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The initiation, promotion and progression of cancer are highly associated to the

environment a human lives in as well as individual genetic factors. In view of the dangers to

life and health caused by this abnormally complex systemic disease, many top scientific

research institutions around the world have been actively carrying out research in order to

discover the pathogenic mechanisms driving cancer occurrence and development. The

emergence of high-throughput sequencing technology has greatly advanced oncology

research and given rise to the revelation of important oncogenes and the interrelationship

among them. Here, we have studied heterogeneous multi-level data within a context of

integrated data, and scientifically introduced lncRNA omics data to construct multi-omics

bio-network models, allowing the screening of key cancer-related gene groups. We

propose a compactness clustering algorithm based on corrected cumulative rank scores,

which uses the functional similarity between groups of genes as a distance measure to

excavate key gene modules for abnormal regulation contained in gene groups through

clustering. We also conducted a survival analysis using our results and found that our

model could divide groups of different levels very well. The results also demonstrate that

the integration of multi-omics biological data, key gene modules and their dysregulated

gene groups can be discovered, which is crucial for cancer research.

Keywords: multi-omics data, bio-network model, compactness clustering, lncRNA, dysregulation

INTRODUCTION

Studies in systems biology have revealed that cell functions in biological systems generally involve
the interaction of multiple genes (1). In this era of functional genomics, many gene groups have
been pinpointed using different high-throughput technologies, such as micro-matrix technology,
mass spectrometry analysis technology, and next-generation sequencing technology (2–5). These
gene groups are often associated with many similar diseases, and are usually used as novel protein
complex, differentially expressed genes or co-expressed gene module, and sometimes in effector
signaling pathway in further downstream research (6). It is important, however, to compare gene
groups and interpret the correlation between them as potential biological mechanisms that are easy
to understand.

In recent years, an emerging number of new computing techniques and utilities have been
developed to explore such gene groups. Most of them for analyzing gene functions are enrichment
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analysis tools. An important part of these bioinformatics
enrichment analysis software adopts Gene Ontology (GO) (7),
which only allows simple single group analysis and identifies
GO terms overrepresented within the group. For example, the
tools GOstat (8), GO::TermFinder (9), and GOEAST (10) are
often used for GO analysis. To implement a single gene group
functional analysis, some of them integrate diversify integrated
heterogeneous data, such as Gazer (11), GeneTrail (12), DAVID
(13), and GSEA (14). However, even in complete biological
pathways, there are no genes that act alone (15). Gene groups
collaborate with other ones through sophisticated technique, and
these interrelations can affect related disease and phenotype.
Therefore, the prevailing challenge binding biologists is to
obtain easy-to-understand functional links between different
gene groups in the background of this complexity. At present,
some calculation tools based on GOs have been developed for
comparing gene group relationships, such as FatiGO (16) and
ProfCom (17). Some semantic similarity methods based on GO
can also compare between gene groups by the mean of the
pairwise distances of different elements (18). Essentially, GO
acts as only language annotations, and it is still challenging to
make GO gene annotations accurately indicate the substantial
intricacy of biological functions and relations (19). Others
directly compare literature keywords to reflect the links between
groups (20). Some calculation tools using these keywords are
based on the same idea, and use GO terms or literature
citations to map biological knowledge to gene groups, and then
find significantly overrepresented GO terms or keywords. This
methodology, however, cannot provide a functional similarity
measurement between gene groups.

Protein-Protein Interaction Networks (PPINs) can reveal the
functional interaction in proteins (21–36). The closeness of
proteins within a network is a sign of the similarity of their
functions. It also suggests that the diseases caused by the genes
represented by these proteins are the same. In terms of predicting
carcinogenic gene patterns, some methods use PPINs and disease
phenotype similarity data to calculate and rank genes to screen
for carcinogenic genes. Oti et al. (37) predicted carcinogenic
genes by integrating PPINs and genetic loci. Their work
illustrates the importance of PPINs for predicting carcinogenic
genes. The drawback of this method is that there is often noise
in a PPIN, and the source of some disease sites is not accurate,
meaning the derivation process is not perfect. Lage et al. (38)
proposed a novel method for calculating the association score
between genes and cancer, which was based on the information
that candidate carcinogenic genes within one step of a PPIN
act on the same or similar diseases, allowing them to calculate
the association score, and further mine candidate carcinogenic
genes and cancer-associated protein complexes. Goldenberg et
al. (39) used high differential expression changes in normal and
abnormal cancer data to establish a regressionmodel and identify
a set of genes with consistent expression changes of neighboring
genes in their network. It was proposed that this set of genes
causes changes in the expression of neighboring genes.

In terms of cancer-related disorder modules and pathways,
these modules and pathways are often based on a PPIN, studied
by collecting differentially expressed genes in normal samples

and tumor samples and using them as candidate genes, and then
mining the disorder modules through different analysis methods.
Chowdhury et al. (40) considered the mutual information
between the dominantness of samples and the dominantness of
samples with known gene expression, used information theory
to establish a subnet state function to find subnetworks with
coexpression disorders, and used neural network models as
classification detection model in this method. Vandin et al. (41)
provided a method (Dendrix) for discovering mutation-driven
pathways in somatic mutation data, which was different from the
discovery of genes with effective frequency mutations in cancer
genomes (42–49), that is, those driver mutations that targeted
multiple cell signals and regulatory pathways. Backes et al. (50)
proposed a method to identify abnormal regulatory modules
and related important genes. This method focused on abnormal
regulation subgraphs, and its detection method was based on a
new pruning strategy. This method was not only applicable to
directed networks, but also applicable to undirected networks.
Proteins rarely act alone usually; instead they form networks
of complex interactions among different molecules. Biological
cell functions are commonly accomplished in a hierarchical
manner (51). Related researches have exposed that PPINs can
reflect the protein functional interactions. The distance between
proteins is highly correlated to their function similarity within a
network (52–57).

Given these challenges, we analyzed the integration mode
of data at different levels, and through experimental analysis
and verification, we scientifically introduced lncRNA expression
profiling data to further expanded the breadth of multi-omics
data integration methods. We then mined carcinogenic gene
modules composed of candidate genes, and through a corrected
cumulative rank score method, we were better able to understand
the interaction level of gene groups in a PPIN and calculated
the functional similarity score between gene groups. We used
the corrected cumulative rank score as distance measure for a
compactness clustering method, and mined the gene modules
hidden in the key genes of this abnormal regulation gene group.
The specific process description of this method is shown in
Figure 1.

METHODS

Multi-Omics Data
We downloaded Lung squamous cell carcinoma (LUSC) multi-
omics data from TCGA database, including DNA methylation,
copy number variation (CNV), miRNA and gene expression
data. We directly derived somatic variation data using 338
samples from the TCGA database. By filtering silent mutations,
a set of 5,982 mutant genes was obtained. The CNV data
was processed using GISTIC software (58) and CNV matrix
data for 337 samples was obtained. We downloaded the DNA
methylation data of 367 samples tested using the JHU-USC
HumanMethylation450 platform, and obtained the expression
data of a total of 20,503 genes from 337 samples, the expression
data of 1,043 miRNAs from 387 samples, and downloaded the
expression data of 12,728 lncRNAs from 220 samples from the
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FIGURE 1 | Framework of core module mining method.

TANRIC database (59). Finally, 66 LUSC samples with all multi-
omics data were identified and used for study.

miRNA-target data was obtained from StarBase. To reduce
false positives, the following screening criteria were selected:
(1) at least one CLIP-Seq test supported the miRNA target
site; (2) miRNA and target gene expression were negatively
correlated in at least three cancers (Pearson correlation: γ <

0, p < 0.05); (3) the target relationship was predicted using
at least one of different five prediction software platforms
(TargetScan, PicTar, PITA, miRanda/mirSVR, and RNA22). We
obtained experimentally verified the regulatory relationships of
transcription factor (TF) genes in TRANSFAC database (60) and
used conservative TF binding sites in the UCSC genome browser.
Finally, from BioGRID, BIND, HPRD, IntAct, MINT, MIPS,
PDZBase, DIP, and Reactome databases, we collected human
protein-protein interaction data. We also remove all redundant
data which have not been experimentally verified or predicted in
related literatures.

The relationship between lncRNA and gene function was
obtained as follows. We know that each miRNA has a regulatory
relationship with genes, and miRNAs also have a regulatory
relationship with lncRNAs. Thus, we assumed that genes and
lncRNAs regulated by identical miRNAs were also interactive.
For genes and lncRNA regulated by the same miRNA, we
calculated the Pearson correlation (γ < 0, p < 0.05) of the
gene expressions from our 66 samples to obtain the links between
lncRNAs and genes. Multi-omics biological data is shown in
Table 1. The data on the regulatory relationship of regulatory
factors to these genes are listed in Table 2, including numbers of
regulatory factors and genes.

Abnormal Regulatory Gene Group
First, we selected genes from DNA mutation data to obtain all
the genes that produced mutations, constructed a gene mutation
spectrum, and then used GISTIC software to process the DNA

TABLE 1 | Multi-omics biological data.

Name Number of samples Number of regulatory factors

Gene expression 367 20,502

miRNA expression 338 223

DNA Methylation 367 19,355

lncRNA expression 66 7,274

DNA copy number 367 23,109

TABLE 2 | Regulatory relationship data.

Name Number of regulatory factors Number of genes

TF-gene 639 5,970

miRNA-Gene 224 12,323

lncRNA-gene 286 2,705

CNV data to determine the discretization value of CNV for each
gene in all cancer samples (−2, −1, 0, 1, 2) to obtain the DNA
CNV spectrum.

With the gene mutation spectrum and CNV spectrum data
collectively, a binary gene variation matrixM was generated. The
matrix rows corresponded to genes, and columns to samples. If
the gene of the i-th row had both gene mutations and CNVs in
the sample of the j-th column, mij was assigned value 1 though,
otherwise assigned 0. The criteria for screening key candidate
genes were: (1) the samples should produce more than ten
percent of total mutations in the gene variation matrix; and, (2)
the gene produced differential expression in the mutated and
non-mutated samples. The second screening criterion required
the integration of gene expression profiling data. A Student’s
T-test was performed between the mutated and non-mutated
samples of the gene, and the standard was that the false discovery
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rate was <0.01. Through the above two criteria, we obtained
mutation information for key candidate genes.

An abnormal regulatory network was constructed for every
key candidate gene, and it was then necessary to distinguish
between mutated samples and non-mutated samples for every
abnormal regulatory network. The cancer samples were divided
into mutated and non-mutated samples, and then a linear
regression model was constructed to describe the variation in
gene expression. The variables in the regression model included
the DNAmethylation, CNV, TFs that regulate the particular gene,
miRNAs, and lncRNAs.

Under the specific conditions of including G samples, given a
gene g, there were T TFs(TF1, TF2, . . . , TFT), M miRs(miRNA1,
miRNA2, . . . , miRNAM) and L lncRs(lncRNA1, lncRNA2, . . . ,
lncRNAL) are bound with g. We can then train a linear regression
model using the following formula:

GEg ≈ ωDMDMg + ω
CN

CNg +

M
∑

m

ωmiRmmiRm

+

L
∑

l

ωln cl lncRl +

T
∑

t

ωTFtTFt (1)

where GEg is the expression level of g in G samples, CNg is the
occurrence times of copy number of g, DMg keeps methylation
value of g, TFt keeps expression level of the t-th TF that regulates
g, miRm saves expression level of the m-th miRNA targeting
g, and lncRl is the expression level of the t-th lncRNA that
affects g. ωCN , ωDM , ωTFt , ωmiRm , ωln cl represents the regression
coefficients of CNg , DMg , TFt ,miRm, and lncRl, respectively. For
the genes in the sample, only the differential expression in the
tumor sample and normal sample (R SAM package fold-change
[> 2, < 1/2] FDR< 0.05) was used to train the linear model.We
used a two-layer neural network to train eachmodel and obtained
the factor of a variable in each model. Only the TFs with a weight
greater than a specific threshold were determined to construct
our network.

By filtering the TFs of each differential list gene, we build a
key candidate gene regulatory network among mutated and non-
mutated samples. Further, by performing an XOR operation on
these two networks, we obtained an irregular regulatory network
of key candidate ones, which contained an abnormal regulatory

TABLE 3 | Relevance of core genes to LUSC.

Gene Description Gifts Relevance

TP53 Tumor Protein P53 79 160.57

CDKN2A Cyclin Dependent Kinase Inhibitor 2A 71 129.25

PRKCI Protein Kinase C Iota 74 21.52

ECT2 Epithelial Cell Transforming 2 60 7.91

TNK2 Tyrosine Kinase Non-Receptor 2 65 5.68

AHSG Alpha 2-HS Glycoprotein 61 4.23

MLF1 Myeloid Leukemia Factor 1 60 4.17

DLG1 Discs Large MAGUK Scaffold

Protein 1

62 4.16

DROSHA Drosha Ribonuclease III 57 4.03

PPFIA1 PTPRF Interacting Protein Alpha 1 52 3.37

AP2M1 Adaptor Related Protein Complex 2

Mu 1 Subunit

63 3.27

SKIL SKI Like Proto-Oncogene 64 2.89

gene group of key candidate genes. The XOR operation is defined
as: edges in the network is related to a regulatory links; and links
within only one network were retained.

In order to obtain the set of genes that were dysregulated
by key candidate genes, we mapped genes in the irregular
regulatory network and key candidate ones to a protein-
protein interaction network, found genes of the irregular
regulatory network of key candidate genes in a two-step
wise of the PPIN, and used these genes as the abnormal
regulatory gene group of key candidate genes. In this way,
a total of 130 abnormal regulatory gene groups of key
candidate ones were collected, of which 89 key candidate
genes could be reached in our protein-protein interaction
network. The corrected cumulative rank scores of the 89
key candidate genes were calculated in pairs, and a score
matrix of the functional similarity of the gene groups
was obtained.

Clustering Algorithm Based on Corrected
Cumulative Rank Score
Clustering is often employed in various bioinformatics researches
(61–68). The calculation process of the corrected cumulative rank

FIGURE 2 | Corrected cumulative rank score calculation.
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score (CCRS) method (36) is shown in Figure 2. This method
can measure the functional similarity between two gene groups
by means of the functional relation and physical interaction
between genes. This method defines the functional distance
between two genes as the shortest path of two nodes in a
PPIN. Then the distance of two genes reflects the similarity.
Therefore, this method can be used to find the functional
distance to score the functional similarity between two genes,

and compare two gene groups by cumulatively scoring each pair
of genes between the two gene groups. For any gene group, it
must be completely consistent with its own functional similarity
apparently. Therefore, when comparing two determined gene
groups, there are two hypotheses: (1) any gene has a direct
interaction to itself; (2) for two genes in the same gene group, if
there is a path, the functional distance is independent of the path
length. Based on the above two assumptions, when there is an

FIGURE 3 | Core gene module.
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intersection between two gene groups, the corrected cumulative
rank score can thus be calculated.

We assume that there are gene groups G1 and G2. The
intersection of G1 and G2 is defined as G. For the genes p and
q taken separately from G1 and G2, there are n paths based on m
nodes in the PPIN intersection G, and the corrected cumulative
rank score is shown in formula (2).

CCRS (G1,G2) =
1

N









∑

p∈G
q∈G

Rpq +
∑

p∈G
q∈G1−G

Rpq +
∑

p∈G
q∈G2−G

Rpq

+

∑

p∈G1−G
q∈G2−G

Rpq









(2)

Rpq is the functional distance from the gene p to the gene q, i.e.,
the shortest path length. N is the number of functional distances
that exist. And Rpq = 0 if there is no path between gene p and q.

We used the corrected cumulative rank score as distance
measure of the clustering algorithm, and then used the
compactness clustering algorithm to find key gene modules. The
distancemeasurement of the clustering algorithm at this time was
as follows.

Disij = CCRS
(

DSi,DSj
)

, (3)

Where Disij is the distance from the i-th key gene to the j-
th one, and DSi and DSj, respectively, indicate the abnormal
regulatory gene group affected by the i-th gene and the j-th gene.
See Algorithm 1 for the clustering algorithm of key gene modules
based on compactness.

This algorithm is a clustering algorithm for the connection
area, it defined cluster as the largest set of the compactness
of genes connected, which divide cluster with sufficiently high
compactness region. The basic idea is to optionally choose a gene
x, the number of genes within ε radius if x region contains greater
than a threshold and create a new cluster. This algorithm finds
key gene modules for the key genes proposed in this paper and
the abnormal gene groups regulated by it. The two parameters
of the scanning radius and the neighborhood compactness
threshold in algorithm 1 is automatically determined by methods
in (69).

RESULTS

Key Gene Modules
In this paper, we mined key gene modules on an abnormal
regulatory gene group of 89 key genes. In this way, we conclude
three key gene modules with 19 genes, including CDKN2A,
DLG1, DVL3, PRKCI, SKIL, TP53, SMC4, and CCDC50;
DROSHA, AHSG, AP2M1, ECT2, and TNK; LRCH3, MLF1,
TRA2B, PPFIA1, RAI14, and RSRC1. Among them, the 4 genes
PPFIA1, DROSHA, CDKN2A, and TP53 were related to LUSC
(downloaded from the LUSC gene list from Cosmic, OMIM,
HuGE, and GAD). There were 12 genes related to LUSC in

Algorithm 1 Compactness-based module clustering algorithm

Input: dataset for n genes G; radius ε; neighborhood
compactness thresholdm

Output: gene modules with clustering lables
1. initialize n× nmatrix D;
2. save key gene distances in G to D;
3. tag all genes as core point within ε radius higher thanm in G;
4. tag all genes as border point around core point within ε radius;
5. tag all other genes as noise point;
6. foreach core point gene p which is not visited:
7. initialize a stack s;
9. set p as visited, then pushed into s;
10. while s is not empty:
11. v← pop s;
12. foreach non-visited gene q in ε radius of v:
14. set q as p cluster;
15. set q as visited, then pushed into s;
17 end foreach
18. end while
19. end foreach
20. foreach border point gene b;
21. put q into any cluster of core point within ε radius;
22. end foreach

TABLE 4 | Chromosome information of key genes.

Gene name Chromosome Start site End site

TP53 hs17 7668402 7687550

CDKN2A hs9 21967752 21995043

DROSHA hs5 31400494 31532175

RAI14 hs5 34656328 34832612

PPFIA1 hs11 70270687 70384501

RSRC1 hs3 158110052 158544835

MLF1 hs3 158571162 158606460

SMC4 hs3 160399304 160434962

PRKCI hs3 170222432 170305982

SKIL hs3 170357678 170396849

ECT2 hs3 172750682 172829273

DVL3 hs3 184155311 184173614

AP2M1 hs3 184174846 184184091

TRA2B hs3 185914568 185938136

AHSG hs3 186612928 186621318

CCDC50 hs3 191329082 191398670

TNK2 hs3 195863364 195909009

DLG1 hs3 197042560 197299272

LRCH3 hs3 197790855 197889346

GeneCards, as shown in Table 3. The relationship between the
genes in the key gene module and the chromosomes they belong
to are shown in Figure 3.

The three key gene modules in Figure 3 have a total of 19
key genes. Of these, 18 were associated with lung cancer and
9 were associated with lung squamous cell carcinoma. The bar
entities in the outer circle represents key genes. Among these,
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FIGURE 4 | Normal and tumor samples resolved based on core genes. (A) Module 1 clustering result. (B) Module 2 clustering result. (C) Module 3 clustering result.
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red, blue, yellow, black, and green represent the genes belonging
to chromosomes 3, 5, 9, 11, and 17, respectively, and purple lines
represent genes and the relationship between genes.

Most of the genes in these three modules are related to lung
cancer, and there were key genes related to lung squamous cell
carcinoma. A small number of genes have not been yet confirmed
to be related to lung cancer, but they were all related to complex
diseases or cancer. By investigating the module information to
which these genes belong on NCBI, we found that most of
the genes could be found on chromosome 3, and the specific
information is shown in Table 4.

Distinguishing Samples From Normal and
Tumor
In order to exhibit the character of the three key modules we
found in the development progress of LUSC, we hierarchically
clustered the gene expression profile data from a total of 389
TCGA-LUSC samples, which included 337 tumor samples of
TCGA-LUSC and 52 normal ones. For the distance measure,
Euclidean distance was used to calculate the average distance
between classes. The clustering analysis shows in Figure 4.

In the first row of Figure 4, red indicates that the sample is a
tumor sample, and green is a normal one. Genes are illustrated in
rows of the remaining part, and expression levels are in columns
by scale of colors in blue and red. According to the results shown
in Figure 4, we found that these three key gene modules could
distinguish cancer samples from normal samples very robustly.
Among these key genes, module 1 had the best classification
effect, followed by Module 2 and Module 3.

TABLE 5 | Functions and pathways.

Id Term

GO:0007050 Cell cycle arrest

GO:0045197 Establishment or maintenance of epithelial cell

apical/basal polarity

GO:0045893 Positive regulation of transcription DNA-templated

GO:0046677 Response to antibiotic

GO:0070830 Bicellular tight junction assembly

GO:0071158 Positive regulation of cell cycle arrest

GO:0090004 Positive regulation of establishment of protein localization

to plasma membrane

GO:0090399 Replicative senescence

hsa04115 p53 signaling pathway

hsa04390 Hippo signaling pathway

hsa05166 HTLV-I infection

hsa05200 Pathways in cancer

hsa05203 Viral carcinogenesis

hsa05212 Pancreatic cancer

hsa05214 Glioma

hsa05217 Basal cell carcinoma

hsa05219 Bladder cancer

hsa05223 Non-small cell lung cancer

GO:0070830 Bicellular tight junction assembly

Function and Pathway
For the key gene modules obtained by this method, we used
DAVID software to perform KEGG pathway analysis and Gene
Ontology function analysis. Among these classifications, only
the Biological Progress was selected for functional analysis. The
specific functional terms and pathway ID are list in Table 5, the
prefix of GO is the function ID from Gene Ontology, and the
prefix of each has the pathway ID from KEGG. The results shows
that important carcinogenic effect. Among these, GO: 0071158,
GO: 0045893, and GO: 0007050 disorders will aggravate the
abnormal proliferation of cells and have extremely important
effects. p53 is a tumor suppressor protein, and hsa04115 is a
p53 signaling pathway closely related to cancer. Many genes in
the Hippo signaling pathway represented by hsa04390 are tumor
suppressor genes. hsa05203, hsa05212, hsa05214, hsa05219,
and hsa05223 are relate with a viral carcinogenic mechanism,
pancreatic cancer, glioma, bladder cancer, and non-small cell

FIGURE 5 | TCGA survival analysis result. (A) Module 1 survival analysis

result. (B) Module 2 survival analysis result.
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lung cancer, respectively. HTLV-I virus infection related with
hsa05166 which associated with several cancers. hsa05200 itself
represents a carcinogenic pathway. These show that the pathways
and functions regulated by this gene module are also firmly
associated to the development of LUSC.

Survival Analysis
The key genemodules mined in this paper also have an important
impact on LUSC and can characterize different risk level groups
cancer samples. We applied a Cox proportional-hazards model
to the genetic modification module for survival analysis. The
Kaplan-Meier estimator curve is shown in Figure 5, where the
abscissa represents days, and the ordinate shows the global
survival rate. High- and low-risk group are in red and green line,
respectively. The numbers in groups are shown in the legend and
the loss to follow-up is indicated by “+” symbol. By comparing
the two curves in the figure, we found that with increasing time,
the two curves gradually split away, and the difference in survival
time of the two groups of patients gradually increased, indicating
that the 8 genes in module 1 (p = 0.002954) and the 4 genes
in module 2 (p = 0.004595) can significantly distinguish the two
groups of patients, are were highly relevant to the patient survival.

CONCLUSIONS

In this paper, the corrected cumulative rank score method was
used as a distance measurement for a compactness clustering
method to mine the gene modules contained in key genes of
abnormal regulatory gene groups. The corrected cumulative rank
score helped us understand the interaction level of gene groups
in a protein interaction network and calculate the functional
similarity score between gene groups. Three key gene modules
were mined in this paper, and more than half of the genes in
each module were related to lung squamous cell carcinoma.
In particular, in the first key gene module, the correlation
between TP53 as well as CDKN2A and lung squamous cell
carcinoma ranks the top two on the GeneCards website, which

fully illustrates the correlation between this module and lung
cancer. The functions and pathways of these three modules
have an important impact on the cause and progress of cancer.
With survival analysis, we concluded that there were two key
gene modules that could discriminate different risk level of
patients very well. Our experimental results further validate
the effectiveness of our overall method, and demonstrate the
feasibility of mining key gene modules contained in a gene group
using multiple methods.
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