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Background: Hematologic toxicity is a critical problem limiting treatment delivery

in cancer patients undergoing concurrent chemoradiotherapy. However, the extent

to which anatomic variations in radiation dose limit chemotherapy delivery is poorly

understood. A unique natural experiment arises in patients with head and neck and

cervical cancer, who frequently undergo identical chemotherapy but receive radiation to

different regions of the body. Comparing these cohorts can help elucidate to what extent

hematologic toxicity is attributable to marrow radiation as opposed to chemotherapy.

Methods: In this longitudinal cohort study, we compared hematologic toxicity and

bone marrow compensatory response in 148 patients (90 cervix, 58 head/neck)

undergoing chemoradiotherapy with concurrent weekly cisplatin 40 mg/m2. We used

linear mixed effect models to compare baseline and time-varying peripheral cell counts

and hemoglobin levels between cohorts. To assess bone marrow compensatory

response, we measured the change in metabolically active bone marrow (ABM) volume

on 18F-fluorodeoxyglucose positron emission tomography/computed tomography.

Results: We observed greater reductions in log-transformed lymphocyte, platelet, and

absolute neutrophil counts (ANC) for cervix compared to head/neck cancer patients

(fixed effects for time-cohort interaction [95% CI]: lymphocytes, −0.06 [−0.09, −0.031];

platelets,−0.028 [-0.051,−0.0047]; ANC,−0.043 [−0.075,−0.011]). Mean ANC nadirs

were also lower for cervical vs. head/neck cancer cohorts (2.20 vs. 2.85 × 103 per µL, p

< 0.01). Both cohorts exhibited reductions in ABM volume within the radiation field, and

increases in ABM volume in out-of-field areas, indicating varying compensatory response

to radiation injury.
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Conclusions: Cervical cancer patients had faster decreases in ANC, lymphocyte, and

platelet counts, and lower ANC nadirs, indicating a significant effect of pelvic irradiation

on acute peripheral blood cell counts. Both cohorts exhibited a compensatory response

with increased out-of-field bone marrow activity.

Keywords: hematologic toxicity, cervical cancer, head and neck cancer, FDG PET, hematopoieisis, bone marrow

toxicity

INTRODUCTION

The hematopoietic system is highly sensitive to injury
from both cytotoxic chemotherapy and radiation (1–3).
Accordingly, hematologic toxicity is a common complication
of chemoradiotherapy that can limit the delivery of prescribed
treatment (4). Evolution in radiation technology has allowed
substantially greater ability to reduce dose to critical normal
tissues, such as bone marrow, offering the possibility to preserve
hematopoietic function and permit better treatment tolerance
in patients undergoing chemoradiotherapy. Bone marrow dose
constraints have been integrated into clinical trials and routine
practice for cervical cancer patients (5, 6). However, it is unclear
whether greater reductions in bone marrow doses, such as
can be achieved with proton therapy (7), would further limit
hematopoietic toxicity. It is therefore of clinical and scientific
interest to better understand how radiation affects peripheral
blood cell counts and bone marrow compensatory response in
patients undergoing chemoradiotherapy.

A unique natural experiment arises when comparing cervical
cancer and head/neck cancer patients, who often undergo
identical chemotherapy but have radically different radiation
volumes. This phenomenon provides a rare opportunity to
isolate hematologic effects specific to radiation in patients treated
with chemotherapy. In this study, we examined differences in
hematologic toxicity and bone marrow compensatory response
between two cohorts receiving concurrent weekly cisplatin (40
mg/m2) and radiation to either the pelvis or head/neck region.
We hypothesized that cervical cancer patients, who have a higher
volume of irradiated bone marrow, would experience greater
acute hematologic toxicity and impaired compensatory response.

METHODS

Study Design, Population, and Sampling
Methods
We conducted a longitudinal cohort study of 90 patients
with cervical cancer and 58 patients with head/neck cancer.
Eligible patients had newly diagnosed, previously untreated,
biopsy-proven head/neck or cervical carcinoma, undergoing
concurrent chemoradiotherapy with intent to deliver five
or more cycles of weekly cisplatin between April 2011
and January 2018. Patients receiving additional concurrent
systemic or (neo)adjuvant therapy (i.e., non-platinum cytotoxic
chemotherapy, immunotherapy, targeted therapy, etc.), were
non-adherent to treatment, were postoperative, or had previous
radiation at the site within the last 5 years were excluded.

This study was a retrospective analysis of de-identified patient
data. The University of California San Diego Human Research
Protections Program approved this study and determined that
it was of minimal risk and did not meet the criteria for Human
Subjects Research.

Treatment
Chemotherapy consisted of five to six cycles (cervix) or seven
cycles (head/neck) of cisplatin 40 mg/m2 delivered concurrently
with external beam radiation therapy. Cisplatin was held under
the following conditions: white blood cell count (WBC) < 2.0
× 109/L, absolute neutrophil count (ANC) × 1.0 × 109/L,
hemoglobin<7.5 g/dL, platelet count< 50× 109/L, or creatinine
clearance <50 mL/min. Head/neck patients in this cohort
were selected for weekly over triweekly cisplatin based on the
preference of the treatingmedical oncologist. Granulocyte colony
stimulating factor (G-CSF) and/or transfusions were given at the
discretion of the treating medical oncologist.

Radiotherapy for cervical cancer consisted of volumetric
modulated arc therapy (VMAT) with 45.0–47.6Gy to the pelvis
and 53.2–59.4Gy to grossly involved lymph nodes over 5–6
weeks, followed by intracavitary brachytherapy, 24.0–30.0Gy to
the cervical tumor. Brachytherapy doses were not given during
the initial 5 weeks of radiation and therefore did not contribute
to dose during the study’s observation period. Radiotherapy
for head/neck cancer consisted of VMAT with 54.0–63.0Gy to
the neck and 70.0Gy to gross disease over seven weeks. Bone
marrow dose constraints were not used for head/neck cancer. The
constraints for cervical cancer were 90% of the volume receiving
<10Gy (V10Gy < 90%) and V20Gy < 75%.

Hematologic Toxicity and Compensatory
Response
We collected weekly complete blood counts with differentials
for all patients beginning immediately prior to the initiation of
chemoradiotherapy through the end of treatment. To standardize
and control for the number of cisplatin cycles given, we analyzed
ANC, lymphocyte, hemoglobin, and platelet counts up to 5 weeks
following initiation of treatment.

To assess compensatory response, we calculated the change
in metabolically active bone marrow (ABM) volume in a subset
of 33 patients (19 cervical, 14 head/neck) who underwent
pre- and post-treatment imaging with 18F-fluorodeoxyglucose
positron emission tomography / computed tomography (FDG-
PET/CT). Whole body FDG-PET/CT scans extended from the
top of the skull throughmid-femur. Pre-treatment FDG-PET/CT
scans were acquired within 3 months prior to the initiation of
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chemoradiation, whereas post-treatment scans were acquired 3–
6 months following the conclusion of treatment. The median
from the end of treatment to the post-treatment FDG-PET/CT
scan for head/neck and cervical cancer patients was 15.7 vs. 14.7
weeks (p= 0.29), respectively.

We used the MIM platform (MIM Software, Inc., Cleveland,
OH) to delineate external contours of the following regions
on each patient’s baseline and follow-up FDG-PET/CT:
clavicle/sternum, scapula/proximal humerus, ribs, cervical
spine, thoracic spine, L1 through L4, L5/sacrum, ileum, and
ischium/pubes/proximal femora. The cumulation of all these
bone structures was defined as the total bone. Subsequently, the
mean body weight-corrected standardized uptake value (SUV)
was quantified within total bone, and ABM was identified as
sub-region with an SUV greater than the individual patient’s
mean SUV (for each scan) within the total bone, as previously
described (8, 9). The total bone volume (TBV) and ABM volume
(ABMV) were calculated.

Bone and ABM dose calculations were performed using
deformable registration to align the baseline FDG-PET/CT to the
treatment planning CT scan and corresponding radiation plan.

Statistical Analysis
The primary endpoint was change in ANC from baseline to
week 5 of treatment. Secondary endpoints were changes in
lymphocyte, hemoglobin, and platelet counts, and change in
ABM volume both within and outside of the radiation field.
Baseline covariates were compared between cohorts using chi-
square tests for categorical variables and unpaired t-tests for
continuous variables. Nadir cell counts were compared between
cohorts using unpaired two-tailed t-tests. The number of patients
requiring blood transfusion, a G-CSF or erythropoietin were
compared between groups using Fisher’s exact test.

Linear mixed-effects models were used to estimate
longitudinal changes in (log-transformed) blood counts, with a
subject-specific random intercept and random slope. We allowed
the rate of change over time to differ by sex and cancer type, by
including interactions between these terms and follow-up time.
Cell count values were log-transformed to approximate a normal
distribution. Fixed effects included in the models were sex,
time (weeks), cohort (cervical vs. head/neck), and interaction
between time and cancer type. Restricted maximum likelihood
was used to estimate fixed effect parameters. Backward stepwise
techniques were used to select covariates including gender, age,
cancer type, time and interactions between gender and time and
cancer type and time (p < 0.20) (10). In an exploratory analysis,
we also evaluated whether low (I-II) vs. high (III-IV) FIGO stage
was associated with longitudinal changes in blood counts for
cervical cancer patients.

RESULTS

The cervix cohort included 77 patients (85.6%) with stage I-
II and 13 (14.4%) with stage III-IVA disease (International
Federation of Gynecology and Obstetrics 2009 edition). The
head/neck cohort comprised five patients (8.6%) with stage I-
II and 53 patients (91.4%) with stage III-IVB disease (American

Joint Committee on Cancer 7th edition). The head/neck cohort
comprised 18 females (31%) and 40 males (69%) with carcinoma
of the nasopharynx (3.4%), nasal cavity (3.4%), salivary gland
(3.4%), hypopharynx (6.9%), larynx (6.9%), oral cavity (17.2%),
or oropharynx (58.6%).

Compared to the head/neck cohort, the cervix cohort was
younger (51.9 vs. 63.0 years, p < 0.01) and had a significantly
lower percentage of patients that were non-Hispanic white (57.8
vs. 84.5%, p < 0.01) (Table 1). There was a similar mean
ABM dose between groups (17.8 vs. 15.4Gy, p = 0.22) but a
significantly higher volume of ABM receiving at least 5Gy (V5:
516.8 vs. 301.5 cm3, p < 0.01) and 10Gy (V10: 442.5 vs. 255.7
cm3, p < 0.01) in cervical cancer patients.

Female sex was associated with lower baseline ANC and
hemoglobin levels, but there was no significant difference in these
values by disease cohort (Table 2). Cervical cancer was associated
with significantly higher baseline platelet levels (0.094 [0.008,
0.18]). Peripheral cell counts significantly declined over the
course of treatment in each cohort (Figure 1; Table 2). BMI did
not correlate with baseline cell count values or change over time
on multivariable analysis. Compared to the head/neck cohort,
the cervix cohort had a lower mean ANC nadir (2.20 vs. 2.85
× 103 per µL, p < 0.01), and had greater mean reductions in
ANC, lymphocyte, and platelet counts with treatment (Figure 1;
Table 2). Nadir values were not significantly different between
cohorts for lymphocyte, hemoglobin, or platelet counts, and there

TABLE 1 | Sample characteristics.

Characteristic Cervical cancer Head/Neck

cancer

p

Number 90 58

Age, years 51.9 (11.7) 63.0 (9.0) <0.01

Body mass index, kg/m2 27.4 (5.5) 25.9 (5.6) 0.14

Sex, n (%)

Male 0 (0%) 40 (69.0%) <0.01

Female 90 (100%) 18 (31.0%)

Race, n (%)

White 52 (57.8%) 49 (84.5%) <0.01

Black 3 (3.3%) 1 (1.7%)

Hispanic/Latino(a) 13 (14.4%) 6 (10.3%)

Asian 19 (21.1%) 2 (3.4%)

Other 3 (3.3%) 0 (0%)

Cycles of cisplatin held up to week 5, n (%)

0 81 (90.0%) 56 (96.6%) 0.13

1 7 (7.8%) 2 (3.4%)

2 1 (1.1%) 0 (0.0%)

3 0 (0.0%) 0 (0.0%)

4 1 (1.1%) 0 (0.0%)

Active bone marrow dose, Gy 17.8 (4.9) 15.4 (4.6) 0.22

Active bone marrow V5, cc 516.8 (78.9) 301.5 (97.1) <0.01

Active bone marrow V10, cc 442.5 (65.6) 255.7 (90.2) <0.01

Values are means (standard deviation), unless otherwise indicated. V5, volume receiving

dose of 5Gy or more; V10, volume receiving dose of 10Gy or more.
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FIGURE 1 | Acute hematologic response during definitive chemoradiation, by disease and sex. (A) Absolute neutrophil counts (ANC); (B) lymphocyte counts;

(C) hemoglobin (HGB) levels; (D) platelet counts. HNC, Head and Neck Cancer; M, Male; F, Female.

was no significant interaction between time and disease cohort
for hemoglobin levels. We observed no significant interactions
between gender and time for any of the peripheral cell counts.
Patient age (coded as continuous or age ≥65) was not associated
with peripheral cell count values at baseline or with changes
over time.

In the cervix cohort, nine patients (10.0%) had one or more
cycles of chemotherapy held during the 5 weeks of treatment,
compared to two patients (3.4%; p = 0.13) in the head/neck
cohort. Reasons for holding cisplatin were documented in
three cervix patients, and included nephrotoxicity, neutropenia,
and patient refusal. Reasons for holding cisplatin in the
two head/neck patients were hypovolemia and severe nausea

requiring feeding tube placement. None of the head/neck
cancer patients were treated with G-CSF compared to five
(5.6%) cervical cancer patients (p = 0.16). No patients from
either cohort were treated with erythropoietin. One (1.8%)
head/neck cancer patient underwent packed red blood cell
(PRBC) transfusion compared to eight (8.9%) cervical cancer
patients (p = 0.09). None of the head/neck cancer patients
required platelet transfusion, compared to one (1.1%) cervical
cancer patient (p = 1). On exploratory analysis, there was no
correlation between FIGO stage and cell counts at baseline or
over time (results not shown).

The distribution of ABM changed significantly with treatment
for both cervical and head/neck cancer patients (Figure 2,
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FIGURE 2 | Heat map comparing changes in active bone marrow volume within skeletal sub-structures, measured by 18F-FDG PET/CT, for patients treated for

cervical vs. head/neck cancer. Solid and dotted fill represent p < 0.05 and ≥0.05, respectively.

Table 3). Cervical cancer patients had a significant decrease in
mean ABM volume in the pelvis and a significant increase
in mean ABM volume in the cervical vertebrae, thoracic
vertebrae, clavicle, scapula and proximal humeri and ribs. Among
head/neck cancer patients, there was a significant decrease in
mean ABM volume in the clavicle and sternum and a significant
increase in mean ABM volume in the pelvis.

DISCUSSION

Ionizing radiation results in hematopoietic toxicity through
impairment of bone marrow production and redistribution and
apoptosis of mature circulating cells (11). Acute hematologic
toxicity is a common side effect in patients undergoing
chemoradiotherapy that can result in morbidity and poor

treatment tolerance (12–16). Previous studies have found that
hematologic toxicity varies as a function of bone marrow
radiation dose, volume, and location (5, 10, 13, 17–23). These
studies have led to the development of bone marrow radiation
dose constraints that have been incorporated into clinical trials
and routine practice for cervical cancer patients (5, 6). It is not
known whether additional reduction in marrow radiation, on par
with levels in head/neck cancer treatment, would further reduce
toxicity or whether benefits would outweigh risks associated
with potentially increased dose to other organs. Prior dosimetric
studies have shown that current bone marrow constraints
are feasible, however, greater optimization for bone marrow
avoidance could result in increased dose to adjacent organs at risk
(24, 25).

Radiation is also associated with imaging changes on both
MRI and FDG-PET/CT (21, 26). However, studying the clinical
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TABLE 2 | Linear mixed effect model for longitudinal changes in cell counts.

Fixed effect ANC Lymphocytes Hemoglobin Platelets

Intercept 1.80

(1.70, 1.90)

0.55

(0.45, 0.64)

2.60

(2.60, 2.60)

5.60

(5.50, 5.70)

Time

(weeks)

−0.10

(−0.13, −0.078)

−0.29

(−0.31, −0.26)

−0.021 (−0.027,

−0.014)

−0.11

(-0.13,−0.085)

Cervical Cancer

(Ref: Head/Neck)

0.045

(–0.081, 0.17)

0.24

(0.12, 0.36)

0.031

(–0.0014, 0.063)

0.094

(0.008, 0.18)

Female

(Ref: Male)

−0.24

(-0.36, −0.13)

−0.14

(−0.25, −0.033)

−0.078

(−0.11, −0.048)

–0.032

(–0.11, 0.045)

Time x Cervical Cancer −0.043

(-0.075, −0.011)

−0.060

(-0.090, −0.031)

–0.001

(-0.009, 0.007)

−0.028

(-0.051, −0.005)

Effects are on log-transformed values of the peripheral cell counts. Bold face indicates statistical significance (p < 0.05). ANC, absolute neutrophil count.

TABLE 3 | Change in active bone marrow volume (compensatory response), by cancer type.

Total bone marrow

volume (cm3)

ABM pre-treatment

volume (cm3)

ABM post-treatment

volume (cm3)

Change in ABM

volume (cm3)

Region Cervical Head/Neck Cervical Head/Neck Cervical Head/Neck Cervical Head/Neck

Clavicle 128.9

(22.4)

209.5

(38.6)

43.9

(16.3)

78.4

(35.7)

61.7

(20.0)

58.5

(29.4)

17.8

[p < 0.01]

−19.9

[p = 0.02]

Pelvis 1230.2

(184.6)

1743.2

(363.8)

504.7

(107.5)

608.9

(224.7)

279.1

(127.6)

697.9

(194.3)

−225.5

[p < 0.01]

88.9

[p = 0.05]

Ribs 636.3

(15.3)

1062.8

(277.3)

135.9

(61.2)

342.7

(111.4)

204.5

(68.4)

302

(75.2)

68.7

[p < 0.01]

–40.7

[p = 0.11]

Scapula, Proximal Humerus 377.9

(62.0)

645.4

(144.6)

77.8

(46.8)

127.7

(74.8)

118.4

(48.5)

119.5

(91.6)

40.6

[p < 0.01]

–8.2

[p = 0.65]

Cervical Spine 127.3

(25.0)

173.5

(45.8)

111.2

(24.3)

148.8

(39.8)

124.4

(21.4)

122.7

(41.2)

13.2

[p = 0.01]

–26.1

[p = 0.20]

Thoracic Spine 378.2

(58.7)

555.2

(125.7)

273.8

(45.8)

475.6

(102.4)

313.2

(46.2)

417.7

(126.1)

39.4

[p < 0.01]

−57.9

[p = 0.08]

Lumbar Spine 282.2

(40.7)

380.6

(94.4)

179.9

(39.4)

312.1

(87.2)

171.4

(35.8)

297.7

(109.8)

–8.5

[p = 0.30]

–14.3

[p = 0.60]

Whole Body 3155.5

(518.1)

4757.7

(1022.1)

1327.1

(219.2)

2094.1

(512.6)

1272.8

(201.3)

2016.0

(450.2)

−54.3

[p = 0.03]

–78.1

[p = 0.12]

ABM, active bone marrow. Bold values indicate p-value < 0.05.

effects of radiation dose on hematopoiesis is challenging,
particularly in the context of concurrent chemotherapy delivered
at radiosensitizing doses, due to limitations on the degree of dose
variation to bone marrow that is feasible or ethical.

Here we took advantage of a natural experiment arising
from standard clinical practice patterns to analyze patients
treated with identical chemotherapy who received concurrent
radiation targeted to radically different parts of the anatomy.
As such, we attempted to isolate the effect of varying radiation
volume on bone marrow dose, acute hematologic toxicity, and
hematopoietic compensatory response, while controlling for
chemotherapy dosing. We found that, compared to patients
with head/neck cancer, patients with cervical cancer had lower
ANC nadirs and a more pronounced rate of decline in ANC,
lymphocyte, and platelet counts over the first 5 weeks of
treatment, along with higher volumes of marrow irradiated,
indicating that the radiation volume was a contributing factor
affecting peripheral cell counts. However, the difference between

rate of decline was modest and head/neck cancer patients
also had significant reductions in each of the cell types we
studied, indicating that systemic therapy is still a predominant
cause of reduced peripheral counts in the acute setting. These
findings suggest that further efforts to spare BM beyond currently
employed dose constraints and techniques with IMRT may have
a limited impact on hematopoietic toxicity. Of note, we observed
no statistically significant differences in the number of patients
requiring treatment with G-CSF, PRBCs, or platelet transfusions.

Both cervical and head/neck cancer patients had greater
decreases in ABM volume in irradiated bone sub-regions,
with corresponding increased metabolic activity in unirradiated
sites. However, by virtue of having less marrow irradiated,
head/neck cancer patients are likely better able to compensate
for hematopoietic injury in association with chemoradiotherapy
compared to patients with cervical cancer. Prior studies have
found that proliferative activity of out-of-field myeloid stem cells
increases in response to radiation (27–29). Varying patterns of
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compensatory response reflect different capacity to respond to
bone marrow injury, which in turn has been correlated with
both acute hematologic toxicity and intensity of chemotherapy
(9). Note, however, we were only able to quantify the subacute
compensatory response (measured three to 6 months post-
treatment) in this study, and future studies with longitudinal
FDG-PET/CT to monitor the acute compensatory response (e.g.,
at week five of chemoradiation) would be valuable. There is
also evidence that even low doses of radiation to active bone
marrow can lead to reductions in WBC counts that persist
for months after treatment (30). By limiting our analysis of
blood counts to the first 5 weeks of treatment (due to differing
lengths of chemoradiation between disease sites) we are not
able to assess longer term trends in cell counts and sub-acute
hematologic toxicity.

Serial FDG-PET/CT is a useful method to study both
hematopoietic activity and compensation for marrow injury,
as regions of higher metabolic activity within the marrow
are correlated with higher cellularity and proliferative activity
(31–33). Previous studies also support the hypothesis that
radiation techniques designed to reduce dose specifically to
metabolically active bone marrow, as measured by FDG-
PET/CT, can reduce acute hematologic toxicity and permit
better chemotherapy tolerance, with ongoing clinical trials
continuing to investigate this therapeutic strategy (5, 20,
22). Preserving hematopoietic progenitor cells may also be
increasingly important as radiation therapy is being used in
conjunction with anticancer immunotherapy agents (7, 34).

There are several limitations to this study. As this was
a retrospective analysis, unmeasured population differences
between cohorts, or males and females, could explain our
findings, independent of bone marrow irradiation. It was
challenging to elucidate the effect of gender vs. RT distribution
when comparing a cohort of cervical vs. predominately male
head/neck cancer patients. However, we did control for
measurable covariates with multivariable analysis. Furthermore,
randomizing patients to widely different radiation volumes
would be unethical in the population we studied. Additional
unmeasured variables, including patient comorbidity and
smoking status, can effect hematopoietic response and may be
a source of confounding. Currently, no satisfactory methods
exist to measure and control for radiation effects on circulating
hematopoietic progenitor cells, which could also contribute to
the observed reductions in peripheral cell counts. This cohort
of cervical and head/neck cancer patients is heterogeneous with
varying stages, subsites and radiation plans. Variation in radiation
dose distribution within the head/neck or cervical cancer groups
may limit the ability to identify differences in hematologic
toxicity or compensatory response between groups.

Serial FDG-PET/CT images were acquired through the
natural course of care and were thus only available for a subset of
our sample; future research should attempt to correlate changes
in peripheral cell counts with the acute compensatory response.
It would also be of academic interest to evaluate bone marrow
changes in the absence of systemic therapy, although prior data
indicates that pelvic RT alone rarely results in hematologic
toxicity (19, 35). Comparison of FDG-PET between the groups

may also be confounded by differences in total radiation
and chemotherapy exposure prior to the post-treatment scan.
Interestingly, only one cervical cancer patient was identified as
having chemotherapy held for cytopenia. Additional research is
needed to determine if the differences in peripheral cell counts
from varying radiation dose distribution described in this study
result in differences in patient-reported outcomes (36).

In conclusion, we found that cervical cancer patients
had lower ANC nadirs and faster decreases in ANC,
lymphocyte, and platelet counts over the first 5 weeks of
treatment, compared to head/neck cancer patients treated
with identical chemotherapy. Both cohorts exhibited
different patterns of subacute compensatory response
in the bone marrow, and the higher volume of active
marrow irradiated in cervical cancer patients appears
to be a significant independent contributor to a faster
depletion of circulating neutrophil, lymphocyte and platelet
cell types. Cervical cancer patients also had a lower
average ANC. Further studies are needed, however, to
characterize the relationship between varying radiation dose
distributions and hematologic response in patients undergoing
concurrent chemotherapy.
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