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Background: Accurate segmentation of tumor targets is critical for maximizing tumor

control and minimizing normal tissue toxicity. We proposed a sequential and iterative

U-Net (SI-Net) deep learning method to auto-segment the high-risk primary tumor

clinical target volume (CTVp1) for treatment planning of nasopharyngeal carcinoma

(NPC) radiotherapy.

Methods: The SI-Net is a variant of the U-Net architecture. The input of SI-Net includes

one CT image, the CTVp1 contour on this image, and the next CT image. The output is

the predicted CTVp1 contour on the next CT image. We designed the SI-Net, using the

left side to learn the volumetric features and the right to localize the contour on the next

image. Two prediction directions, one from inferior to superior (forward direction) and

the other from superior to inferior (backward direction), were tested. The performance

was compared between the SI-Net and the U-Net using Dice similarity coefficient (DSC),

Jaccard index (JI), average surface distance (ASD), and Hausdorff distance (HD) metrics.

Results: The DSC and JI values from the forward direction SI-Net model were 5 and

6% higher than those from the U-Net model (0.84 ± 0.04 vs. 0.80 ± 0.05 and 0.74 ±

0.05 vs. 0.69± 0.05, p < 0.001). The smaller ASD and HD values also indicated a better

performance (2.8 ± 1.0 vs. 3.3 ± 1.0mm and 8.7 ± 2.5 vs. 9.7 ± 2.7mm, p < 0.01) for

the SI-Net model. For the backward direction SI-Net model, the DSC and JI values were

still better than those from the U-Net model (p< 0.01), although there were no significant

differences in ASD and HD.

Conclusions: The SI-Net model preserved the continuity between adjacent images

and thus improved the segmentation accuracy compared with the conventional U-Net

model. This model has potential of improving the efficiency and consistence of CTVp1

contouring for NPC patients.
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INTRODUCTION

In 2018, about 129,000 people were diagnosed with
nasopharyngeal carcinoma (NPC) and about 73,000 people
died because of it (1). With the advances of radiation technology,
intensity-modulated radiotherapy (IMRT) and volumetric-
modulated arc therapy (VMAT) have become standard
radiotherapy methods for NPC patients (2). Precise radiotherapy
relies on accurate delineation of tumor targets and organs at risk
(OARs). In radiotherapy practice, these anatomical structures
are usually manually delineated by radiation oncologists on
a treatment planning system (TPS). The manual delineation,
however, is a time-consuming and labor-intensive process. It
usually takes about several hours to contour all structures in NPC
radiotherapy planning (3). Moreover, the manual delineation
is a subjective process and hence is prone to inter-practitioner
variability. The NPC target segmentation is particularly
challenging because of the substantial interpatient heterogeneity
in tumor shape and the poorly defined tumor-to-normal tissue
interface (4), resulting in considerable variations in clinical target
volume (CTV) among physicians (5, 6).

Auto-segmentation method has the potential of improving
the contouring accuracy and efficiency. Different types of
auto-segmentation methods have been reported. Atlas-based
segmentation (7–9) is one popular technique. It matches new
images to a group of contours selected from a database on the
basis of deformable registration. But this method has several
disadvantages. For example, it has long computation time and
often could not account for large anatomical variations due to
the uncertainty of deformable registration (3). In recent years,
deep learning has achieved great success in computer science. It
has been applied to auto-segmenting tumor targets and OARs
in radiotherapy (10–13). Studies have demonstrated that deep
leaningmethod can perform comparably with or even better than
manual segmentation for some tumor sites.

In this work, we proposed a sequential and iterative U-
Net (SI-Net) model that can automatically segment high-risk
primary tumor CTV (CTVp1) in NPC radiotherapy. The SI-
Net preserved the continuity between adjacent images and thus
improved segmentation accuracy. We trained the model using
135 patients and tested its accuracy using 15 patients. The results
showed that the SI-Net performed better than conventional two-
dimensional (2D) U-Net did.

MATERIALS AND METHODS

Data
We retrospectively selected 150 NPC patients treated in our
hospital between January 2016 and May 2019. The patient
demographics are shown in Table 1. The patients with locally
advanced cancer (N = 53) were treated with induction
chemotherapy followed by concurrent chemoradiotherapy, and
the remaining patients were treated with either radiotherapy or
concurrent chemoradiotherapy. During CT simulation, patients
were immobilized in supine position with a thermoplastic mask
and underwent contrast-enhanced CT scan on a Somatom
Definition AS 40 (Siemens Healthcare, Forchheim, Germany)

TABLE 1 | Demographics of enrolled NPC patients.

GENDER

Male 112 (74.7%)

Female 38 (25.3%)

AGE

Median 52.0

Range 22.0–80.0

T STAGE

T1 11 (7.3%)

T2 23 (15.3%)

T3 79 (52.7%)

T4 37 (24.7%)

N STAGE

N0 8 (5.3%)

N1 41 (27.3%)

N2 84 (56.0%)

N3 17 (11.3%)

TREATMENT OPTIONS

Induction chemotherapy + concurrent chemoradiotherapy 53 (35.3%)

Radiotherapy or concurrent chemoradiotherapy 97 (64.7%)

CTVp1 VOLUME (ml)

Range 173–741

Mean 264 ± 80

NPC, nasopharyngeal carcinoma; CTVp1, primary tumor clinical target volume.

system. The dimension, resolution, and thickness of CT images
were 512 × 512, 0.98, and 2.5mm, respectively. To better
delineate the tumor region, T1-weighted MR images were also
acquired and fused with CT images. The CTVp1 was delineated
by experienced radiation oncologists on the CT images in a
Pinnacle TPS (Philips Radiation Oncology System, Fitchburg,
WI, USA) following the international guideline for NPC CTVp1
delineation (5).

Image Preprocessing
A binary body mask was automatically created in each CT
image to separate the body from external structures, such as
the couch, immobilization plate, and thermoplastic mask. First,
the Otsu thresholding was applied to each CT image. Then the
body mask was generated after the gaps and holes in the image
were filled with morphological closing operation. Subsequently,
multiplication of the CT image and the body mask produced
the final image used in the deep learning analysis. Images were
flipped and random rotated to augment the training dataset.

Network Architecture
The SI-Net is a variant of U-Net (14), which is popular
convolutional network architecture for biomedical image
segmentation. The U-Net consists of a contracting path
to capture context through convolution and max-pooling
operations and a symmetric expanding path to localize features
through up-convolution and concatenation operations. The
U-Net architecture enables structure delineation on one
isolated image. It, however, does not consider the continuity
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between neighboring images in a three-dimensional (3D) image
environment. We modified the U-Net architecture and designed
the SI-Net to specially take the image continuity into account.
The architecture of the SI-Net is illustrated in Figure 1. The
input is three 512 × 512 matrices, including the current CT
image, the CTVp1 contour on the current image, and the next
adjacent image. The output is the CTVp1 contour on the next
adjacent image, which is also one of the two input images. A
manual CTVp1 contour is required on the beginning image
as the input. The predicted contour will work as the input for
subsequent images. The left side of the architecture consists
of 3D convolutions to learn the volumetric features, and the
right side consists of 2D operations to localize the contour
on the next image. In the left, each layer contains two 3 ×
3 × 3 convolutions each followed by a rectified linear unit
(ReLU) activation (15) and one 2 × 2 × 2 max pooling with
two strides in each dimension. To better concatenate the 3D
convolutions on the left side with the 2D convolutions on the
right side, the 3D convolution is down-sampled by a 3 × 1
× 1 max pooling and then squeezed to decrease channels. A
reshape layer is used at the bottom of the architecture. On
the right side, each layer consists of three processes: one 2
× 2 convolution for up-sampling, one concatenation with
the corresponding feature map from the left side, and two

3× 3 convolutions to recover object segmentation details. In
the last process, each convolution was followed by a ReLU
activation. The final layer is a 1 × 1 convolution activated by a
sigmoid function. All ReLU activations were followed by batch
normalization (16).

Training Process
Of the total 150 patients, 120 were chosen as the training set, 15
patients as the validation set, and the remaining 15 patients as
the testing set. The manual contours were taken as the ground
truth. The loss function used in the study was 1—DSC index. The
Nesterov Adam optimizer was used with a learning rate of 0.0001.
The network architecture was implemented in Python using the
Keras package (17) on a Supermicro workstation with an Intel
Xeon Processor E5-2695 CPU and an NVIDIA Tesla P100 GPU.
Two predicting directions, one from inferior to superior (forward
direction) and the other from superior to inferior (backward
direction), were tested. The results were compared with those
from U-Net model.

Evaluation Metrics
The performance of the SI-Net auto-segmentation algorithm was
evaluated with Dice similarity coefficient (DSC), Jaccard index

FIGURE 1 | Overall architecture of the proposed SI-Net model. SI-Net, sequential, and iterative U-Net.

TABLE 2 | The definitions of evaluation metrics.

Metrics Mathematical definition Meaning Range

Dice similarity coefficient (DSC) DSC (A,B) = 2|A∩B|
|A|+|B|

Overlap between the two contours 0–1

Jaccard index (JI) JI (A,B) = |A∩B|
|A∪B|

Similarity of the two contours 0–1

Average surface distance (ASD) ASD =
EdH,avg(A,B)+EdH,avg(B,A)

2
EdH,avg (A,B) = 1

|A|

∑

a∈|A| minb∈|B|d (a,b )

Average surface distance between two

contours (mm)

≥0

Hausdorff distance (HD) H (A,B) = max (h (A,B) , h (B,A))

h (A,B) = max
a∈A

(

min
b∈B

‖a− b‖

)

Maximum surface distance between two

contours (mm)

≥0
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(JI), average surface distance (ASD), and Hausdorff distance
(HD). The definitions of these metrics are described in Table 2.

Statistical Analysis
The paired t-test was performed to compare the DSC, JI,
ASD, and HD values between different models. The data were
presented with mean ± standard deviation. The significance was
determined at p < 0.05. All analyses were performed using SPSS
version 16.0 software.

RESULTS

The performance of the proposed SI-Net for all 15 test patients
is shown in Figure 2. The average DSC and JI values from the
SI-Net were 5% and 6% higher than those from the U-Net (0.84
± 0.04 vs. 0.80 ± 0.06, p < 0.001; 0.74 ± 0.05 vs. 0.69 ± 0.05,
p < 0.001), indicating that the SI-Net performed better than the
U-Net did. The smaller ASD and HD values further confirmed
the advantage of the SI-Net over the U-Net (2.8 ± 1.0 vs. 3.3 ±
1.0mm, p= 0.006; 8.7± 2.5 vs. 9.7± 2.7mm, p= 0.008).

The performance of the SI-Net using backward prediction
direction is also shown in Figure 2. The DSC and JI values were
still better than those from the U-Net (0.83± 0.04 vs. 0.80± 0.05,
p = 0.008; 0.72 ± 0.05 vs. 0.69 ± 0.05, p = 0.004), although the
differences in ASD and HD were not significant (3.1± 1.0 vs. 3.3
± 1.0mm, p= 0.616; 10.3± 2.6 vs. 9.7± 2.7mm, p= 0.223).

Figure 3 shows the 2D and 3D visualizations of the auto-
segmented contours for one patient. Red lines represent manual
contours, and green lines auto-segmented ones. Generally, the
auto-segmentation was close to the manual segmentation, which
was the ground truth (Figure 3A). Figure 3B presents the auto-
segmented contours predicted with the backward direction,
which were slightly different from those predicted with forward
direction. Figure 3C presents the segmentation results from the
U-Net. Overall, the SI-Net preserved the connection between
adjacent images and better maintained the continuity of the
adjacent contours.

The time needed to train the SI-Net and U-Net for 200 epochs
was 12 and 8 h, respectively. The mean time for CTVp1 auto-
segmentation was 20 and 13 s per patient, respectively, which
were much less than the manual contouring time (typically 10–
20min per patient).

DISCUSSION

In this study, we proposed a novel SI-Net neural network to auto-
segment the CTVp1 for NPC patients. The SI-Net performed
significantly better thanU-Net did. In addition, to benchmark the
SI-Net against manual contours, we conducted an independent
and separate pilot study. In the pilot study, three patients were
randomly selected, and their CTVp1 was re-contoured by three
radiation oncologists, each with more than 6-years experiences in
head and neck cancer radiotherapy. The manual contours were
then cross-compared among the three physicians to obtain the
inter-practitioner variability. The evaluationmetrics are shown in
Table 3. The DSC values range from 0.84 to 0.90, JI from 0.74 to
0.82, ASD from 1.69 to 2.74mm, and HD from 4.76 to 6.98mm.

FIGURE 2 | Boxplots of (A) DSC, (B) JI, (C) ASD, and (D) HD values from

three different models. Red and black lines represent the mean and median

values, respectively. The boxes indicate the 25th and 75th percentiles; the error

bars indicate the 10th and 90th percentiles. DSC, Dice similarity coefficient; JI,

Jaccard index; ASD, average surface distance; HD, Hausdorff distance.

These values serve as references for the auto-segmentation. The
manual contours are also demonstrated in Figure 4. The SI-Net
was able to achieve a contouring accuracy comparable with that
by radiation oncologists. In Figure 4, which demonstrates all
three manual contours for one patient, it can be observed that
most disagreements between physicians in CTVp1 contouring
took place in the anterior and inferior borders, which lack soft
tissue contrast.

Accurate segmentation of the tumor target is critical to
maximizing tumor control and minimizing radiation toxicities.
The CTVp1 in NPC radiotherapy includes both the tumor’s
gross tumor volume (GTV) and the nearby volumes that
may harbor subclinical and microscopic cancer spread. The
lack of soft tissue contrast on CT images and hence poorly
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FIGURE 3 | Segmentation results for CTVp1 with different CNN model: (A) SI-Net with forward direction; (B) SI-Net with backward direction; and (C) U-Net model.

Red lines denote the manual ground truth contours, and green lines represent auto-segmentation results. CTVp1, primary tumor clinical target volume; CNN,

convolutional neural network; SI-Net, sequential and iterative U-Net.

TABLE 3 | Comparison of the manual contours by three different oncologists.

DSC JI ASD (mm) HD (mm)

Oncologist 1 vs. 2 0.88 ± 0.05 0.80 ± 0.07 1.88 ± 0.43 5.48 ± 1.54

Oncologist 2 vs. 3 0.84 ± 0.07 0.74 ± 0.11 2.74 ± 1.04 6.98 ± 1.80

Oncologist 3 vs. 1 0.89 ± 0.05 0.81 ± 0.07 1.79 ± 0.66 4.86 ± 1.42

DSC, Dice similarity coefficient; JI, Jaccard index; ASD, average surface distance; HD,

Hausdorff distance.

defined tumor-to-normal tissue interface makes the CTVp1
delineation a challenging task, especially for junior physicians.
Considerable variability exists in manual contouring even for
experienced radiation oncologists, which was observed in our
separate pilot study. From this point of view, deep learning-
based auto-segmentation can play a role. It has potential of
improving the contouring consistency and accuracy through
learning from a large set of contours manually contoured
by experienced radiation oncologists. In addition, the time
spent on CTVp1 contouring varies between senior and junior
physicians. The deep learning auto-segmentation method can
provide, at least, a good start point from which they can
improve and finalize the contours. Therefore, there are more
and more interests in applying deep learning methods to auto-
contouring in radiotherapy. For instance, Ibragimov and Xing
used convolutional neural networks (CNNs) to segment head
and neck OARs on CT images, and they showed DSC values
from 37.4 to 89.5% (18). Zhu et al. proposed an end-to-end atlas-
free deep learning model and demonstrated an average DSC of
78.8% (19). Sun et al. developed a locating-and-segmentation
approach and achieved DSC values of 82.2–94% (20). For GTV

segmentation, Lin et al. developed a 3D CNN method to auto-
contour GTV in MR images, and they demonstrated a DSC
value of 0.79 (19). Ma et al. combined a CNN model and a
3D graph cut-base method, and they achieved a DSC value of
85.1% (3).

The SI-Net model we proposed was able to maintain the
continuity of contours between adjacent images. The input
requirement of the contour on the beginning image is to assist
the algorithm to decide the starting location along the superior-
to-inferior direction. In spite, it does not rely on contouring
directions. Physicians are free to choose their favorite contouring
direction when using the SI-Net method. Nonetheless, this is
still a feasibility study and warrants follow-up studies before the
proposed method can be translated into clinic use. On the other
hand, we only performed CTVp1 segmentation. In the future,
we will test this hypothesis of using the SI-Net to auto-segment
nodal CTV.

Although our method has achieved decent segmentation
accuracy, there are still several limitations. First, the total
training and validation datasets have only 135 patients, which
is relatively a small number. Increasing the training dataset
could further improve the accuracy and robustness. Second,
the inter-practitioner variability on CTVp1 delineation in
the training dataset may compromise the training process,
although all the radiation oncologists followed a same
guideline. Third, MR images were used when the physicians
manually contour the CTVp1 but was not included in the
auto-segmentation process. We may be able to further
improve the segmentation by including MR images into
the input of the SI-Net, considering their superior soft tissue
imaging contrast.
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FIGURE 4 | The three manual CTVp1 contours by different physicians for one patient. CTVp1, primary tumor clinical target volume.

CONCLUSION

In this work, we proposed a novel SI-Net based deep learning
method to auto-segment the high-risk primary tumor CTVp1 on
NPC radiotherapy patients. The SI-Net preserved the continuity
between adjacent images and thus improved the segmentation
accuracy when compared with the conventional U-Net. This
model has potential of improving the efficiency and consistency
of the CTVp1 contouring in the treatment planning of head and
neck radiotherapy.
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