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Background: The aim of the study was to evaluate the role of different

immunohistochemical and radiomics features in patients with small cell lung

cancer (SCLC).

Methods: Consecutive patients with histologically proven SCLC with limited (n = 47,

48%) or extensive disease (n = 51, 52%) treated with radiotherapy and chemotherapy

at our department were included in the analysis. The expression of different

immunohistochemical markers from the initial tissue biopsy, such as CD56, CD44,

chromogranin A, synaptophysin, TTF-1, GLUT-1, Hif-1 a, PD-1, and PD-L1, and

MIB-1/KI-67 as well as LDH und NSE from the initial blood sample were evaluated.

H-scores were additionally generated for CD44, Hif-1a, and GLUT-1. A total of 72

computer tomography (CT) radiomics texture features from a homogenous subgroup

(n = 31) of patients were correlated with the immunohistochemistry, the survival (OS),

and the progression-free survival (PFS).

Results: The median OS, calculated from diagnosis, was 21 months for patients with

limited disease and 13 months for patients with extensive disease. The expression of

synaptophysin correlated with a better OS (HR 0.546 95% CI 0.308–0.966, p = 0.03).

The expression of TTF-1 (HR 0.286, 95% CI: 0.117–0.698, p = 0.006) and a lower

GLUT-1 H-score (median = 50, HR: 0.511, 95% CI: 0.260–1.003, p = 0.05) correlated

with a better PFS. Patients without chromogranin A expression had a higher risk for

developing cerebral metastases (p = 0.02) and patients with PD 1 expression were at

risk for developing metastases (p = 0.02). Our radiomics analysis did not reveal a single

texture feature that correlated highly with OS or PFS. Correlation coefficients ranged

between −0.48 and 0.39 for OS and between −0.46 and 0.38 for PFS.
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Conclusions: The role of synaptophysin should be further evaluated as

synaptophysin-negative patients might profit from treatment intensification. We report

an, at most, moderate correlation of radiomics features with overall and progression free

survival and no correlation with the expression of different immunohistochemical markers.
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INTRODUCTION

SCLC is an aggressive, high-grade neuroendocrine tumor
associated with a short doubling time, a high growth fraction, and
early development of widespread metastases, which contribute
to the extremely poor prognosis of the disease (1–3). In an
era of precision medicine, there is an increasing need for
defining biomarkers that could assist in therapeutic decision
making. Immunohistochemistry (IHC) is a widely available
technique that can provide quickly and cost-efficiently clinically
significant results in terms of diagnosis. Although some of
the cytomorphologic features of small cell lung cancer (SCLC)
are well-defined in the literature, little is known about their
predictive or prognostic value.

Currently, synaptophysin, chromogranin A, and CD 56 are
neuroendocrine markers routinely used for the diagnosis of
SCLC (4, 5). However, 10–15% of the neuroendocrine markers
have variable expressions or lack expression (6–8). Pulmonary
SCLC show thyroid transcription factor-1 (TTF-1) expression
in more than 90% (9, 10) similar to CD56, which stains ∼90–
100% of the cases. In addition, 25–37% of SCLC cells show a
positive staining for CD 44 (11, 12) and about 78–92% of the
patients show a glucose transporter 1 (GLUT-1) expression (13–
15). Tumors with a rapid doubling time typically have a high
mitotic rate and a proliferation index of 70–90% (5, 8, 16). The
role of hypoxia-inducible factor 1a (HIF-1a) in SCLC is not
well-defined. Wan et al. suggest that HIF-1a may enhance the
angiogenic potential of SCLC by regulating some angiogenic
genes, such as the vascular endothelial growth factor VEGF-A
(17), but literature is limited. Programmed cell death ligand 1
(PD-L1) is a predictive biomarker for immunotherapy in several
solid tumors, but its role in the treatment of SCLC is not well-
defined (18–22).

It has been suggested that the intra-tumoral heterogeneity
within solid cancers could be captured with the use of medical
imaging, which might enhance our understanding of the tumor
biology (23, 24). The use of radiomics might provide additional
information to the immunohistochemistry concerning the
phenotype of the tumor. In this analysis, we evaluate the potential
role of different CT radiomic features and immunohistochemical
markers, such as CD56, chromogranin A, synaptophysin, TTF1,
Ki 67, CD44, HIF-1a, GLUT-1, PD 1, and PD-L1, in patients
with SCLC.

METHODS AND MATERIALS

Patient Characteristics
The study was approved by the local ethics committee.
Consecutive routine patients with histologically proven SCLC

receiving radiation therapy and chemotherapy at our department
were included in this study. Computer tomographies (CTs)
of the thorax and abdomen, bone scans, as well as magnetic
resonance imaging (MRI) of the brain were performed during
the initial routine workup. Tumors were staged and assessed
according to the Union Internationale Contre le Cancer (UICC)
seventh edition.

Patients were routinely evaluated during treatment.
Complete blood tests, including blood count, and biochemical
analysis, such as liver and renal function tests, lactate
dehydrogenase (LDH, [U/l], Supplementary Table 1) and
tumor markers, such as neuron-specific enolase (NSE, [µg/l],
Supplementary Table 1) were assessed routinely. Follow-up
visits were scheduled every 3 months, including physical
examination and CTs. Tumor response was assessed according
to the Response Evaluation Criteria In Solid Tumors (RECIST)
criteria (25).

Treatment Characteristics
Chemotherapy typically consists of four to six cycles of cisplatin-
based doublets (or carboplatin in the presence of extensive
disease or comorbidities) in combination with etoposide
administered every 21 days. In the absence of metastases,
chemoradiation (50.4 to 66Gy in 1.8–2Gy daily fractions) was
delivered concurrently with the second cycle of chemotherapy. In
case of symptom palliation, 30–36Gy in 3-Gy daily fractions were
delivered. Patients without cerebral metastases with or without
distant metastases who responded after initial treatment received
prophylactic cranial irradiation (PCI) up to a total dose of 30Gy,
according to national guidelines.

Immunohistochemistry
Formalin-fixed paraffin-embedded tissue samples were cut into
3-µm slices and mounted on positively charged glass slides.
Immunohistochemistry was performed using a DakoAutostainer
Plus-Link (Dako, Glostrup, Denmark). Details of the antibodies
and staining protocols used are listed in Supplementary Table 2.

For all antibodies, specific staining patterns [i.e., nuclear
for KI67, TTF-1, membranous for CD56, GLUT1, PD-L1
(tumor cells, macrophages, stroma) and cytoplasmic for CD
44, Chromogranin, PD-1] were evaluated. Any intensity was
recorded. TTF-1, CD56, Chromogranin A, and Synaptophysin
were classified as positive if the majority of tumor cells showed
specific staining reactivity.

For CD44, GLUT-1, and HIF-1a, H-scores were calculated
according to the following formula (26, 27):

[1× (% cells 1+)+ 2× (% cells 2+)+ 3× (% cells 3+)].
All viable tumor cells within the biopsy were taken into

account when applying the semi-quantitative scoring system.

Frontiers in Oncology | www.frontiersin.org 2 August 2020 | Volume 10 | Article 1161

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Gkika et al. Immunohistochemistry and Radiomics in SCLC

Radiomics Subgroup Analysis
We performed a radiomics analysis in a homogenous patient
subgroup, concerning the CT scans, performed either with a
Siemens Sensation 16 or a Siemens Sensation 64 scanner (n= 31,
n= 13 at Siemens Sensation 16, n= 18 at Siemens Sensation 64).
All patients received intravenous contrast agent (mean: 82ml,
range: 60–100ml, similar in both scanners; p = 0.93, two-sided
t test). Images were analyzed in 3-mm lung kernel reconstructed
slices. All images had a matrix of 512 × 512 voxels. Comparison
(two sided t test) of mean HU (and standard deviation, SD) of
segmented tumors between the two scanners to identify a possible
systematic bias of gray values analyzed resulted in a p-value of
0.45 (0.07 SD).

The primary tumor was predefined by a radiation oncologist,
and three-dimensional, semi-automated segmentation was
performed by a radiologist in the axial images. Segmentation was
performed in a 3-D slicer (28), using the grow-cut algorithm
(29). This algorithm has been demonstrated to generate more
robust segmentation results than manual definition of tumor
volume for NSCLC cases (29). A radiologist manually sets seeds
within the tumor and in the surrounding different tissues, e.g.,
mediastinum, lung, and chest wall. The algorithm then grows
regions of interest that fit best to the set seeds according to voxel
gray value (Hounsfield units). Results were inspected and, in case
of obvious flaws, were manually corrected by the radiologist. An
example of the semiautomated tumor segmentation is provided
in Figure 1.

We employed the radiomics pipeline implemented in the
PyRadiomics package for Python to derive texture features (30).
A total of 72 texture features was obtained for each tumor (all
features from the implemented classes gray level co-occurrence
matrix, gray level run length matrix, first order histogram
features, and shape features were derived). We calculated
correlation coefficients (Pearson correlation and Spearman
correlation to account for possible non-linear associations) for
the single texture features with overall survival and progression-
free survival.

Statistical Analysis
Overall survival (OS) was calculated as time from pathological
confirmation until death from any cause with censoring at
the date last seen alive. Progression-free survival (PFS) was
calculated as time from start of treatment until death or
documentation of progression. OS and PFS were estimated
by the Kaplan-Meier method. The Cox proportional hazards
regression model was used for further analyses of possible
prognostic factors for OS and PFS. All immunohistochemical
markers were regarded as categorical variables, H scores, MIB-1,
NSE, and LDH were regarded as continuous variables and were
reported as median with the corresponding range (minimum and
maximum). Univariate and multivariate analysis was performed
with the Cox proportional hazards model. For multivariate
analysis, we included in the model only the parameters that
were statistically significant in the univariate analysis. Results are
reported as hazard ratios (HR), 95% confidence intervals (CI),
and p-values.

Concerning radiomics analysis, the Pearson and Spearman
correlation coefficients were used for correlation of single
texture features with OS and PFS to account for possible
non-linear associations. Due to the small sample size and
general recommendation to incorporate around 20 cases
per explanatory variable in multivariate regression models
(31), we build bivariate Cox proportional-hazard models
with the two radiomics features correlated most with OS
(model OSradiomics) and PFS (model PFSradiomics). We
required features to be moderately autocorrelated at most.
Furthermore, we build bivariate models with the radiomics
feature that exhibits strongest correlation with OS/PFS and
NSE and LDH serum level as additional variables (models
OSradiomics−NSE, OSradiomics−LDH, PFSradiomics−NSE, and
PFSradiomics−LDH. Univariate models are generated for all
models for comparison.

The statistical significance level was set at ≤0.05. All p-values
were two-sided. Statistical analysis was performed using SPSS
version 23 (SPSS, Chicago IL).

FIGURE 1 | A 74-year-old male patient with pT2 pN0 cM0 R0 G3 SCLC in the middle lobe. Semi-automated segmentation process. (A) A radiologist manually set

seeds in the tumor (green, solid arrow) and the surrounding tissue (yellow, dashed arrow). (B) The grow-cut algorithm is applied and automatically segments the

tumor. Note small error on the medial side (short arrow). Such errors are corrected manually. (C) Final tumor segmentation.
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RESULTS

Patient and Treatment Characteristics
Consecutive patients (n = 101) with evaluable pathological
specimens (n = 98) in our pathology department treated in the
radiation oncology department between 2004 and 2014 were
included in the analysis. A disseminated disease was present at
diagnosis in 51 (52%) patients, and 47 (48%) of the patients
had no metastatic disease. Patient characteristics are shown in
Table 1.

A total of 70 patients received a thoracic radiotherapy,
of which 55 (56%) patients (M0 or M1a) were treated
in curative intent with a median dose of 50.4Gy and
15 patients for palliation with a median dose of 30Gy.
A total of 50 patients with good response after initial
treatment, of which 37 had no signs of metastases and 13
with extracranial metastatic spread at diagnosis, received a
prophylactic cranial irradiation and 31 patients a palliative
whole brain irradiation due to cerebral metastases. Fifty-five

TABLE 1 | Patient and treatment characteristics.

Variable Nr (%) or median (range)

Age (years) 64 (42-84)

Gender

Male 63 (64%)

Female 35 (36%)

TNM

T

T1 7 (7%)

T2 15 (15%)

T3 23 (24%)

T4 53 (54%)

N

N0 10 (10%)

N1 6 (6%)

N2 31 (32%)

N3 51 (52%)

M

M0 47 (48%)

M1 51 (52%)

Stadium

I 4 (4%)

II 6 (6%)

III 37 (38%)

IV 51 (52 %)

ECOG

1 60 (61%)

2 35 (36%)

n.s 3 (3%)

NSE [µg/l] 42.2 (10.8–597.0)

LDH [U/l] 258 (146–973)

ECOG, Eastern Cooperative Oncology Group; NSE, neuron-specific enolase; LDH,

lactate dehydrogenase.

(56%) patients received Carboplatin/Etoposide, and 30 (31%)
patients Cisplatin/Etoposide. One patient did not receive any
chemotherapy due to comorbidities, and 11 patients received
different platinum-doublets in combination with topotecan (2%)
or paclitaxel and etoposide (2%) or pemetrexed (3%) or analog
to the EPICO protocol (epirubicin/cyclophosphamid/vincristin,
4%). One patient received topotecan alone.

Overall Survival and Progression-Free
Survival
The median follow-up was 73 months for patients alive. The
median overall survival for the whole group was 15 months
(95% CI: 12–18). The median survival of the patients without
metastases was 21 (95% CI: 16–28) months and for patients with
distant metastases 13 (95% CI: 11–15) months, respectively. The
OS at 2 and 5 years was 33 and 13% for the patients without
metastases and 14 and 0% for patients with metastatic disease,
respectively. Themedian progression-free survival was 7months.

Patients with higher LDH (HR 1.003, 95% CI 1.001–1.004, p
< 0.0001) and NSE (HR 1.004, 95% CI 1.002–1.006, p = 0.001)
concentrations had worse overall survival.

Patients treated with cisplatin doublets, compared to
carboplatin, had better survival (HR 0.613, 95% CI 0.389–
0.966, p = 0.035) probably due to selection bias as patients
with comorbidities received carboplatin rather than cisplatin.
Similarly, patients who received thoracic radiation (HR 0.488,
95% CI 0.307–0.776, p= 0.002) had better survival. Furthermore,
patients who received a PCI had a prolonged survival (HR: 0.446,
95% CI 0.290–0.686, p < 0.0001), which was also significant
in multivariate analysis. This result remained significant for
the patients without metastases at baseline (HR 0.202 95%
CI: 0.087–0.472, p < 0.0001) but not for the patients with
disseminated disease (HR 0.846, 95% CI 0.446–1.607, p = 0.51).
Patients without metastases who received PCI had a median OS
of 23 (95% CI: 20–26) months vs. 10 (95% CI: 9–12) months for
patients without PCI. PCI was also associated with a longer PFS
(HR: 0.156, 95% CI: 0.055–0.442, p < 0.0001). Eleven patients
who were treated with PCI developed cerebral metastases.

Immunohistochemical Markers
A total of 98% of the biopsies were positive for CD56, 63%
for chromogranin A, and 80% for synaptophysin. About 90%
were positive for TTF-1, 100% for CD44 and Hif-1a, and 84 for
GLUT-1 and 72% for PD-1. The different immunohistochemical
markers and H scores as well as their distribution between
metastatic and non-metastatic disease are shown in Tables 2A,B.
Only the expression of synaptophysin correlated with a better OS
(HR 0.546 95% CI 0.308–0.966, p = 0.039). Patients without an
expression of synaptophysin had amedian OS of 12 (95%CI: 8.1–
15.9) months, whereas patients with a synaptophysin expression
had a median OS of 17 months (95% CI: 13–21) (Figure 2). None
of the other markers or the H scores correlated with a better
OS (Table 3). These results were not statistically significant on
multivariate analysis (Table 4).

Concerning the PFS, only the expression of TTF-1 (HR 0.286,
95% CI: 0.117–0.698, p = 0.006, Figure 3) and a GLUT-1H
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TABLE 2A | Immunhistochemical markers.

All patients M0 patients M1 patients p = 0

Marker Nr of patients Nr positiv(%) Nr of patients Nr positiv(%) Nr of patients Nr positiv(%)

CD56 89 87 (98%) 45 45 (100%) 44 42 (96%) 0.99

Chromogranin A 57 36 (63%) 27 19 (70%) 30 17 (57%) 0.28

Synaptophysin 79 63 (80%) 37 33 (89%) 42 30 (71%) 0.06

TTF1 71 64 (90%) 41 37(90%) 30 27 (90%) 0.97

Hif-1-alpha 44 44 (100) 29 29 (100%) 15 15 (100%) n.a.

CD 44 44 44 (100) 29 29 (100%) 15 15 (100%) n.a.

GLUT-1 36 43 (84%) 28 25 (89%) 15 11 (73%) 0.19

PD-1, 18 13 (72%) 12 11 (92%) 6 2 (33%) 0.02

PD-L1 tumor 19 2 (10%) 13 2 (15%) 6 0 (0%) 0.80

PD-L1 stroma 19 6 (32%) 13 5 (38%) 6 1 (17%) 0.36

PD-L1 macrophages 19 12 (63%) 13 10 (76%) 6 2 (33%) 0.08

MIB-1 34 n.a. 12 n.a. 22 n.a. 0.86

n.a., not applicable.

TABLE 2B | H-scores and MIB-1.

Biomarker H-Scores All patients M0 patients M1 patients

Median (range) Median (range) Median (range)

Hif-1a 190 (20-300) 190 (20-300) 210 (110-270)

CD 44 45 (10-260) 40 (10-240) 50 (20-260)

GLUT-1 50 (0-160) 50 (0-160) 50 (0-140)

MIB-1 70 (30-100) 80 (30-95) 70 (35-100)

score lower than the median (median = 50, HR: 0.511, 95% CI:
0.260–1.003, p= 0.05, Figure 4) correlated with a better PFS.

None of the immunohistochemical markers except for PD 1
(HR 22.000, 95%CI 1.540–314.292,Table 2A) correlated with the
presence ofmetastases at diagnosis, and the lack of chromogranin
A expression correlated with the presence of cerebral metastases
(HR 0.250, 95% CI: 0.079–0.787, p= 0.02).

Radiomic Features
Our radiomics analysis did not reveal a single texture feature that
was highly correlated with overall or progression-free survival.
Results are provided in Supplementary Table 3.

Correlation coefficients ranged between −0.48 and 0.39 for
overall survival and between −0.46 and 0.38 for progression-
free survival (Spearman correlation coefficients in each case).
Figure 5 shows the correlation matrix of the derived radiomics
features; the numbers refer to the respective features in
Supplementary Table 1.

Highest correlation coefficients for OS were
obtained for features original_glcm_Imc1 (r = −0.48),
original_glcm_Imc2 (r = 0.40, high correlation with
original_glcm_Imc1 with r = −0.95, compare with Figure 5)
and original_shape_Maximum2DDiameterColumn (r = −0.38,
correlation with original_glcm_Imc1 r = 0.41; these two
features were taken for bivariate model building; OSradiomics).

The same features were identified for the correlation with
progression-free survival, resulting in model PFSradiomics. Serum
NSE and LDH level was added to the feature with strongest
correlation (original_glcm_Imc1), resulting in bivariate
models OSradiomics−NSE, OSradiomics−LDH, PFSradiomics−NSE,
and PFSradiomics−LDH.

Results of the Cox proportional hazard models are provided
in Tables 4 and 5 for overall survival as an outcome variable.
Radiomics features were not able to model survival (both overall
and progression free). Hazard ratio was significantly >1 for
overall survival for NSE and LDH in univariate models; for PFS,
p-values were 0.10 and 0.11 in univariate models, respectively.

An unpaired Wilcoxon signed rank test was performed
to analyze whether the three identified radiomics features
were associated with positive or negative synaptophysin /
chromogranin A staining, which was negative for both
tests (p > 0.05).

DISCUSSION

In the era of personalized medicine, the integration of molecular
markers with radiomics features and clinical information to
develop novel prognostic biomarkers for treatment response
assessment has been the focus of several studies (32–39).
Especially in non-small cell lung cancer (NSCLC), the concept
of using radiomic features in combination with genomic or
proteomic information aiming to enhance our understanding
of the tumor phenotype has been reported in several studies
(32, 40–42). Radiomics features extracted from CT were related
to tumor metabolism, PET tumor stage, and histopathology
in NSCLC (43, 44), but little is known about their role in
SCLC. Similarly, the prognostic and predictive value of different
immunohistochemical markers in the treatment response, the
presence of metastases, or survival of SCLCs has not been
widely investigated. Both IHC and CT have a number of
advantages, including being widely available, technically less
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FIGURE 2 | Correlation of synaptophysin expression with overall survival.

TABLE 3 | Univariate analysis of different immunohistochemical markers

concerning overall survival.

Immunhistochemical marker Hazard Ratio (95% CI) p

CD56 0.295 (0.071–1.226) 0.09

Chromogranin-A 0.749 (0.430–1.303) 0.31

Synaptophysin 0.546 (0.308–0.966) 0.03

TTF-1 0.546 (0.247–1.211) 0.14

Hif1a H score 1.000 (0.993–1.006) 0.95

GLUT-1H score 1.006 (0.998–1.013) 0.13

PD-L1 expression 0.933 (0.829–1.050) 0.25

MIB-1 1.001 (0.982–1.021) 0.90

TABLE 4 | Multivariate analysis of different parameters concerning overall survival.

Variable Hazard Ratio (95% CI) p

LDH* 1.001 (0.999–1.004) 0.374

NSE* 1.002 (0.999–1.005) 0.273

Synaptophysin 0.914 (0.479–1.743) 0.785

PCI 0.477 (0.265–0.860) 0.014

M1 0.540 (0.258–1.129) 0.102

Cisplatin based doublets 0.555 (0.307–1.002) 0.051

Thoracic radiotherapy 0.532 (0.276–1.025) 0.059

*Continuous variable.

PCI, prophylactic cranial irradiation; NSE, neuron specific enolase; LDH,

lactate dehydrogenase.

challenging, and cost-efficient. Thus, the information derived
from both diagnostic tools could enhance our understanding of
this aggressive and insufficiently investigated tumor entity.

In our analysis, the lack of synaptophysin expression
correlated with a worse OS, contrary to what is reported for

TABLE 5 | Cox-proportional hazard models for radiomics features and radiomics

features and serum markers, overall survival as outcome variable.

Feature/Model Hazard Ratio (95% CI) OS p

original_glcm_Imc1 142,301 (2.141e-07–9.457e+16) 0.393

original_glcm_Imc2 0.1629 (0.005–5.219) 0.305

original_shape_Maximum2D

DiameterColumn

1.01 (0.997–1.023) 0.141

NSE 1.004 (1.0–1.007) 0.038

LDH 1.003 (1.0–1.006) 0.029

OSradiomics

original_glcm_Imc1 7518.6 (2.666e-09–2.120e+16) 0.542

and

original_shape_Maximum2D

DiameterColumn

1.009 (9.954e-01–1.023) 0.191

OSradiomics + NSE

original_glcm_Imc1 1.320e+05 (3.801e-08–4.585e+17) 0.424

and

NSE 1.004 (1.0–1.008) 0.035

OSradiomics + LDH

original_glcm_Imc1 1.449e+06 (6.95e-08–3.020e+19) 0.365

and

LDH 1.003 (1.0–1.006) 0.026

NSE: neuron specific enolase, LDH: lactate dehydrogenase, OS: overall survival. Bold

values indicate statistically significant.

NSCLCs (45, 46), whereas lack of chromogranin A correlated
with the presence of cerebral metastases at diagnosis. Both
neuroendocrine markers play a significant role in the diagnosis,
but little is known about the prognosis of SCLC who lack
expression of neuroendocrine markers. Sloman et al. (12)
investigated the role of several immunohistochemical markers,
including synaptophysin and CD 44 in a small sample of 28
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FIGURE 3 | Correlation of TTF 1 expression with progression-free survival.

FIGURE 4 | Correlation of GLUT 1 expression (over the median) with progression-free survival.

patients, and could not find a significant correlation concerning
survival, whereas in an analysis by Drivsholm et al. (47),
the expression of chromogranin A in plasma correlated with
a worse OS and the stage of disease. Recent studies have
shown that SCLC has four different molecular subtypes with a
different neuroendocrine character each identified by their key
transcriptional regulator (3, 48). A subset of small cell lung
carcinomas shows loss of the typical neuroendocrine markers.
Some of these phenotypes were found to be associated with poor
prognosis and chemoresistance although, for other phenotypes,
the clinical outcomes have not yet been defined (48, 49). A

better understanding of the critical signaling pathways operant
in particular SCLC subtypes may define vulnerabilities and
therapeutic targets (48, 50).

The expression of TTF-1 correlated in our analysis with a
better progression-free survival. Similar were the results in an
analysis by Misch et al. (51) reporting that there was a correlation
with the disease control rate (DCR) in patients with metastatic
disease (stage IV). There was a significantly (p= 0.006) improved
response to the treatment in the group of patients with TTF-1-
expression (DCR 86 vs. 56%). They concluded that TTF-1 may
serve as a predictor of response to first line chemotherapy.
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FIGURE 5 | Correlation matrix (Spearman correlation) of the derived radiomics features. Features were ordered with a hierarchical agglomerative clustering algorithm

to visualize clusters of collinearity to allow for variable selection.

The proliferation index measured by Ki 67/MIB 1 plays
a major role in several malignancies (52–54), but there was
no correlation found in our analysis with the OS or with
the PFS. Although the Ki-67 protein is well-characterized on
the molecular level and extensively used as a proliferation
marker, the functional significance still remains unclear. There
are indications, however, that a Ki-67 protein expression is an
absolute requirement for progression through the cell-division
cycle (55). Some studies (56–58) did not find a correlation with
response after chemoradiation, similar to our results, but other
studies show a correlation of the proliferation rate with the
prognosis (59, 60).

The uptake of GLUT-1 has been found to be increased in
several cancer types (13, 61) and is associated with a poorer
survival outcome in NSCLC (62). Abnormal expression of
GLUT-1 was significantly associated with poor differentiated
tumors, positive lymph node metastasis, and larger tumor

size, which suggests that overexpression of GLUT1 is linked
with enhanced invasive potential, proliferative activity, and
decreased patient survival (61). In a study by Ozbudak et al.
(14) GLUT-1 was expressed in approximately half of the
pulmonary neuroendocrine carcinomas and showed a strong
correlation with neuroendocrine differentiation/grade. In our
analysis a GLUT-1H score lower than themedian of 50 correlated
with a better PFS, but no other association could be found
for OS.

The activation of HIF-1a is generally more pronounced in
aggressive tumors and can be an independent predictor of poor
prognosis in certain types of cancer (17, 63). In our analysis,
all tumor samples tested were HIF-1a positive. Similarly, 98%
of the biopsies were positive for CD56. This high expression of
CD56 in patients with SCLC seemed promising for the use of
anti CD56 antibodies for the treatment of CD56 positive tumors,
such as Lorvotuzumab mertasine (64). Furthermore, preclinical
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data indicate potent antitumor effects of CD56 chimeric antigen
receptor (CAR) T-cells in SCLC (65–67).

The use of immunotherapies in the metastatic setting shows
an improvement in OS and PFS in several studies (21, 22),
but concerning the role of PD-L1 expresion, data are limited
as a number of clinical trials with PD-1, PD-L1, or CTLA-4
inhibitors are still ongoing. Initial data from the CheckMate 032
study suggests no correlation between PD-L1 expression and
clinical benefit (18). However, in the Keynote-028 and Keynote-
158 studies of pembrolizumab (anti-PD1), PD-L1 expression,
especially combined expression on tumor and immune stromal
cells, was associated with improved response to pembrolizumab
(35.7% vs. 6%) (19, 20). According to Schultheis et al. (68) the
PD-1/PD-L1 pathway seems activated in a fraction of SCLCs.
In their study, the carcinoma cells were negative in all cases;
PD-L1 was expressed in tumor-infiltrating macrophages and was
correlated with tumor-infiltrating lymphocytes. In another study,
however, Ishii et al. (69) reported that the expression of PD-L1
in tumor cells as defined by >5% of positive cells were observed
in 71.6% (73 of 102) SCLC cases. In our analysis, except for a
correlation between PD 1 and the presence of metastases, we
could not find any correlation between the expression of PD-
1/PD-L1 and the OS, but results are not easy to interpret due to
the very small sample size.

On the other hand, human cancers exhibit strong phenotypic
differences that can be visualized non-invasively by medical
imaging (70, 71). In our explorative radiomics analysis, single
radiomics features did correlate moderately with OS and PFS.
The small sample size limits the conclusions to be drawn from
our findings. However, we decided to only include patients with
homogenous CT examinations into the radiomics analysis since
image acquisition parameters affect radiomics signatures to a
considerable extent (72). In the developed Cox proportional
hazard models, radiomics features were not able to significantly
model survival while retained conventional serum markers NSE
and LDH in the models behaved as expected.

The present study has several limitations, such as its
retrospective and single institutional nature, the small sample size
as well as a selection bias in the treatments delivered.

In conclusion, a high expression of the neuroendocrine
marker synaptophysin correlated significantly with a better
survival in patients with SCLC, whereas the expression of TTF-1

and a lower GLUT-1 H-score correlated with a better PFS. These
results should be further evaluated as synaptophysin-negative
tumors might have a poor prognosis and TTF1 negative tumors
might be more resistant to current therapies. This might be due
to different SCLC-phenotypes, who might profit from treatment
intensification. These different markers were not associated with
any radiomics features. Furthermore, we did not find a high
correlation between single radiomic features with overall survival
or progression-free survival as radiomics features were not able to
model survival in the analyzed patient subset.
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