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Activated Cdc42-associated kinase1 (ACK1), a non-receptor tyrosine kinase, has been

considered as an oncogene and therapeutic target in various cancers. However, its

contribution to cancer immunity remains uncertain. Here we first compared the profiles of

immune cells in cancerous and normal tissues in The Cancer Genome Atlas (TCGA) lung

cancer cohorts. Next, we found that the immune cell infiltration levels were associated

with the ACK1 gene copy numbers in lung cancer. Consistently, our RNA-seq data

unveiled that the silencing of ACK1 upregulated several immune pathways in lung

cancer cells, including the T cell receptor signaling pathway. The impacts of ACK1 on

immune activity were validated by Gene Set Enrichment Analysis of RNA-seq data of

188 lung cancer cell lines from the public database. A pathway enrichment analysis of

35 ACK1-associated immunomodulators and 50 tightly correlated genes indicated the

involvement of the PI3K-Akt and Ras signaling pathways. Based on ACK1-associated

immunomodulators, we established multiple-gene risk prediction signatures using the

Cox regression model. The resulting risk scores were an independent prognosis predictor

in the TCGA lung cohorts. We also accessed the prognostic accuracy of the risk scores

with a receiver operating characteristic methodology. Finally, a prognostic nomogram,

accompanied by a calibration curve, was constructed to predict individuals’ 3- and

5-year survival probabilities. Our findings provided evidence of ACK1’s implication in

tumor immunity, suggesting that ACK1 may be a potential immunotherapeutic target

for non-small cell lung cancer (NSCLC). The nominated immune signature is a promising

prognostic biomarker in NSCLC.

Keywords: ACK1, immune cells, NSCLC, prognosis, nomogram

INTRODUCTION

Lung cancer is the most frequently diagnosed cancer and one of the most lethal solid malignancies
(1). Non-small cell lung cancer (NSCLC), the primary histology type, constitutes 85% of all
cases. Despite considerable progress and advances in the understanding of lung cancer biology
and multimodality treatments, prognosis remains far from satisfying. Patients with unresectable
advanced diseases only receive modest benefits from typical therapies, including systemic cytotoxic
chemotherapy, radiation therapy, as well as targeted therapies against epidermal growth factor
receptor and anaplastic lymphoma kinase fusion oncogene (2). Fortunately, immunotherapy has

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2020.01132
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2020.01132&domain=pdf&date_stamp=2020-07-23
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:jianqunma@aliyun.com
https://doi.org/10.3389/fonc.2020.01132
https://www.frontiersin.org/articles/10.3389/fonc.2020.01132/full
http://loop.frontiersin.org/people/569832/overview
http://loop.frontiersin.org/people/986606/overview


Zhu et al. ACK1 Immune Implication in NSCLC

been emerging as a promising alternative treatment for
some lung cancer patients. Evading immune destruction is
one of 10 putative cancer hallmarks (3). In several clinical
trials, a fraction of patients achieved a partial response after
receiving immune checkpoint inhibitors that enhance the
cytotoxic activity of immune effector cells by neutralizing
cytotoxic T-lymphocyte antigen-4 (CTLA4), programmed
cell death protein 1 (PD-1), or PD-1 ligand (PD-L1) (2).
Several checkpoint blockers (nivolumab, pembrolizumab, and
atezolizumab) have been proven to treat NSCLC patients
(4, 5). However, like other therapies, only a portion of NSCLC
patients benefit from immunotherapy. Prognostic immune
markers would facilitate the identification of the subgroups
responding to immunotherapies. Some evidence has suggested
that tumor-infiltrating leukocytes are related to the clinical
response to therapy and cancer prognosis, including NSCLC
(6–10). However, the molecular features designating an
intratumoral immune microenvironment remain to be explored
at length. Therefore, it is indispensable to comprehensively
understand lung cancer immunology and the molecular
regulatory mechanisms to ensure the success of immunotherapy.

Activated Cdc42-associated kinase1 (ACK1), referred to as
tyrosine kinase non-receptor 2 (TNK2), is an intracellular non-
receptor tyrosine kinase. TheACK1 gene located on chromosome
3q29 is frequently amplified or mutated in several types of
cancers, which generally leads to an abnormal activity of the
ACK1 signaling cascades (11). ACK1 is a promising therapeutic
target in cancer, including colorectal cancer (12), breast cancer,
hepatocellular carcinoma (13), gastric cancer (14–16), ovarian
cancer, and NSCLC (17, 18). Thus far, the mechanisms
underpinning the oncogenic role of ACK1 in lung cancer
remain mostly unknown (17). Intriguingly, our preliminary
study revealed that ACK1 is involved in the control of several
immune-related pathways. The immune implication of ACK1
in cancer has not been reported so far. Here we systematically
evaluated the status of lymphocytes and clarified the association
between ACK1 and lung cancer immunity, as well as the signaling
pathways regulating the ACK1-mediated immune response.
Finally, we generated prognostic immune signatures using ACK-
associated immunomodulators, followed by the construction of
a nomogram by integrating the immune signature and other
clinical features.

METHODS AND MATERIALS

Acquirement of NSCLC Expression Profiles
From TCGA Datasets
We obtained LUAD and LUSC datasets from the TCGA project
(https://portal.gdc.cancer.gov/). All the RNA-Seq data (level
3) were normalized as fragments per kilobase of transcript
per million mapped reads. The LUAD dataset contained 535
cancerous and 59 normal tissues, while the LUSC dataset
comprised 502 cancerous and 49 normal tissues, accompanied
by clinical information. The voom function in the limma
package for R software was employed to further process RNA
expression data.

Determination of Tumor-Infiltrating
Immune Cells in TCGA Lung Cancer
We adopted Cell type Identification By Estimating Relative
Subsets Of RNA Transcripts (CIBERSORT) method to qualify
and quantify 22 types of immune cells in tissues, including seven
T cell types, naïve andmemory B cells, plasma cells, NK cells, and
myeloid subsets (10, 19). CIBERSORT was developed to identify
cell types by using the signature gene expression profile for the
high-throughput array or RNA-sequencing data (10, 19). This
methodmainly relies on a leukocyte gene signature matrix, called
LM22. This file comprises 547 genes that differentiate 22 human
hematopoietic cell phenotypes (19). With the CIBERSORT L22
as the reference, we analyzed the mRNA expression matrix using
CIBERSORT R script acquired from the CIBERSORT website
(https://cibersort.stanford.edu/). By using Monte Carlo sampling
(20), we calculated an empirical P-value for the deconvolution of
each case. After excluding samples with P ≥ 0.05, the following
samples were included in the study: 511 LUAD vs. 58 normal
samples and 413 LUSC vs. 49 normal samples.

Correlation Between ACK1/TNK2 and
Tumor Immune Cell Infiltration
Tumor Immune Estimation Resource is a web server providing
a comprehensive analysis of tumor immune cells of pan-cancer
(cistrome.dfci.harvard.edu/TIMER/) (21). By taking advantage
of this web tool, we accessed six immune infiltrates (B cells,
CD4+ T cells, CD8+ T cells, neutrophils, macrophages, and
dendritic cells) in LUAD and LUSC. Several modules were offered
on this website, including Gene, Survival, Mutation, SCNA, Diff
Exp, Correlation, and Estimation. Relations between immune cell
infiltration and survival, TNK2 copy numbers, and infiltration
levels, as well as ACK1/TNK2 mRNA expression levels and
individual immune cell infiltration, were explored.

Cell Culture and RNA-seq
Human lung adenocarcinoma cell line A549 was provided by the
Chinese Academy of Sciences Collection Committee cell bank
(Shanghai, China). The cells were incubated in an incubator at
37◦C, supplied with 5% CO2. We knocked down the ACK1 gene
by infecting A549 cells with lentiviral vectors encoding shRNA
against ACK1 (tgCTTCCTCTTCCACCCAATT) or shRNA
control vectors purchased from the GeneChem (Shanghai,
China). The RNA samples extracted from cell cultures (shACK1
vs. shcontrol) in triplicate were subjected to RNA-seq using the
BGISEQ-500 platform.

Gene Set Enrichment Analysis
The Cancer Cell Line Encyclopedia (CCLE) project was launched
and maintained by the Broad Institute, the Novartis Institutes for
Biomedical Research, and its Genomics Institute of the Novartis
Research Foundation. This database involves the exhaustive
expression data of 84,433 genes of 1,457 cell lines, including
copy number, mRNA expression (Affymetrix), RPPA, RRBS, and
mRNA expression (RNAseq) (3). This project covers most of the
common cancer types, such as breast cancer, stomach cancer,
kidney cancer, liver cancer, and lung cancer. We downloaded
and processed the RNAseq data of 188 lung cancer cell lines

Frontiers in Oncology | www.frontiersin.org 2 July 2020 | Volume 10 | Article 1132

https://portal.gdc.cancer.gov/
https://cibersort.stanford.edu/
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Zhu et al. ACK1 Immune Implication in NSCLC

from the CCLE website. ACK1/TNK2 expression profiles were
extracted for subsequent analysis. The average expression of
the ACK1/TNK2 gene acted as a cutoff value to split all
lung cancer cell lines into ACK1/TNK2 high and ACK1/TNK2
low groups. Gene set enrichment analysis (GSEA) (22, 23)
was employed to dissect the signaling pathways significantly
associated with ACK1 expression levels (ACK1/TNK2 high vs.
ACK1/TNK2 low). GSEA software 4.0.0 was downloaded for the
analysis (software.broadinstitue.org/gsea/index.jsp).

All genes were ranked concerning their differential expression
between two phenotypic groups. GSEA assesses the genome-
wide expression profiles at the levels of gene sets instead of
concentrating on only a handful of mostly altered genes. A
gene set denotes a collection of concordant genes that have a
similar biological function, chromosomal location, or regulation.
The Molecular Signatures Databases were predetermined for use
with GSEA software according to known biological knowledge,
including cellular processes and biochemical pathways (e.g.,
cell cycle, DNA replication, apoptosis, and mTOR signaling
pathway). If the members of a predefined gene set mainly hit the
top or the bottom of, but not randomly scattered through, the
ranked gene list, this gene set is thought to be associated with the
phenotypic difference (22, 23).

Immunomodulators
Immunomodulators associated with ACK1 were retrieved
from an online integrated database TISIDB (http://cis.hku.
hk/TISIDB/), aiming to elucidate tumor–immune system
interactions (24). This web portal was built based on data
collected and integrated from the following resources: PubMed
database, high-throughput screening data investigating the
responses of tumor cells to T cytotoxic cells, exome and RNA
sequencing data of patients receiving immunotherapy, TCGA,
and other public databases [e.g., Uniprot, Gene Ontology
(GO), and DrugBank]. We chose immunoinhibitors and
immunostimulators that were significantly correlated with ACK1
regarding gene expression (Spearman correlation test, P < 0.05).
Next, we uploaded the ACK1-associated immunomodulators
onto the cBioPortal for Cancer Genomics (www.cbioportal.org).
With the network module, the queried genes were able to seize
50 concomitantly altered genes based on the RNA-seq data of
cancer samples. The resulting protein network was subjected to
GO annotation and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analysis using two web-based tools
(https://string-db.org/) and WEB-based GEne SeT AnaLysis
Toolkit (http://www.webgestalt.org/) (2, 25).

Survival Analysis
We attempted to develop a prognostic multiple immune gene
signature out of ACK1-associated immunomodulators. The
stepwise variable selection was performed with the Akaike
Information Criterion in Cox models (26). After the immune
genes were chosen, the prognostic index, referred to as risk score,
was generated: risk score = β1x1 + β2x2 +... + βixi . In this
formula, xi was the expression level of each gene, while βi is the
risk coefficient of each gene derived from the Cox model (27).
Kaplan–Meier survival curve, log-rank test, as well as univariate

Cox analyses were adopted to appraise the association of the
immune-related gene signature and clinical characteristics with
overall survival. Multivariate analysis was performed for the risk
score with adjustment for age, sex, T, N, M, and TNM stage. The
time-dependent receiver operating characteristic (ROC) curves
were adopted to determine the prognostic accuracy of the risk
score using the survivalROC package (28).

Construction of Nomogram
Since its development, nomograms have been increasingly used
for predicting cancer prognosis. This statistical methodology
scores each contributing parameter by points, such as age, gender,
TNM stage, and risk score. For each individual, all these points
are added up to generate a total point, with larger points meaning
that an event has a higher chance to occur. This method allows
the personalized estimate of the probability of recurrence, death,
or drug adherence (29). In this study, we used the nomogram
for cancer prognosis by incorporating the clinical characteristics
and the risk scores of patients. The normogram was created
via the rms package for R software. With the application of the
bootstrap method (1,000 replicates), a calibration curve was used
to visualize the deviation of predicted probabilities from what
actually happened. The concordance index (C-index) was used
to measure the predictive accuracy of the nomogram.

Statistics
We implemented all statistical analysis with R version 3.5.0
(R Foundation for Statistical Computing, Vienna, Austria),
complemented by IBM SPSS Statistics 24.0 (IBM, Inc., Armonk,
NY, USA). One-way ANOVA was used to perform a comparison
for continuous variables among groups ≥3, followed by post-
hoc tests. The threshold of statistical significance was set as
P < 0.05.

RESULTS

The Landscape of Infiltrating Immune Cells
in Lung Cancers and Normal Tissues
We first systematically delineated the pattern of immune cells by
extracting and processing the signature gene expression profile
with the CIBERSORT method. After removing the samples
with P ≥ 0.05, the landscape of the infiltrating immune cells
in cancerous and healthy biopsies for TCGA lung carcinoma
(LUAD) and lung squamous carcinoma (LUSC) cohorts is
displayed in Supplementary Figures 1A,B, respectively. When
compared to normal tissues, the proportions of naïve B cells,
plasma cells, T cells CD8, T cells CD4 memory activated,
T cell follicular helper, T cells regulatory (Tregs), T cells
gamma delta, macrophages M1, and dendritic resting cells
were significantly increased, while T cells CD4 memory
resting, NK cells resting, monocytes, macrophages M0,
macrophages M2, activated dendritic cells, resting mast cells,
eosinophils, and neutrophils in LUAD decreased (Figure 1A).
A similar situation was found for LUSC (Figure 1B). In
comparison to normal tissues, different patterns of the
infiltrating immune cells LUAD and LUSC are shown in
Figures 1C,D, respectively. Moreover, different correlation
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FIGURE 1 | Evaluation of the proportions of 22 types of immune cell infiltration by Cell Type Identification By Estimating Relative Subsets Of RNA Transcripts method

in The Cancer Genome Atlas lung cancer cohorts. Violin plots and heatmaps indicated the differences in the immune cell distribution between malignant (red) and

normal (blue) tissues in LUAD (A,C) and LUSC (B,D) cohorts. Different correlation patterns among 26 immune cell subsets in LUAD (E) and LUSC (F) cohorts.

patterns among the immune cells were found in LUAD
(Figure 1E) and LUSC (Figure 1F), suggesting the different
immune microenvironment between these two histology types.
Besides that, the infiltration levels of B cells and dendritic cells,

as well as ACK1/TNK2 mRNA expression, were significantly
associated with survival in LUAD (Supplementary Figure 2A),
whereas CD4+ T cells were associated with survival in LUSC
(Supplementary Figure 2B).
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FIGURE 2 | Associations between ACK1/TNK2 gene copy numbers and immune cell infiltration levels. Association between ACK1/TNK2 copy numbers and immune

cell infiltration levels in LUAD (A) and LUSC (B) cohorts. *p < 0.05; **p < 0.01; ***p < 0.001.

Association Between ACK1/TNK2 and
Immune Cells
Next, we examined the impact of ACK1/TNK2 on the immune
systems. ACK1/TNK2mRNA expression levels were significantly
elevated in many types of cancers, including LUAD and LUSC
(Supplementary Figure 3). The immune cell infiltration levels
changed along with the ACK1/TNK2 gene copy numbers. Several
immune cell infiltration levels seemed to associate with altered
ACK1/TNK2 gene copy numbers, including B cell, CD4+T cell,
macrophage, neutrophil, and dendritic cell in LUAD (Figure 2A).
Similar results were found in LUSC (Figure 2B). In LUAD, some
immune subsets were either negatively or positively associated
with ACK1/TNK2 mRNA levels (Figure 3). In contrast, the
ACK1/TNK2 mRNA levels were uniformly negatively correlated
to various types of immune cells in LUSC (Figure 3).

Our RNA-seq results revealed that the silencing of the ACK1
gene in A549 cells activated several immune-related signaling
pathways, including the T cell receptor, chemokine, JAK-STAT,
and Toll-like receptor signaling pathway (Figures 4A–D). These
results further confirmed that ACK1 might downregulate the
immune reaction of lung adenocarcinoma. We also analyzed
the RNA-seq data of 188 lung cancer cells downloaded from
the CCLE. The cell lines were dichotomized into ACK1high

and ACK1low groups by the average ACK1 mRNA level. As
shown in Figure 4E, GSEA analysis demonstrated that ACK1 was
associated with several immune-associated signaling pathways,

including T cell receptor signaling pathway (NES = 1.53, P =

0.019), B cell receptor signaling pathway (NES= 1.34, P= 0.069),
FC epsilon RI signaling pathway (NES = 1.52, P = 0.016), and
complement and coagulation cascades (NES=−1.55, P= 0.019).

We also explored the signaling pathways by which ACK1
might modulate the immune response in LUAD. We identified
20 immunostimulators (C10orf54, CD27, CD86, ENTPD1,
ICOSLG, IL2RA, IL6, LTA, TNFRSF13B, TNFRSF13C,
TNFRSF14, TNFRSF18, TNFRSF25, TNFRSF4, TNFRSF8,
TNFRSF9, TNFSF13B, TNFSF14, TNFSF15, and TNFSF4)
(Figure 5A) and 15 immunoinhibitors (ADORA2A, CD160,
CTLA4, HAVCR2, IL10, IL10RB, LAG3, LGALS9, PDCD1,
PDCD1LG2, PVRL2, TGFB1, TGFBR1, TIGIT, and VTCN1)
(Figure 5A) significantly associated with ACK1 in LUAD.
We queried 50 top genes that were tightly correlated to these
immunomodulators using the cBioPortal for Cancer Genomics
(Figure 5B). GO was used to annotate these genes (Figure 5C).
The KEGG pathway enrichment analysis of these genes indicated
that PI3K-AKT, Ras, and T cell receptor signaling pathways were
related to ACK1-mediated immune events (Figure 5D).

The Prognostic Implication of
ACK1-Associated Immunomodulator in
Lung Cancer
To investigate the prognostic values of ACK1-associated
immunomodulators in LUAD, we entered these variables into
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FIGURE 3 | Correlation between ACK1/TNK2 expression levels and immune cell subsets. The black and red asterisks in the correlation heatmap indicated immune

cell types significantly associated with ACK1/TNK2 expression levels in LUAD and LUSC cohorts, respectively. The dot plots displayed the correlations between

ACK1/TNK2 expression levels and immune cell subsets in LUAD (upper panel) and LUSC (low panel). *p < 0.05; **p < 0.01.

a stepwise multivariate Cox regression analysis. This method
led to an optimal 14-gene prognostic signature in LUAD. The
biological functions of genes integrated into the signature are

presented in Table 1. The univariate Cox regression analysis was
performed to evaluate the association between these genes and
OS (Figure 6A). The risk scores were calculated by adding up
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FIGURE 4 | Immune signaling pathways related to ACK1/TNK2. (A–D) RNA-seq analysis after the silencing of the ACK1/TNK2 gene of A549 cells. Differentially

expressed genes were involved in the T cell receptor signaling pathway, chemokine signaling pathway, JAK-STAT signaling pathway, and Toll-like signaling pathways.

(E) Dissection of ACK1-associated immune signaling pathways by Gene Set Enrichment Analysis of 188 lung cancer cell lines from the Cancer Cell Line

Encyclopedia database.

the product of expression value and coefficient of each gene.
The Kaplan–Meier survival curve elucidated that patients with
low-risk scores had significantly longer survival than those with
high risk (log-rank test, P < 0.001) (Figure 6C). The area
under the curve (AUC) values of the risk score and stage were
0.721 and 0.683, respectively. An AUC of 0.778 was achieved
when the risk score and stage were combined (Figure 6E). The

distribution of risk scores, survival statuses, and signature gene
expression profiles for LUAD are visualized in Figure 7A. As
seen in Figure 7C, the risk score was significantly associated
with survival in TCGA-LUAD in the univariate COX regression
model [hazard ratio (HR) = 1.255, 95% confidence interval
(CI) = 1.186–1.328, P < 0.001]. Moreover, multivariate Cox
regression demonstrated that the risk score was an independent
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FIGURE 5 | Identification and analysis of immunomodulators associated with the ACK1/TNK2 gene. (A) The heatmaps of correlation between the immunoinhibitors

and the ACK1/TNK2 gene (left panel) in LUAD and LUSC; the heatmap of correlation between the immunostimulators and the ACK1/TNK2 gene in LUAD and LUSC

(right panel). (B) Protein–protein network of 35 ACK1-associated immunomodulators and 50 closely related genes in LUAD, produced by the STRING online server.

(C) Gene Ontology annotation of 35 ACK1-associated immunomodulators and 50 closely connected genes in LUAD. (D) Kyoto Encyclopedia of Genes and Genomes

pathway analysis of the abovementioned 85 genes.

predictor of prognosis in NSCLC after adjusting for age, gender,
stage, T, M, and N (HR = 1.209, 95% CI = 1.137–1.286, P
< 0.001). Similarly, 35 ACK1-associated immunostimulators

(C10orf54, CD27, CD28, CD40, CD40LG, CD48, CD70, CD80,
CD86, CXCL12, CXCR4, ENTPD1, ICOS, IL2RA, KLRC1,
KLRK1, LTA, MICB, NT5E, RAET1E, TMEM173, TMIGD2,
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TABLE 1 | Functions of the genes included in the prognostic signatures.

LUAD LUSC

Gene

symbol

Name Function Gene

symbol

Name Function

CD160 CD160 Associated with peripheral

blood NK cells and CD8T

lymphocytes with cytolytic

effector activity

ADORA2A Adenosine receptor A2a Mainly expressed in the

basal ganglia and immune

tissues

CD86 T-lymphocyte activation

antigen CD86

Receptor involved in the

costimulatory signal

essential for T-lymphocyte

proliferation and

interleukin-2 production

BTLA B and T lymphocyte

associated

A receptor that relays

inhibitory signals to

suppress the immune

response

CTLA4 Cytotoxic T-

lymphocyte-associated

protein 4

Inhibitory receptor acting as

a major negative regulator of

T cell responses

IL2RA Interleukin 2 receptor

subunit alpha

Regulation of immune

tolerance by controlling

TREGs activity

IL10 Interleukin 10 Major immune regulatory

cytokine that acts on many

cells of the immune system

KLRC1 Killer cell lectin-like

receptor C1

Recognition of MHC class I

HLA-E molecules by NK

cells and some cytotoxic

T-cells

IL2RA Interleukin 2 receptor

subunit alpha

Regulation of immune

tolerance by controlling

regulatory T cells (TREGs)

activity

LTA Lymphotoxin alpha Cytokine binding to

TNFRSF1A/TNFR1,

TNFRSF1B/TNFBR, and

TNFRSF14/HVEM

IL6 Interleukin 6 Regulation of the final

differentiation of B-cells into

Ig-secreting cells

TMEM173 Transmembrane protein

173

Facilitator of innate immune

signaling

LAG3 Lymphocyte activating

3

Inhibitory receptor on

antigen-activated T-cells

TNFRSF17 TNF receptor

superfamily member 17

Promotes B cell survival and

plays a role in the regulation

of humoral immunity

LTA Lymphotoxin alpha Cytokine binding to

TNFRSF1A/TNFR1,

TNFRSF1B/TNFBR, and

TNFRSF14/HVEM

TNFRSF18 TNF receptor

superfamily member 18

Regulation of CD3-driven T

cell activation and

programmed cell death

PDCD1LG2 Programmed cell death

1 ligand 2

Interaction with PDCD1

inhibits T cell proliferation

TNFSF13B TNF superfamily

member 13b

Stimulation of B and T cell

function and the regulation

of humoral immunity

TGFB1 Transforming growth

factor beta 1

Regulates the growth and

the differentiation of various

cell types

TNFSF4 TNF superfamily

member 4

Cytokine that co-stimulates

T cell proliferation and

cytokine production

TIGIT T cell immunoreceptor

with Ig and ITIM

domains

Binds to PVR, decreases

the secretion of IL12B, and

suppresses T cell activation

TNFSF9 TNF superfamily

member 9

Induces the proliferation of

activated peripheral blood

T-cells

TNFSF13B TNF superfamily

member 13b

Stimulation of B and T cell

function and regulation of

humoral immunity

VSIR V-set immunoregulatory

receptor

Immunoregulatory receptor

inhibiting the T cell response

TNFSF14 TNF superfamily

member 14

Delivers costimulatory

signals to T cells, leading to

T cell proliferation and IFNG

production

KDR Kinase insert domain

receptor

Tyrosine-protein kinase that

acts as a cell-surface

receptor for VEGFA,

VEGFC, and VEGFD

NECTIN2 Nectin cell adhesion

molecule 2

Modulator of T cell signaling

TNFRSF13C, TNFRSF17, TNFRSF18, TNFRSF25, TNFRSF4,
TNFRSF8, TNFRSF9, TNFSF13, TNFSF13B, TNFSF15, TNFSF4,
TNFSF9, and ULBP1) and 19 immunoinhibitors (ADORA2A,
BTLA, CD96, CD244, CSF1R, CTLA4, HAVCR2, IDO1, IL10,
IL10RB, KDR, LAG3, LGALS9, PDCD1, PDCD1LG2, PVRL2,
TGFBR1, TIGIT, and VTCN1) were acquired for LUSC. With
these immunomodulators, we generated a 13-gene prognostic

signature in LUSC (Figure 6B; Table 1). The risk score was
significantly associated with survival in LUSC as indicated by the
Kaplan–Meier survival curve (log-rank test, P < 0.001), ROC
(combined AUC = 0.696), as well as univariate (HR = 1.261,
95% CI = 1.179–1.349, P < 0.001) and multivariate (HR =

1.281, 95% CI= 1.195–1.373, P < 0.001) Cox regression analyses
(Figures 6D,F, 7B,D).
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FIGURE 6 | The development of prognostic gene signatures based on 35 ACK1-associated immunomodulators and ACK1. The hazard ratios of genes integrated into

the prognostic signatures are shown in the forest plots for LUAD (A) and LUSC (B). Kaplan–Meier curves for LUAD (C) and LUSC (D) regarding the risk scores.

Time-dependent receiver operating characteristic curves at 5-years for LUAD (E) and LUSC (F).

Construction of Nomogram
Finally, we constructed a prognostic nomogram in LUAD to
anticipate the individuals’ survival probability by weighing risk

score, stage, T, N, M, age, and gender. Calibration was performed
for the nomogram. The calibration curves showed that the
nomogram-predicted probability (solid line) well-matched the
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FIGURE 7 | Prognostic values of the risk scores in The Cancer Genome Atlas lung cancer cohorts. Distribution of risk scores, along with survival statuses, and gene

expression profiles for LUAD (A) and LUSC (B). Univariate and multivariate Cox regression analyses of the risk score in LUAD (C) and LUSC (D) regarding

overall survival.

idea reference line (dashed line) for the 3- and 5-year survival
(Figure 8). We also appraised the nomogram’s predictive
discrimination by using a C-index that quantifies the level of

agreement between the nomogram-derived probabilities and the
actual observation of death. Our prognostic nomogram reached
a C-index of 0.71.
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FIGURE 8 | Establishment of the prognostic nomogram in LUAD with the inclusion of the risk score. (A) A nomogram for predicting 3- and 5-year survival possibilities

of individual LUAD patients. The calibration curve of 3-year (B) and 5-year survival of LUAD patients (C). The 45◦ dashed line represented a perfect uniformity between

nomogram-predicted and real possibilities.

DISCUSSION

Several antibodies targeting immune checkpoints to treat NSCLC

have been approved by the FDA due to their remarkable
efficacy. However, eradication of tumors by the tumor-specific

CD8+ T cells is a complicated multi-step process, involving

tumor antigen, antigen presentation, T cell activation, traffic
to the tumor, overcoming local suppression, re-stimulation
by tumor APC, and execution of tumor cells killing (30).
The efficacy of immunotherapies might be compromised if
any one of these critical steps failed. Therefore, significant
challenges still exist in the discovery of more effective
immunotherapeutic agents and the selection of patients suitable
for the treatments. Biomarkers that can accurately signify
the immune status and the prognosis of patients would be

tremendously valuable in improving therapeutic decisionmaking
in NSCLC.

In this study, we found a close linkage between ACK1 and the
immunity of NSCLC. The ACK1 gene expression was associated
with immune cell infiltration levels and immunomodulators.
We successfully produced multiple-gene risk prediction
signatures from an ACK1-associated immunomodulator using
the stepwise Cox regression model. Ultimately, the prognostic
values of the risk prediction signatures were validated by a
prognostic nomogram.

We first evaluated the composition of intratumoral immune
subsets of the individual patient since some immunotherapies
were developed to regulate these cells. For instance, T lymphocyte
subsets, such as CD8+, might be used as an indicator of
response to immunotherapies (31, 32). CIBERSORT analysis
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revealed that the composition of 22 immune subsets in the tumor
microenvironment was dramatically changed in both LUAD and
LUSC when compared to normal tissues. This method has been
increasingly applied to comprehensively explore the contribution
of immune infiltrating cells in lung cancer from different respects
of review (6–9). These findings suggested that the patterns of
intratumoral infiltration of immune cells are associated with
NSCLC prognosis. However, the acquirement of the landscape
of the infiltrating immune cells of individual patients remains
demanding in the clinical setting so far. It would be more feasible
to discover molecular biomarkers that designate the immune
status of patients.

Intriguingly, we found that ACK1, a putative oncogene, was
associated with immune cell infiltration in lung cancer. To the
best of our knowledge, this study provided the first evidence
of linkage between ACK1 and tumor immunity. We found
that ACK1 gene copy numbers were inversely associated with
the infiltration levels of B cell, CD8+ T cell, CD4+ T cell,
macrophage, neutrophil, and dendritic cells in lung cancer. In
detail, the ACK1 mRNA levels were inversely related to the
abundance of most of the immune cell types, especially in LUSC.
The association of ACK1 and immunity was verified by GSEA of
188 lung cancer cell lines and our RNA-seq data.

Using TCGA-LUAD data, a KEGG pathway analysis of
ACK1-associated immunomodulators revealed that the PI3K-
AKT pathway and the Ras signaling pathway might be involved
in ACK1-mediated immune response. Previous studies reported
that ACK1 could induce a PI3K-independent activation of AKT
through phosphorylating AKT at tyrosine 176 (11, 33). The
ACK1 blockade was found to suppress the MAPK signaling
pathway previously (34). Following our findings, numerous
articles have demonstrated that the AKT signaling pathway takes
part in the control of tumor immune surveillance, inflammation,
and immunomodulation (35–37). The implications of MAPK
signaling in immunity and immunotherapy were also extensively
investigated (37–40). A PD-L1 blocker (atezolizumab), in
combination with a MEK inhibitor (cobimetinib), has shown
favorable efficacy in colorectal patients (41). A number of
clinical trials in melanoma are ongoing to investigate the clinical
response to the sequential administration of MAPK signaling
pathway inhibitors and antibodies that neutralize immune
checkpoints (41). Taken together, it is biologically plausible to
speculate that the ACK1 inhibitors may also be able to boost
tumor immunity, thereby favoring the antitumor efficacy of
immune checkpoint blockers.

The open access of public high-throughput gene expression
data sets facilitates the discovery of potentially more reliable
and robust lung cancer biomarkers. Many research teams
have attempted to build gene expression-based signatures as
predictors of prognosis in NSCLC (42–46). Prognosis immune
signatures in cancer have been described previously (47, 48).
Ascierto et al. discovered that the differential expression of
immune genes in tumors was associated with breast cancer
relapse by profiling the gene expression of breast cancer samples
with microarray (48). The same study also constructed a
prognostic signature with five immune genes, which was able
to discriminate the patient subgroup at a significantly increased

risk of relapse (48). Li et al. retrieved genome-wide gene
expression profiles of 2,414 early-stage non-squamous NSCLC
patient samples out of 19 public NSCLC cohorts. They developed
a prognostic immune signature of the 25 gene pairs containing
40 distinct genes with the utilization of the immune-related genes
acquired from the ImmPort database (https://immport.niaid.nih.
gov/home). The prognostic immune signature was able to split
patients with early-stage non-squamous NSCLC into high- and
low-risk groups with significantly different overall survival. The
immune signature reached a moderate prognostic accuracy (C-
index = 0.64), which was further enhanced (C-index = 0.70) by
the composition of clinical features and immune signature (47).

Consistently, with ACK1-associated immunomodulators, we
established immune gene signatures for LUAD and LUSC
separately. The risk scores derived from the gene signatures
were significantly associated with survival in LUAD and LUSC.
Most of the immune genes integrated into the prognostic
signatures participate in the regulation of the activity of T
cells, highlighting the significance of T cell-mediated immunity
in lung cancer. Interestingly, the immune gene signatures
for LUAD and LUSC shared only three genes (i.e., LTA,
TNFSF13B, and IL2RA), suggesting the differences in immune
microenvironment between the two histological types. Lastly, we
constructed a nomogram for personalized prognosis prediction
with a C-index of 0.71. Our results demonstrated that the
risk scores derived from ACK1-associated immunomodulators
were able to discriminate risk groups defined by a differential
expression of a set of signature genes. Our findingsmay accelerate
the development of well-verified signatures for cancer prognoses.

Despite some merits of the current study, limitations
should be addressed. First, all the analyses were conducted
with public datasets. The findings need to be validated in
the in-house patient population. Second, the mechanisms
underpinning ACK1-medicated tumor immunity and the
prognostic values of immune signatures should be explored in
the future.

In conclusion, our results suggested that ACK1 might also
play a role in the control of tumor immune microenvironments.
The prognostic signatures derived from ACK1-associated
immumomodulators were independently predictive of overall
survival in lung cancer. Prospective studies are called to verify
the clinical application of the biomarker in the personalized
management of NSCLC.
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