cancer cells

Inhibiting

STAT3/NF-kappa B

pathway

(30)

YM155 Glioma Inhibiting STAT3/survivin

pathway

(32)

GRIM-19, genes associated retinoid–IFN induced mortality-19. SHP-1, Src-homology

phosphatase type-1.

esophageal squamous cell carcinoma by the inhibiting cell cycle
checkpoint and homologous recombination repair (32).

But these studies didn’t demonstrate whether the
radiosensitive effect of YM155 is STAT3-dependent. Our
recent study found that YM155 decreased the activity of STAT3
and increased the radiosensitivity of glioblastoma, one of the
most radioresistant tumor types. This might provide some clues
for the role of STAT3/survivin pathway in the radioresistance
of various neoplasms (31). Further studies are warranted to
clarify the direct interaction between STAT3 and survivin after
irradiation treatment.

INHIBITING STAT3 DECREASED
RADIATION-INDUCED AGGRESSIVE
BEHAVIORS

Although irradiation kills cancers, we have to recognize that
it can also induce carcinogenesis. The carcinogenic potential
of ionizing radiations could be traced back to 1902 and more
radiation-induced (RI) neoplasia have been observed (39, 40).
Over the last 45 years, 296 cases of radiation-induced brain
tumors have been reported.

Except for RT tumors, more and more studies discovered that
radiation might enhance malignant progression, like aggressive
migration and invasion in cancer cells (16, 41–45). This will
induce more extensive spread of tumor cells, which is a
contributing factor to tumor relapse and recurrence (46, 47).
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TABLE 2 | A summary of genes involved in irradiation-induced invasion of

various cancers.

Genes Cancer type Mechanisms References

MMP2 Glioma; Esophageal

squamous cell carcinoma

Degrading extracellular

matrix components

(42, 54, 55)

SDF-1 Murine astrocytoma tumor Through macrophage

mobilization and tumor

revascularization

(56)

MRCK Glioma; Squamous cell

carcinoma; Skin cancer

By targeting MLC and

MYPT1; By disturbing a

network of communicating

glioma cell protrusions

(57–60)

MMP9 Glioma Degrading extracellular

matrix components

(61)

MLC, myosin light chain proteins. MRCK, myotonic dystrophy kinase-related CDC42-

binding kinase. MMP: matrix metalloproteinase. MYPTI, myosin phosphatase targeting

subunit 1. SDF-1: stromal cell-derived factor-1.

Among all the mechanisms that explaining radiation-induced
migration and invasion, epithelial–mesenchymal transition
(EMT) accounting for the most. In the process of EMT,
epithelial characteristics will be downregulated andmesenchymal
characteristics will be gained in epithelial cells. This phenomena
were reported by Elizabeth Hay in the early 1980s (48). Cancer
cells underwent EMT will acquire elevated capabilities to invade
and disseminate to distant sites, which increases its malignance.

Previous studies showed that among all signaling pathways
that are involved in EMT, STAT3 is one of the most important
(49–51). Many studies found that irradiation actually promoted
EMT process (43, 52, 53). Lau et al. found that blocking STAT3
decreased radiation-induced malignant behaviors in glioma (16).
Our previous study showed that YM155 not only decreased DNA
damage repair, but also decreased radiation-induced invasion
and reversed EMT by inhibiting STAT3, which was a promising
radiosensitizer in the treatment of cancer (31). But whether it has
the same effect in other tumor types is still unknown.

Except for EMT process, there are other mechanisms to
explain for the increased invasive ability induced by irradiation
(42, 54–61), which are summarized in Table 2. But whether they
have relationships with STAT3 is still unknown.

Yu et al. showed that irradiated breast cancer cells could
promote the invasion of non-irradiated tumor cells and
angiogenesis through IL-6/STAT3 signaling (62). This might
explain that STAT3 plays a role in radiation-induced bystander
effect (RIBE) (63). RIBE happens when irradiated cells affect
non-irradiated cells through gap junctional intercellular
communication (GJIC) or the release of soluble factors (64).
Results induced by RIBE are still unclear. Some studies found
decreased survival in unirradiated cells, whereas others observed
that RIBE helped irradiated cells survive (65).

Duan et al. showed that irradiation of normal brain before
tumor cell implantation contributed to aggressive tumor growth,
which suggested a brain tumor microenvironment-induced,
tumor-extrinsic effect (66). Tumor microenvironment (TM) is
mainly composed of epithelial cells, stromal cells, extracellular
matrix (ECM) components or immune cells (67). The concept
of TM can be traced back to 1889, when Paget put forward the
concept, “seed and soil” (68). The role of TM in tumorigenesis

and development is attracting more and more attention. Studies
also found that TM contributed to chemo- or radio-resistance
(67, 69, 70).

Recent studies also verified the important role of STAT3 in
tumor microenvironment. A study by Chang et al. concluded
that IL-6/JAK/STAT3 pathways played a key role in regulating
the tumor microenvironment that promoted growth, invasion,
and metastasis (71). Deng et al. reported that sphingosine-
1-phosphate receptor type 1 (S1PR1)-STAT3 signaling was
activated in pre-metastatic sites, contributing to the formation of
pre-metastatic niche (72). Bohrer et al. found that upregulation
of the fibroblast growth factor receptor (FGFR)-STAT3 signaling
in breast cancer cells led to a hyaluronan-richmicroenvironment,
which helped tumor progression (73).

STAT3 also established an immunosuppressive
microenvironment to promote the growth and metastasis
breast cancer (74). All these studies showed that STAT3
played an important role in tumor microenvironment-induced
aggressive behaviors, which made STAT3 a promising target
in the radiorensitization of cancers. A study by Gao et al.
showed that myeloid cell-specific inhibition of Toll-like receptor
9 (TLR9)/STAT3 signaling enhanced the antitumor effect of
irradiation (75). More studies are warranted in the future
to verify whether targeting STAT3 is efficient in inhibiting
irradiation-induced malignant behaviors of cancers.

STAT3 IS INVOLVED IN DNA
DAMAGE REPAIR

Ionizing radiation damages DNA mainly in two ways, by
direct and indirect action. Direct action occurs by ionization
in the DNA molecule itself. On the other hand, ionization
of water produces reactive oxygen species (ROS) and reactive
nitrogen species (RNS), and these free radical species (in
particular the OH radical) damage DNA by indirect action (31).
The efficacy of radiotherapy is mainly determined by DNA
damage. However, radioresistance can be induced after repeat
radiotherapy treatment. Among all the cellular processes that are
involved in the development of radioresistance, DNA damage
repair is one of the most important factors (76).

When DNA damage occurs, a series of sequential reactions
are induced to maintain the consistency and integrity of genetic
material. These reactions are called DNA damage repair (77).
Among all the pathways that are involved in DNA damage
repair, ataxia-telangiectasia mutated (ATM)- check-point kinase
2 (Chk2) and ATM and Rad3-related (ATR)- check-point kinase
1 (Chk1) signaling pathways are the best studied. ATM and ATR
are recognized as the central components of the DNA damage
response (78, 79). When DNA double strand breaks (DSBs)
occur, ATM is upregulated and activates the phosphorylation of
important proteins like check-point kinase 2 (Chk2), p53, and
BRCA1 (80, 81). ATR initiates the late phosphorylation of p53
and check-point kinase 1 (Chk1) (82, 83). Details can be seen in
the review by Zhang et al. (84).

There are various types of DNA damage, like base damage,
deletion, insertion, exon skipping, single strand breaks and
double strand breaks (DSBs). Among them, DSBs are the
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most lethal. There are mainly two mechanism in repairing
DSBs, non-homologous end joining (NHEJ) and homologous
recombination (HR). In the process of NHEJ, ligation occurs
regardless of whether the ends come from the same chromosome.
As a result, mistakes might occur. On the other hand, HR uses
the information that is usually from the sister chromatid to
repair damaged DNA. So, HR has a higher accuracy in repairing
DNA (76).

Recently, more and more studies showed that STAT3 was
involved in DNA damage repair. STAT3 was reported to be
involved in the regulation of breast cancer susceptibility gene 1
(BRCA1), an important factor in DNA damage repair, especially
HR (85, 86). Barry et al. showed that knocking down STAT3
impaired the efficiency of damage repair by downregulating
the ATM-Chk2 and ATR-Chk1 pathways (87). Essential meiotic
endonuclease 1 homolog 1 (Eme1), a key endonuclease involved
in DNA repair, was reported to be the downstream of STAT3
(88–90).Chen et al. showed that silencing Jumonji domain-
containing protein 2B (JMJD2B) activated DNA damage by the
suppression of STAT3 signaling (91). All these studies suggested
that STAT3 was part of DNA damage repair mechanisms. But it is
still insufficient to conclude that STAT3 is directly participating in
DNA damage repair. What’s more, these studies are not enough
to show that it is ubiquitous for STAT3 to be involved in DNA
damage repair. Studies like knocking down STAT3 to test the
efficiency of HR or NHEJ are needed in the future.

STAT3 CONTRIBUTES TO ROS DEPLETION
IN CANCER STEM CELLS

Cancer stem cells (CSCs) are a group of cells with characteristics
of self-renewing, multipotent, and tumor-initiating. Recently
more and more studies showed that most malignant cancer cells
were derived from CSCs (92, 93). CSCs have high expression of
anti-apoptotic proteins and ATP-binding cassette (ABC) pump,
and all these contribute to its chemo- or radio-resistant feature
(94–96). Many studies showed that STAT3 was one of the
most important factors in maintaining the phenotype of CSCs
(97–99). Besides, STAT3 also suppressed differentiation-related
genes (100). In the aspect of radiotherapy, recent studies found
that STAT3 and CCS were closely connected in contributing to
radioresistance. Lee et al. found that STAT3 was involved in
enhancing cancer stemness and radioresistant properties (101).
Shi et al. showed that ibrutinib, a Bruton’s tyrosine kinase (BTK)
inhibitor, could impair radioresistance by inactivating STAT3
in glioma stem cells (102). A study by Park et al. showed that
JAK2/STAT3/ cyclin D2 (CCND2) pathway promoted colorectal
cancer stem cell persistence and radioresistance (103). Gao
et al. found that lemonin, a triterpenoid compound, enhanced
radiosensitivity by attenuating Stat3-induced cell stemness (104).
Many studies have been done to find out the underlying
mechanisms of CSCs in radioresistance. A review by Skvortsova
et al. showed that the ability of DNA damage repair was enhanced
in CSCs, so as to help them defend against ROS (105). Arnold
found that radiation expanded cancer stem cell populations and
can induce stemness in nonstem cells in a STAT3-dependent
manner (106). Since ionizing radiation causes cell death by

DNA damage, here we mainly focus on how CSCs respond to
DNA damage. Until now, little is known about the DNA repair
mechanisms in CSCs. But more andmore attention has been paid
to the role of ROS in CSC survival and radiation resistance (107).

High ROS levels affect many aspects of tumor biology and one
of the most important roles is that it induces DNA damage and
genomic instability (108). Normally, single strand breaks (SSBs)
are the main DNA damage type after ROS treatment and can be
repaired through nucleotide or base excision repair (NER/BER)
(109). But the accumulation of SSBs can lead to stalling of the
replication fork or error in replication, which ultimately induces
more lethal DNA damage type, DSBs. A study showed that CSCs
possess lower concentrations of ROS than do non-stem cancer
cells (96). Studies also found that inhibiting ROS scavenging
machinery could enhance radiosensitivity in CSCs (110, 111). Lu
et al. found that niclosamide, an inhibitor of STAT3, increased the
radiosensitivity in triple negative breast cancer (TNBC) cells via
triggering the production of ROS (112). Their study showed that
inhibiting STAT3 and increasing ROS led to radiosensitivity. But
they didn’t illustrate enough evidence to prove the relationship
between STAT3 and ROS in DNA damage repair.

Intracellular ROS is mainly produced by the mitochondria,
and another source is NADPH oxidases (NOXs) (113).
Initially, mitochondria ROS production is unwanted by cells.
Recently, more and more studies found that STAT3 was actively
involved in regulating the activity of mitochondria. Lapp et al.
found that activating STAT3 decreased mitochondrial ROS
production by upregulating the expression of uncoupling protein
2 (UCP2) (114). Meier et al. showed that phosphorylation
of Ser727 in STAT3 recruited mitochondrially localized
STAT3 (115). But phospho-Stat3Y705 is not responsible for
the STAT3 mitochondrial translocation (115–117). What’s
more, a recent study by Cheng et al. found that selectively
inhibiting mitochondrial STAT3 could provide a promising
target for chemotherapy (118). As a result, we assume that
mitochondrial STAT3 may be a potential target in enhancing
the radioresensitizing effect of cancer cells. More studies are
warranted in the future.

CONCLUSION

Persistent activation of STAT3 in various tumor types makes
STAT3 a specific and promising target in anticancer treatment.
Inhibiting STAT3 by STAT3 dominant negative molecules, decoy
oligonucleotides, and peptidomimetics is proven efficient in
numerous preclinical studies.

STAT3 is well-known for its roles in tumor initiation and
development. Besides, STAT3 also leads to chemo- or radio-
resistance. In this review, we mainly focused on the role
of STAT3 in response to radiotherapy, and the underlying
mechanisms including but not limited to apoptosis, aggressive
behaviors, DNA damage repair, cancer stem cells were discussed
(Supplementary Figure 1). Except for the mechanisms we have
discussed above, there are still other explanations for STAT3’s
role in radioresistance. Hypoxia is also a well-known factor that
contributes to radioresistance in many tumor types. Hypoxia
induces the production of ROS by mitochondrial electron
transport chain. It also activates Hypoxia inducible factors
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(HIFs), important factors which will induce malignant behaviors
and proliferation of tumor cells under hypoxia. Mitochondrial
ROS stabilizes HIF1 and HIF2 by inhibiting prolyl hydroxylases
(PHDs) (119, 120). Studies showed that NSC74859 and stattic,
two inhibitors of STAT3, enhanced radiosensitivity by inhibiting
hypoxia- and radiation-induced STAT3 activation in esophageal
cancer (121, 122).

On the other hand, we have to realize that STAT3 has many
other functions except for disease formation and progression, like
cardioprotection, liver protection, and obesity (123–126). As a
result, targeting STAT3 may have many side effects. For example,
strong inhibitors of STAT3 could cause fatigue, diarrhea,
infection, and periphery nervous system toxicities (127).

Although the inhibitors of STAT3 have been studied and
proven to be efficient in preclinic for 20 years, they showed
poor anti-tumor effect in clinical trials (17). Recently, drug
repurposing, a method based on the theory that established
drugs may have many other mechanisms except for their well-
known indications, has gained increased attention (128). Drug
repurposing has advantages such as highly approved safety,
avoiding laborious and expensive drug development processes.
As a result, testing FDA-approved drugs may help us find
potential inhibitors of STAT3 and promote its quick translation
into clinic to treat human cancers. In conclusion, the role of
STAT3 in the radio-response of cancer has been paid more and
more attention to. STAT3 is becoming a promising target in the
radiosensitization of cancer.
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Supplementary Figure 1 | Radioresistance caused by signaling pathways

related to STAT3. Radiation induced anti-apoptosis is mediated by

STAT3-HSP70-BCL2 family members pathways. After radiation treatment, STAT3

promoted aggressive behaviors in tumor cells through epithelial–mesenchymal

transition (EMT), radiation-induced bystander effect (RIBE) and tumor

microenvironment (TM). STAT3 contributes to DNA damage repair through

ATM-Chk2 and ATR-Chk1 pathways. Cancer stemness and reactive oxygen

species (ROS) depletion are also involved in STAT3-induced radioresistance.
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