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Hepatocellular carcinoma (HCC) samples were clustered into three energy

metabolism-related molecular subtypes (C1, C2, and C3) with different prognosis

using the gene expression data from The Cancer Genome Atlas (TCGA) and Gene

Expression Omnibus (GEO). HCC energy metabolism-related molecular subtype analysis

was conducted based on the 594 energy metabolism genes. Differential expression

analysis yielded 576 differentially expressed genes (DEGs) among the three subtypes,

which were closely related to HCC progression. Six genes were finally selected from

the 576 DEGs through LASSO-Cox regression and used in constructing a six-gene

signature-associated prognostic risk model, which was validated using the TCGA

internal and three GEO external validation cohorts. The risk model showed that high

ANLN, ENTPD2, TRIP13, PLAC8, and G6PD expression levels were associated with

bad prognosis, and high expression of ADH1C was associated with a good prognosis.

The validation results showed that our risk model had a high distinguishing ability

of prognosis in HCC patients. The four enriched pathways of the risk model were

obtained by gene set enrichment analysis (GSEA) and found to be associated with

the tumorigenesis and development of HCC, including the cell cycle, Wnt signaling

pathway, drug metabolism cytochrome P450, and primary bile acid biosynthesis. The

risk score calculated from the established risk model in 204 samples and other clinical

characteristics were used in building a nomogram with a good prognostic prediction

ability (C-index = 0.746, 95% CI = 0.714–0.777). The area under the curves (AUCs) of

the nomogram model in 1-, 2-, and 3-years were 0.82, 0.77, and 0.79, respectively.

Then, qRT-PCR and immunohistochemistry were used to validate the mRNA expression

levels of the six genes, and significant differences in mRNA and gene expression

were observed among the tumor and adjacent tissues. Overall, our study divided

HCC patients into three energy metabolism-related molecular subtypes with different

prognosis. Then, a risk model with a good performance in prognostic prediction was

built using the TCGA dataset. This model can be used as an independent prognostic

evaluation index for HCC patients.

Keywords: hepatocellular carcinoma, energy metabolism, risk model, prognosis, bioinformatics

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2020.01210
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2020.01210&domain=pdf&date_stamp=2020-08-13
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:liangleilei10006@163.com
mailto:xujingchao1123@163.com
https://doi.org/10.3389/fonc.2020.01210
https://www.frontiersin.org/articles/10.3389/fonc.2020.01210/full
http://loop.frontiersin.org/people/885884/overview
http://loop.frontiersin.org/people/915583/overview


Chen et al. Energy Metabolism Genes in HCC

INTRODUCTION

Hepatocellular carcinoma (HCC) is the most common primary
liver cancer and has been an important medical problem
worldwide. HCC is the sixth most common malignancy in the
world and the fourth leading cause of cancer-related death. HCC
has been identified as the leading cause of death in patients
with cirrhosis, and its incidence is expected to increase in the
future (1).

Although many studies have explored the molecular,
cellular, and environmental mechanisms that contribute to
the occurrence of HCC, limited options are presently available
for clinicians in delaying tumor progression and prolonging

FIGURE 1 | Flowchart presenting the process of establishing the gene signature and prognostic nomogram of pancreatic cancer in this study.

patients’ life expectancy. Besides, the high recurrence rate and
invasiveness of HCC severely limit the improvement of the
curative effect of HCC, and the main mechanism of this feature is
not fully understood (2). Therefore, an effective prediction model
is needed for the accurate assessment of the patient’s prognosis.

Energy metabolism has long been a hallmark of cancer cells,
enabling tumor cells to produce adenosine triphosphate (ATP) to
maintain the reduction-oxidation balance and macromolecular
biosynthesis processes required for cell growth, proliferation,
and migration (3, 4). Many cancers have been known to limit
their energy metabolism mainly to glycolysis, producing large
amounts of lactic acid even in the presence of oxygen through
the Warburg effect (5). Glucose is the main source of energy
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for cancer cells. Compared with normal cells, tumor cells
prefer the incomplete non-oxidative metabolism of glucose (6).
These metabolic features promote the survival, proliferation, and
metastasis of cancer cells (7). Therefore, a deeper understanding
of energy metabolism in HCC can provide an important solution
for the development of novel therapies. In recent years, gene
chips and high-throughput sequencing have made great progress
and development, which means that energy metabolism gene
signatures at the mRNA level are available to predict overall
survival (OS) in HCC.

In the present study, genes related to energy metabolism
were collected. Gene expression data from The Cancer Genome
Atlas (TCGA) and Gene Expression Omnibus (GEO) were
used in constructing HCC molecular subtypes based on
genes related to energy metabolism. The relationship between
molecular subtypes and prognosis was further evaluated.
Six genes were finally selected from the 576 differentially
expressed genes (DEGs) through differential expression
analysis and LASSO-Cox regression for the construction of
a prognostic risk model. The risk model can evaluate the
prognosis of HCC patients and be validated by the TCGA
internal and GEO external validation cohorts. This model
can be used as an independent prognostic evaluation index
for HCC patients.

MATERIALS AND METHODS

Data Download and Preprocessing
The TCGA-LIHC dataset consisted of the RNA-seq data
of 371 HCC and 53 adjacent normal samples and related
clinical characteristics and was downloaded from the TCGA
database (https://portal.gdc.cancer.gov/).GSE76427,GSE15654,
and GSE14520 contained the gene expression data of 115, 65,
and 221 HCC biopsy specimens with clinical characteristics and
were downloaded from the GEO database (http://ncbi.nlm.nih.
gov/geo/), respectively. The raw data were preprocessed with
the following criteria: (1) the genes were excluded if the FPKM
value (Fragments per Kilobase Million) was zero in more than
half of the samples; (2) genes with missing expression values in
more than 30% of samples were removed; (3) the invariant genes
(i.e., same expression value across all samples) and low-variation
genes were filtered; (4) samples without related clinical data or
OS < 30 days were removed; (5) normal tissue samples were
removed. The TCGA-LIHC dataset was randomly divided into
two cohorts: training cohort (n = 204) and internal validation
dataset (n = 138), and the three GEO datasets were regarded
as the external validation cohorts. As the data were open-access,
therefore, the ethical approval by an ethics committee was not
required. Human metabolic-related pathways were downloaded
from the Reactome database (https://reactome.org/). A total of
594 genes related to energy metabolism were sorted out from 11
metabolic pathways (Tables S1, S2).

Energy Metabolic Molecular Subtypes
HCC energy metabolism-related molecular subtype analysis was
conducted based on the 594 genes that were sorted out above. The
non-negative matrix factorization (NMF) consensus cluster in

the R package “NMF” was used to cluster all the HCC samples in
the TCGA-LIHC dataset. The clinicopathological characteristics
of different groups were compared, and the immune scores of the
subtypes were obtained by TIMER (tumor immune estimation
resource) tool.

DEG Identification and Bioinformatics
Analysis
The R package of “DESeq2” was used to calculate the DEGs of
the subtypes (FDR < 0.05 and |log2FC| > 1). GO and KEGG
functional enrichment analyses were conducted based on the
DEGs. Protein-protein interaction (PPI) analysis was conducted
based on the STRING database (https://string-db.org/). The fast
greedy clustering algorithm of the STRINGdb tool was used to
cluster the interaction network.

TABLE 1 | Clinicopathological characteristics between training and internal

validation cohorts.

Characteristics TCGA training

cohort

(n = 204)

TCGA internal

validation cohort

(n = 138)

P-value

Age (years) ≤50 43 30 0.894

>50 161 108

Gender Female 62 47 0.475

Male 142 91

Inducement Yes 143 98 0.855

No 61 40

Hepatitis virus

infection

Yes 89 52 0.273

No 115 86

ECOG score < 2 192 127 0.452

≥2 12 11

Pathologic T T 1 95 73 0.168

T 2 48 36

T 3 48 26

T 4 11 2

Pathologic N N 0 148 91 0.250

N 1 1 2

N X 54 45

Pathologic M M 0 148 96 0.550

M 1/ M X 56 42

Tumor TNM stage Stage I 93 68 0.717

Stage II 44 33

Stage III 52 28

Stage IV 2 1

Gleason grade G1 31 22 0.979

G2 95 66

G3 66 45

G4 8 4

Survival status Alive 128 91 0.546

Dead 76 47

TNM stage, ACJJ 6TH or 7TH TNM stage; Inducement, factors associated with the

occurrence of HCC; Hepatitis virus, Hepatitis B and/or hepatitis C viruses; ECOG, Eastern

Cooperative Oncology Group.
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Risk Model Construction and Validation
The expression data of the DEGs in the training cohort were
used in constructing a risk score model. The impact of each
DEG on the OS of HCC patients was estimated by the univariate
Cox proportional risk regression model. Log-rank P < 0.01
was considered statistically significant. Then, a LASSO-Cox
regression was employed to narrow the number of genes in
our model. A risk score model was established by including
individual normalized gene expression values weighted by their
LASSO-Cox coefficients. Internal and external validation cohorts
were then used to verify the robustness of the risk model.
The risk score of each sample was calculated based on our
formula, and the risk score distribution was plotted by the
R package of “timeROC.” Then, the samples were divided
into high- and low-risk groups by a cutoff value that was
calculated using the Gordon index. A log-rank test was used
in comparing the survival difference between the two groups.
The OS of each group was performed using the Kaplan–Meier
(KM) survival curve.

Gene Set Enrichment Analysis (GSEA)
GSEA enrichment in the TCGA-LIHC dataset was conducted for
the analysis of the significantly enriched pathways in the high-
and low-risk groups. c2.cp.kegg.v6.0 symbols were selected for
our analysis, which included the KEGG pathways database.

Sample Collection
HCC and adjacent tissues were collected from 44 patients (all
participants were older than 16 years). None of the hepatocellular
cancer patients received preoperative anti-tumor therapies.
Patients and their families in this study have been fully informed
and informed consent was obtained from the participants. This
study was approved by the Ethics Committee of The Second
Affiliated Hospital of Dalian Medical University.

RNA Isolation and qRT-PCR Analysis
Forty-four pairs of HCC and adjacent nontumor tissues
were obtained from The Second Affiliated Hospital of Dalian
Medical University, Dalian, China. qRT-PCR experiments were

FIGURE 2 | Identification of molecular subtypes of hepatocellular carcinoma (HCC) using TCGA data associated with prognosis. (A) The non-negative matrix

factorization (NMF) consensus matrix plot for 594 metabolism-related genes identified three distinct HCC subtypes: C1, C2, and C3. (B) Heatmap of the expression of

genes related to energy metabolism in three molecular subtypes; (C) Kaplan–Meier (KM) curves of overall survival (OS) in the three molecular subtypes.
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performed to validate the mRNA expression levels of the six
genes screened above. Total RNA from the HCC and adjacent
normal liver tissue specimens was extracted using TRIzol reagent
(Invitrogen, Thermo Scientific, Shanghai, China). Then, RNA
was reverse-transcribed into cDNA with the QuantiTect reverse
transcription kit (QIAGEN, Valencia, CA, USA). Real-time PCR
analyses were quantified with SYBR-Green (Takara, Otsu, Shiga,
Japan), The amplification conditions were as follows: 50◦C for
90 s, 95◦C for 10min, 40 cycles at 95◦C for 15 s, and 60◦C for
1min. The final products of PCR were analyzed based on melting
curves. Each RNA sampling was performed in triplicate, and the
RNA expression levels of the genes were calculated relative to that
of GAPDH.

Immunohistochemistry
Each group of HCC samples was fixed in 10% formalin,
embedded in paraffin, and processed as 5µm continuous
sections. Samples were dewaxed with discontinuous
concentrations of ethanol and blocked to inhibit endogenous
peroxidase. They were then heated in a microwave to retrieve
antigens, cooled to room temperature, and then blocked
by incubation in goat serum for 30min at 37◦C. Samples
were incubated in rabbit anti-ANLN, anti-ENTPD2, anti-
TRIP13, anti-PLAC8, anti-G6PD and anti-ADH1C (Abcam,
Cambridge, UK; 1:1,200) overnight at 4◦C, followed by
incubation with horseradish peroxidase-coupled goat anti-rabbit
secondary antibody at 37◦C for 30min and stained using

3,3
′

-diaminobenzidine. The cell nucleus was stained blue by
hematoxylin. Sections were then dehydrated, cleared by xylene,
and mounted. ANLN, ENTPD2, TRIP13, PLAC8, G6PD, and
ADH1C expression were detected by IHC using a streptavidin
peroxidase method. ANLN, ENTPD2, TRIP13, PLAC8, G6PD,
and ADH1C expression in the liver were used as a positive
control. Samples incubated with PBS instead of the ANLN,
ENTPD2, TRIP13, PLAC8, G6PD, and ADH1C primary antibody
were used as a negative control. Positive and negative controls
were included for each batch of immunohistochemically stained
sections. The experimental procedure was performed according
to strict adherence to the manufacturers’ instructions.

Statistical Analysis
R software (version 3.6.1) and SPSS software (version 23.0) were
used to complete all the statistic work. Multiple imputation
analyses were used for missing values (8). Bootstrap sampling
was assigned 100-fold so that random assignment bias that can
affect the stability of the subsequently built risk model was
prevented and the distribution of covariates, such as age and
tumor Gleason grade, was ensured. TNM staging was the same
between the randomly selected samples and all the samples. The
differences between categorical variables were compared by using
the Chi-square test. Student’s t-test was used for comparison of
quantitative values according to normal distribution. TheMann–
Whitney U-test was utilized for the comparison of non-normal
distributed quantitative data. OS was calculated by the KM
method, and the differences between the groups were compared
by using the log-rank test. Cox proportional hazard model was

used to analyze the significant factors affecting OS. P < 0.05 was
considered statistically significant.

RESULTS

Patients’ Characteristics
This study was conducted according to the flow chart shown
in Figure 1. A total of 342 HCC samples from the TCGA-

LIHC dataset and a total of 401 samples from the GSE76427,
GSE15654, and GSE14520 datasets, respectively, were screened
for further analyses. The clinical characteristics of the TCGA
training cohort (n = 204) and the internal validation cohort
(n = 138) are shown in Table 1. The characteristics included
age, gender, existing the inducement to HCC, hepatitis virus
infection, Eastern Cooperative Oncology Group (ECOG) score, T
stage, N stage, M stage, tumor Gleason grade, and survival status.
No statistically significant differences (P > 0.05) were observed
between the training cohort and the internal validation cohort,
indicating that they were comparable.

TABLE 2 | Clinicopathological characteristics among three molecular subtypes.

Characteristics C1 C2 C3 P-value

Age (years) ≤50 12 37 24 0.031

>50 63 90 116

Gender Female 10 50 49 <0.001

Male 65 77 91

Inducement Yes 45 107 89 <0.001

No 30 20 51

Hepatitis virus

infection

Yes 35 41 65 0.027

No 35 86 80

ECOG score < 2 65 95 120 0.033

≥2 10 32 20

Pathologic T T1 32 51 85 0.005

T2 20 35 29

T3 21 36 17

T4 1 5 7

Pathologic N N0 53 97 89 0.240

N1 0 3 0

Pathologic M M0 55 97 92 0.616

M1/MX 0 1 2

Tumor TNM

stage

I 30 50 81 0.003

II 19 31 27

III 21 41 18

IV 0 1 2

Gleason grade G1 17 8 28 <0.001

G2 33 55 73

G3 21 54 36

G4 2 8 2

Survival status Alive 54 66 99 0.002

Dead 21 61 41

TNM stage, ACJJ 6TH or 7TH TNM stage; Inducement, factors associated with the

occurrence of HCC; Hepatitis virus, Hepatitis B and/or hepatitis C viruses; ECOG, Eastern

Cooperative Oncology Group.
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Energy Metabolic Molecular Subtypes
NMF algorithm was used to cluster HCC samples in the
TCGA-LIHC dataset. The optimal clustering number was
selected by cophenetic, dispersion, and by using silhouette
indicators. Overall, the most appropriate number of clustering
was three (Figure 2A, Figure S1). The expression levels of

energy metabolism-related genes seem to differ among the three
subtypes (Figure 2B). The prognosis signature among them
was further analyzed. The C2 subtype had the worst prognosis
(Figure 2C, P < 0.001). Although C1 and C3 belonged to two
different energy metabolic molecular subtypes, they had nearly
the same prognosis. The clinicopathological characteristics of

FIGURE 3 | Functional enrichment analysis of differentially expressed genes (DEGs). (A) GO enrichment analysis results, showing only the first 20 terms; (B) KEGG

pathway enrichment analysis results, showing only the first 20 pathways. GeneRatio: refers to the ratio of the number of genes enriched in the term/pathway to the

total number of genes in the term/pathway.

FIGURE 4 | DEGs in univariate Cox regression with P-value of <0.01 were included in the LASSO-Cox regression model for variable compression to establish an

optimal prognostic model. The model with lambda = 0.1093823 was selected as the final model. (A) LASSO-Cox regression coefficient selection and variable

screening. The lower horizontal axis represents lambda value, and the upper horizontal axis scale represents the number of variables in the lasso-cox regression

model, the regression coefficient (x) of which is not 0. The left vertical axis represents the value of the regression coefficient (x). (B) Cross-validation in the LASSO-Cox

regression model to select the tuning parameter. The horizontal axis represents the log (lambda) value, and the vertical axis represents partial likelihood deviance. The

red dots in the figure represent partial likelihood deviations ± standard error for different tuning parameters.
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the three molecular subtypes were then compared. Age, gender,
existing the inducement to HCC, hepatitis virus infection, ECOG
score, T stage, tumor TNM stage, Gleason grade, and survival
status among subtypes reached statistical significance (Table 2, P
< 0.05). Furthermore, the immune scores among the subtypes
were evaluated. As shown in Figure S2, all the six immune cell
scores of the C2 subtype were significantly higher than those
of the C1 and C3 subtypes. The C1 subtype had significantly
lower CD8+ T cell, neutrophil, and dendritic than those of C3.
However, marginal significance was shown for the macrophage
cell between the C1 and C3. The results above might indicate that
a complex relationship exists between the immune invasion and
prognosis in HCC patients.

DEG Identification and Bioinformatics
Analysis
All DEGs between C1/C3 and C2 were identified with the above
criteria (Figure S3, Tables S3, S4). A total of 576 DEGs were
identified (Table S5). Homogeneity tests between subtypes were
performed. The results are shown in Figures S4, S5. Then, GO
and KEGG enrichment analyses were performed. The DEGs were
mainly enriched in organic hydroxy compound metabolic, small
molecule catabolic, carboxylic acid biosynthetic, and organic
acid biosynthetic processes (Figure 3A) and pathways related

to the metabolism of xenobiotics by cytochrome P450, retinol
metabolism, chemical carcinogenesis carbon metabolism, and
fatty acid degradation (Figure 3B). The enrichment results are
listed in Tables S6, S7. Furthermore, a PPI network was built
based on the 576 DEGs. The genes were significantly clustered
into eight networks (Figure S6, Table S8).

Establishing a Prognostic Risk Model and
the HCC Tissue Validation
First, the risk score model was constructed based on the training
cohort. Univariate Cox regression was performed on each DEG.
A total of 71 genes were identified as risk factors for the OS of
HCC patients (Table S9). Then, LASSO-Cox regression analysis
was used to narrow the number of genes for the establishment of
our risk score model. The model with a lambda of 0.1093823 was
selected as the final model, which contained six genes (Figure 4).
The model formula was as follows:

Risk score = 0.011∗ANLN+0.014∗ENTPD2+0.001∗TRIP13

+0.006∗PLAC8+0.001∗G6PD−2.037881e

−06∗ADH1C

As shown in the above formula, the high expression levels of
ANLN, ENTPD2, TRIP13, PLAC8, and G6PD as risk factors of

FIGURE 5 | Evaluation of the performance of the risk model in the training cohort. (A) Distribution of risk score, OS, survival status (red dots indicate death, blue dots

indicate alive) and the six genes expression heat map in the training cohort; (B) ROC curves and area under the curve (AUC) for 1-, 2-, and 3-year survival in the

training cohort of the risk model; (C) Kaplan–Meier (KM) curves of the OS in the training cohort.
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FIGURE 6 | The results of qRT-PCR in six genes. (A–E) ANLN, ENTPD2, TRIP13, PLAC8, and G6PD were highly expressed in HCC tissues. (F) ADH1C was lowly

expressed in HCC tissues.

prognosis were associated with high risk. However, the high
expression of ADH1C as a protective factor of prognosis was
associated with low risk.

The distribution of each patient’s risk score was obtained after

the calculation of the risk score of each patient in the training

cohort, as shown in Figure 5. A positive correlation between risk

score and the event of death was likely present (Figure 5A). The
formula’s prognosis prediction efficiency was analyzed for 1, 2,
and 3 years, as shown in Figure 5B. The model had a relatively
high value of area under the curve (AUC), which was above 0.69.
Furthermore, patients in the training cohort were divided into
high- and low-risk groups based on their risk scores. The optimal
cutoff value was selected by using the Gordon index (cutoff
= 0.334235), and KM curves of survival were also performed
in Figure 5C. A significant difference in survival probability
between the two groups (P < 0.001) was observed, as shown in
Figure 5C. Patients with high-risk scores were associated with
significantly worse OS, thereby suggesting that the high-risk
score was an adverse prognostic factor.

To validate whether ANLN, ENTPD2, TRIP13, PLAC8, and
G6PD are highly expressed and ADH1C are lowly expressed in
HCC tissues, we experimentally validated the expression in the
tissues of 44 HCC patients. The results of qRT-PCR (Figure 6)
and immunohistochemistry (Figure 7) suggested that ANLN,
ENTPD2, TRIP13, PLAC8, and G6PD were highly expressed and
ADH1C was lowly expressed in HCC tissues.

Internal and External Validation to Evaluate
the Robustness of the Risk Model
First, the TCGA internal validation cohort was used to verify
the robustness of the risk model that was established above
(Figure 8). Figure 8A shows that high-risk score patients had
worse OS which was in line with that of the training cohort.
Furthermore, ROC curves were generated to analyze the
efficiency of prognosis prediction for 1, 2, and 3 years in the
internal validation cohort, as shown in Figure 8B. The model
has a relatively high AUC that was above 0.66. According to the
Gordon index (cutoff = 0.2280976), patients were divided into
two groups with high and low risk. TheOS of the two groups were
compared using the KM curves (Figure 8C). The patients from
the high-risk group had significantly worse survival outcomes
compared with those from the low-risk group (P < 0.001).

The robustness of the risk model was further be assessed with
three external datasets using the GEO datasets of GSE76427,
GSE15654, and GSE14520 (GSE14520 only contains five genes
without ANLN), respectively. Similar results that high-risk score
was related to worse OS were obtained in three cohorts, as shown
in Figure 9. Themodel had a relatively high distinguishing ability
of prognosis and could identify the high-risk group patients
with worse survival results in three different cohorts. Significant
differences were present between the two groups, with the P-
values of 0.040, 0.042, and 0.025 in three cohorts, respectively.
ROC curves showing the efficiency of prognosis prediction for
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FIGURE 7 | The results of immunohistochemistry in six genes. (A–E) ANLN, ENTPD2, TRIP13, PLAC8, and G6PD were highly expressed in HCC tissues. (F) ADH1C

was lowly expressed in HCC tissues.

1-, 2-, and 3- years in the three external validation cohorts were
illustrated in Figure S7.

GSEA Enrichment in the High-Risk Group
and the Low-Risk Group
A total of 342 samples from the TCGA-LIHC dataset were
divided into high- and low-risk groups based on the risk model
we had established. GSEA enrichment was used for the analysis of
the significantly enriched pathways in the two groups. The GSEA
enrichment is listed in Table S10. Four importantly enriched
pathways of high-risk (cell cycle regulation, Wnt signaling
pathway) and low-risk group (xenobiotics biodegradation,
metabolism, and lipid metabolism) were illustrated (Figure S8).

Nomogram Construction
TCGA training cohort was used to screen the prognostic risk
factors. The risk score, existing the inducement to HCC, hepatitis
virus infection, a higher ECOG score, and tumor TNM stage were
found to be risk factors for OS (Table 3) after the univariable
Cox regression analysis. Then we made a multivariable Cox
regression analysis using the above factors and we found risk
score, ECOG score, and tumor TNM stage were independent
risk factors for OS. The hazard ration (HR) value of risk score
was the largest with the P < 0.001. Then, a nomogram model
with a C-index value of 0.746 (95% CI=0.714–0.777) containing
the above clinical features and risk score was constructed, as
shown in Figure 10A. Furthermore, the score for each patient

was calculated according to the nomogram, and the prediction
accuracy of the nomogram was assessed using the ROC curve.
The results showed that the AUCs of the nomogram model
in 1-, 2-, and 3- years were 0.82, 0.77, and 0.79, respectively
(Figure 10B). Figure 10C shows the calibration curve of 1-year
survival between the nomogram and the ideal model. Results
show that the 1-year nomogram model was consistent with the
ideal model, indicating that the accuracy of our model was
relatively high. The forest plot was utilized to show the clinical
features such as risk score, ECOG score, and the tumor TNM
stage in the nomogram, as shown in Figure 10D. The HR of risk
score is around 4.718 (P < 0.001).

DISCUSSION

The prognosis of HCC patients usually is not good, because HCC
is highly malignant and progresses rapidly. The majority of HCC
patients have been in an advanced stage when they are diagnosed,
whichmeans that most of them are losing the chance of accepting
liver resection. Moreover, the treatment of advanced liver
cancer is quite difficult. Even if advanced HCC patients receive
chemotherapy or molecular-targeted drug therapy, the effect is
usually poor due to the selectivity, and toxicity of those drugs.
With the advancement of tumor molecular biology, prognostic
markers reflecting tumor progression at the molecular level may
be beneficial to realize individualized survival predictions with
better accuracy (9).
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FIGURE 8 | Internal validation of the risk model. (A) Distribution of risk score, OS, survival status (red dots indicate death, blue dots indicate alive) and the six genes

expression heat map in the internal validation cohort; (B) ROC curves and AUC for 1-, 2-, and 3-year survival in the internal validation cohort of the risk model; (C) KM

curves of the OS in the internal validation cohort.

Recently, molecular prognostic markers have drawn more
and more attention of researchers in the survival prediction of
liver cancer (10, 11). In addition, some molecular markers vary
with tumor progression so that we can use them to dynamically
detect disease progression or changes in the prognosis of tumor
patients. Moreover, compared with a single one marker, a panel
of molecular markers will significantly increase the accuracy in
reflecting the prognosis of HCC.

As we all know, energy metabolism is the basis for the
proliferation and invasion of tumor cells. We are particularly
interested in the exploration of the relationship between tumor
metabolic genes and prognosis in HCC. We want to discover
some molecular markers from tumor metabolic genes and make
them be a panel of prognostic markers.

In the present study, the public gene expression data from
TCGA and GEO databases were utilized to classify HCC patients
into three molecular subtypes based on 594 energy metabolism-
related genes, and significant differences in prognosis were found
among the three subtypes. Then, 576 DEGs among the three
subtypes were identified. GO and KEGG enrichment analysis
showed that these DEGs were closely associated functionally with
tumorigenesis and development. Furthermore, a prognostic risk
model including six genes, which were selected by univariate
Cox and LASSO-Cox regression, was established. The risk

model that consisted of ANLN, ENTPD2, TRIP13, PLAC8,
G6PD, and ADH1C was effective and stable to predict HCC
patients’ prognosis according to internal and external validations.
Moreover, a nomogram that had a good prognosis prediction of
survival was built. The risk score is an important risk factor of
OS with the biggest HR value in the nomogram. The enriched
pathways in the high- and low-risk group obtained by GSEA
analysis were significantly associated with the tumorigenesis
and progression of HCC, such as cell cycle, Wnt signaling
pathway, drug metabolism cytochrome P450, and primary bile
acid biosynthesis. Last, qRT-PCR and immunohistochemistry at
tissue level was utilized to validate the mRNA expression levels
of the six genes screened above, and significant differences were
found in the expression of mRNA between tumor and adjacent
normal liver tissues.

In this study, we found three independent subtypes of
metabolism patterns in HCC, but there was no significant
difference in the prognosis between C1 and C3 subtypes.
Although C1 and C3 represented two types of metabolism
patterns by the NMF algorithm, there is no certain relationship
between the different metabolic patterns and the different
prognosis in HCC. With the development of HCC, patients with
above two different metabolic patterns had the same prognosis.
We just used the public database to make a primary exploration
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FIGURE 9 | External validation of the risk model in GSE76427, GSE15654, and GSE14520 datasets. (A) The distribution of risk score, six genes expression heat

map, and the KM curves of the OS in the GSE76427 validation cohort. According to the risk score, the patients were divided into the high-risk group and low-risk

group in the GSE76427 dataset; (B) The distribution of risk score, six genes expression heat map, and the KM curves of the OS in the GSE15654 validation cohort.

According to the risk score, the patients were divided into the high-risk group and low-risk group in the GSE15654 dataset; (C) The distribution of risk score, six

genes expression heat map, and the KM curves of the OS in the GSE14520 validation cohort. According to the risk score, the patients were divided into the high-risk

group and low-risk group in the GSE14520 dataset.
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of the metabolism patterns in HCC. C1 and C3 are two different
metabolism patterns, but they will lead to the same survival
outcomes inHCC, which is an amazing and interesting discovery.
Further research needs to be explored in the future.

ANLN has been identified as a biomarker in a variety of
human cancers. For example, knocking down ANLN could
strongly inhibit the migration ability of breast cancer cells
(12). Silencing the expression of ANLN could significantly
inhibit the migration and invasion abilities of pancreatic ductal
adenocarcinoma lines (13). Besides, the expression of ANLN in

TABLE 3 | Univariable Cox regression of OS in the training cohort.

Characteristics P-value HR Low 95% CI High 95% CI

Risk score <0.001 7.725 4.339 13.754

Age 0.1336 1.015 0.996 1.034

Gender 0.3209 0.790 0.496 1.258

Inducement, Yes vs. No 0.044 0.620 0.389 0.988

Hepatitis virus infection,

Yes vs. No

0.007 0.505 0.307 0.831

ECOG score <0.001 1.929 1.533 2.427

Tumor TNM stage <0.001 2.005 1.555 2.585

Gleason grade 0.269 1.192 0.873 1.628

TNM stage, ACJJ 6TH or 7TH TNM stage; Inducement, factors associated with the

occurrence of HCC; Hepatitis virus, Hepatitis B and/or hepatitis C viruses; ECOG, Eastern

Cooperative Oncology Group.

breast cancer cells played an important role in cell division, and
the high expression of ANLN in nuclear was associated with poor
prognosis in breast cancer patients; thus, ANLN could be used as
a prognostic marker in clinical practice (14). Some researchers
found that ANLN is a key candidate gene for cervical cancer
and HBV-related HCC (15, 16). In the present study, our risk
model contained the ANLN gene. High expression of ANLN was
found to be associated with high risk and poor prognosis for
HCC patients.

David et al. showed that hypoxia can induce the high
expression of ENTPD2 in cancer cells of HCC, leading
to an increase in extracellular 5’-AMP (5’-Adenosine
Monophosphate), which could promote the maintenance
of myeloid-derived suppressor cells (MDSCs) by inhibiting the
differentiation of MDSCs. Inhibition of ENTPD2 could suppress
the proliferation of cancer cells (17). Our study proved that
overexpression of ENTPD2 could increase the risk of survival
in HCC.

Silencing TRIP13 could act as a tumor suppressor for liver
cancer, which inhibited cell growth and metastasis in vivo and
in vitro experiments (18). Overexpression of TRIP13 abrogated
mitotic spindle checkpoint and induced proteasome-mediated
degradation of MAD2 in multiple myeloma mainly through the
Akt pathway. TRIP13 could be used as a biomarker for the
development and prognosis of multiple myeloma (19). High
expression of TRIP13 could lead to an increase of aggression,
treat-resistant in tumor cells, and enhance the repair of DNA
damage. It could also promote false non-homologous terminal

FIGURE 10 | (A) Nomogram predicting the OS in HCC patients containing the risk score. (B) ROC curves and AUC for 1-, 2, and 3-year survival of the nomogram.

(C) Calibration curve of 1-year survival in the nomogram and ideal model. (D) Forest plot of risk factors affecting the survival in HCC patients.
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connections in head and neck cancer and induce chemical
resistance (20). TRIP13 might also be a potential target for the
treatment of colorectal cancer (21, 22). The conclusions of the
above studies are consistent with ours.

The Role of PLAC8 in tumorigenesis is controversial. Some
researchers showed that endogenous PLAC8 promoted cell
proliferation and tumor formation in lung cancer (23). PLAC8
could also promote proliferation and inhibit apoptosis in breast
cancer cells by activating the PI3K/AKT/NF- κB pathway
(24). Interestingly, PLAC8 can exert different biological effects
depending on the cell environment (25, 26) so that HCC patients
with a high level of PLAC8 had a high-risk score and bad
prognosis in our risk model.

Glucose 6-phosphate dehydrogenase (G6PD) is a rate-limiting
enzyme in the pentose phosphate pathway. Previous studies have
shown that elevated G6PD expression could promote cancer
progression in many tumors. For example, Chen et al. found
that high G6PD expression was a risk factor of poor prognosis
for bladder cancer and G6PD expression level increased when
the patients had advanced tumor stage. Patients with lower
G6PD expression in tumor resection have a better survival
rate compared with bladder cancer patients with higher G6PD
expression (27). In colon cancer, the destroyed NADPH dynamic
balance mediated by G6PD could enhance oxaliplatin-induced
apoptosis of colon cancer cells through REDOX regulation; thus,
G6PD could be a potential prognostic biomarker and a promising
target for colon cancer treatment (28). In the present study, high
G6PD expression would get a high-risk score with worse survival.
This result was consistent with previous research results.

Aldehyde dehydrogenases are enzymes that are mainly
involved in alcohol metabolism. Several genes can encode
aldehyde dehydrogenases with different features. Coding
variants, such as ADH1B and ADH1C, can actively encode
alcohol dehydrogenase (ADH) enzymes so that alcohol (i.e.,
ethanol) can be transformed into acetaldehyde faster. These
alleles will produce a protective effect when patients have a
risk of alcoholism (29). Other researchers proved that the
gene polymorphisms in ADH1C might change the risk of
forming esophageal squamous cell carcinoma by regulating
acetaldehyde metabolism and propensity to drink (30). In the
present study, ADH1C was a protective factor in HCC patients.
Many HCC patients were inferred to have a background of
alcohol abuse; thus, ADH1C overexpression can enhance the
ability to transform alcohol into acetaldehyde rapidly and
indirectly protects liver function from damage due to alcohol
and forming HCC.

The advantage of this study is that we have identified
a prognostic feature by 6-gene signature that predicts one-,
two-, three- year survival with relatively high AUC in both
the training and the validation cohorts. Our study had some
limitations. First, our model consisted of six genes and it
is better to use a fewer number of genes for prognostic
prediction in models. Second, the six genes were only validated
by qRT-PCR and immunohistochemical staining in HCC
tissues. Although the RNA-seq data of TCGA were of high
quality, further experimental verification, such as chromatin
immunoprecipitation is needed. Besides, the functions of these
six genes in HCC need to be further studied in vitro and in

vivo experiments. Last, more preclinical studies and prospective
clinical trials are needed to confirm our findings.

CONCLUSION

Taken together, our study found three energy metabolism
molecular subtypes in HCC patients with different prognosis. A
Six-gene signature-associated risk model with good performance
of prognostic prediction was established. This model could
be used as an independent prognostic evaluation index for
HCC patients.
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Figure S1 | Schematic diagram of the parameters of the non-negative

matrix algorithm.

Figure S2 | Immune scoring was performed based on sequencing data of the

three molecular subtypes using TIMER (Tumor Immune Estimation Resource). (A)

Lymphocyte B cell immune score among the three molecular subtypes; (B) CD4+

cell immune score among the three molecular subtypes; (C) CD8+ cell immune

score among the three molecular subtypes; (D) Neutrophil cell immune score

among the three molecular subtypes; (E) Macrophages cell immune score among

the three molecular subtypes; (F) Dendritic cell immune score among the three

molecular subtypes.

Figure S3 | Volcano map of differentially expressed genes among three molecular

subtypes. (A) Volcano map of differentially expressed genes between C2 and C1

subgroups. (B) Volcano map of differentially expressed genes between C2 and C3

subgroups. The red dots indicate genes that are up-regulated, and the blue dots

indicate down-regulated genes.

Frontiers in Oncology | www.frontiersin.org 13 August 2020 | Volume 10 | Article 1210

http://ncbi.nlm.nih.gov/geo/
https://www.frontiersin.org/articles/10.3389/fonc.2020.01210/full#supplementary-material
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Chen et al. Energy Metabolism Genes in HCC

Figure S4 | Sample clustering result between C1 and C2 subtypes.

Figure S5 | Sample clustering result between C3 and C2 subtypes.

Figure S6 | Protein-protein interaction network for differentially expressed genes

based on the STRING database. Using the fast greedy clustering algorithm of the

STRINGdb tool to cluster the interaction network and finally, these genes could

significantly cluster into 8 networks (A–H).

Figure S7 | External validation of the risk model in GSE76427, GSE15654, and

GSE14520 datasets. (A) The distribution of survival status (red dots indicate

death, blue dots indicate alive) and the ROC curves for 1-, 2-, and 3-year survival

in the GSE76427 dataset; (B) The distribution of survival status (red dots indicate

death, blue dots indicate alive) and the ROC curves for 1-, 2-, and 3-year survival

in the in GSE15654 dataset; (C) The distribution of survival status (red dots

indicate death, blue dots indicate alive) and the ROC curves for 1-, 2-, and 3-year

survival in the in GSE14520 dataset.

Figure S8 | GSEA analysis results in the high- and low-risk groups. Cell-Cycle and

Wnt-signaling-pathway were highly expressed in the high-risk group. The

Metabolism of Xenobiotics by Cytochrome P450 and the Primary Bile Acid

Biosynthesis pathway showed low expression in the low-risk group.

Table S1 | Metabolic pathways from Reactome database.

Table S2 | Energy metabolism related genes.
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