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Immunotherapy options for patients with cancer have emerged following decades of

research on immune responses against tumors. Most treatments in this category harness

T cells with specificity for tumor associated antigens, neoantigens, and cancer-testis

antigens. GSK3β is a serine-threonine kinase with the highest number of substrates and

multifaceted roles in cell function including immune cells. Importantly, inhibitors of GSK3β

are available for clinical and research use. Here, we review the possible role of GSK3β

in the immune tumor microenvironment, with goal to guide future research that tests

GSK3β inhibition as an immunotherapy adjunct.
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INTRODUCTION

It is a truism that non-synonymous mutations bear the potential to generate neoantigens and
elicit immune reactions against tumors (1). Therefore, development of established tumors requires
evasion of host immune defenses (2). Further, the complex interaction between the immune
system and the tumor takes the steps of elimination, equilibrium, and escape successively and
largely reflects tumor evolution under the selective pressure of immunosurveillance (3, 4). Immune
evasion is multifaceted and currently considered one of the hallmarks of cancer. The presence
of immune infiltrates in the microenvironment of tumors is highly relevant from a therapeutic
perspective, illustrated bymultiple approvals of drugs which exert anti-cancer activity by harnessing
the immune system across tumor types.

The main arms of immunity are the innate and adaptive responses against pathogens. The
former is a faster type of response, does not require priming and does not exert target specificity
which are all features of adaptive immunity (5). Innate immunity depends mostly on natural
killer cells (NK cells), dendritic cells, macrophages and polymorphonuclear (PMN) cells. These,
recognize pathogen-associated molecular patterns (PAMPs) and damage-associated molecular
patterns (DAMPs) (6). PAMPs are pathogen derived and DAMPs are associated with injury and
inflammation. Conversely, the cell types that orchestrate adaptive immunity are mainly the B and
T lymphocytes. It is noteworthy that for both innate and adaptive responses, several cell types
might adopt an immunosuppressive role in a context dependent manner, as is often the case with
neutrophils (7), macrophages (8), and T regulatory cells (Tregs) in cancer (9).

In the tumor microenvironment, the main lymphocyte populations include either CD4 or
CD8 positive cells. The former, use their T cell receptor (TCR) to recognize peptides bound to
human leucocyte antigen (HLA) class II in the cell surface of antigen presenting and tumor cells,
whereas the latter recognize peptides bound to HLA class I molecules in the plasma membrane of
tumor cells. CD4 positive, or “helper” T lymphocytes (Th) further divide into Th1, Th2, and Th17
subgroups under the influence of cytokine and chemokine cues (10). Their main role is to prime
B lymphocyte activation (11, 12) and antigen presentation to CD8+ cells (13) whereas they can
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also function as cytotoxic T lymphocytes (CTLs) (14).
Conversely, CD8 positive T lymphocytes mainly function
as CTLs. Finally, Tregs can either develop independently as
natural Tregs (nTregs) or emerge from CD4 positive T cells, as
inducible Tregs (iTregs).

In a broad schema, the cytotoxic T lymphocytes (CTLs)
can either be excluded from the tumor core (“cold” tumors),
infiltrate the tumor core (“hot” tumors), or finally form immune
aggregates that resemble secondary lymphoid organs (15). In
the first scenario, an immunosuppressive microenvironment
prevents the CTLs entry in the tumor core. In “hot” tumors,
immune check points like the PD1-PDL1 axis play a central
role in immune evasion. Finally, this system is highly regulated
by interplay between cancer related mutations, the cytokine
and chemokine milieu and importantly activation of molecular
pathways in the adaptive immune system cells.

Glycogen Synthase Kinase 3β (GSK3β) is a serine threonine
kinase with multiple substrates that was originally described
for its role in the synthesis and storage of glycogen in skeletal
muscle (16). Lithium, a GSK3β inhibitor, has been used for
decades for the treatment of bipolar disorder (17). More recently,
GSK3β is studied as a promising target for anti-cancer treatment
with supporting preclinical data in a number of malignancies,
including pancreatic cancer, colon cancer, bladder cancer, kidney
cancer, and melanoma (18). GSK3β is very rarely altered at the
genomic level in cancers, therefore pharmaceutical inhibition
of GSK3β is not expected to be specific for cancer cells. With
clinical trials of GSK3β inhibitors under way in the phase I
space, an important question moving forward is the clinical
effect of these drugs on cell types other than the cancer cells.
Importantly, a growing body of literature shows that GSK3β
inhibitors modulate the immune system in autoimmune and
neoplastic disease contexts.

The seminal finding that GSK3 beta controls PDL1 levels
indicates a possible effect of GSK3 beta inhibition on the
immune reaction against tumors (19). Herein, we shall review
the preclinical data on the effects of GSK3 beta inhibition in the
tumor immune microenvironment with focus on T lymphocytes
related adaptive immunity.

DESCRIPTION OF THE GSK3β FUNCTION

GSK3 beta is a master serine/threonine kinase in the cell with
more substrates than any other kinase (20). It was originally
described to phosphorylate and inactivate glycogen synthase in
skeletal muscle, an effect reversed by insulin (21, 22). Insulin and
other growth factors, bind to cognate receptors and activate AKT
which then phosphorylates GSK3β at Ser9 (23). Phosphorylation
at this site inhibits GSK3β which adopts a “closed” inactive
structure (24). Alternatively, G-protein coupled receptors raise
the levels of cyclic AMP and activate protein kinase A which
interacts with GSK3β and induces the inhibitory phosphorylation
at Ser9 (25). Additionally, GSK3β has been studied as a
negative regulator of the WNT pathway as it phosphorylates
and induces degradation of beta catenin (23, 26). GSK3α is
a significant isoform with overlapping but also some distinct

functions (27). The GSK3β mode of function is unique among
other kinases because it requires phosphorylation priming of
the substrate at a serine or threonine position 4 amino-acids
away from the GSK3β serine/threonine phosphorylation site,
toward the carboxylic terminus of the substrate (28). Among
the most studied substrates of GSK3β are the phosphatase and
tensin homolog (PTEN) (29), cAMP responsive element binding
protein (CREB) (20), beta catenin (26), and the nuclear factor
of activated T cells (NFAT) (20). Figure 1 describes the main
functions of GSK3β in the context of the WNT and the insulin
receptor pathways.

EFFECTS OF LITHIUM ON LYMPHOCYTES

Lithium is a GSK3β inhibitor that has been used for a long
time in the treatment of patients with bipolar disorder. It is
known from early studies that lithium decreases peripheral
lymphocyte count and in reverse, increases the peripheral
neutrophil count in patients (30). The thymus of mice treated
with lithium chloride has smaller size and decreased cellularity
related to loss of T lymphocytes (31). In vitro, lithium reduces
lymphocyte proliferation but also inhibits their apoptosis (32).
Additionally, lymphocyte function in response to various stimuli
is enhanced following exposure to lithium. Little is known about
the mechanistic basis of these effects. It is currently controversial
whether primarily GSK3β, or other lithium targets account for
the effects of lithium on lymphocytes.

INHIBITION OF GSK3 ENHANCES
CO-STIMULATION DURING ANTIGEN
PRESENTATION

Naïve helper (CD4 positive) T lymphocytes and to a lesser
extent, naïve CTLs (CD8 positive) require three signals for their
activation by APCs. TCR binding to peptide presented by the
MHC II complex on an APC provides signal 1, whereas signal
2 requires binding of CD28 expressed in the T lymphocyte
to B7-1 and B7-2 expressed in the APC (33, 34). Cytokines
provide signal 3. Although CD28 was originally described as
the main co-stimulation molecule in the immunological synapse,
other molecules exist and are grouped in two main families, the
immunoglobulin like (Ig-like) and tumor necrosis factor receptor
like (TNFR-like) (35). Some members of the families like CD28
deliver stimulatory while others, like CTLA-4 deliver inhibitory
signals (35).

CD28 signals primarily through the PI3K/AKT pathway and
when activated, this axis suppresses GSK3 (Figure 2B) (36, 37).
Interestingly, inhibition of GSK3 substitutes for CD28 activation
in enhancing T cell proliferation (38). Mechanistically, GSK3 is
constitutively active, phosphorylates NFAT transcription factors
and enhances NFAT nuclear export (Figure 2A) (39). CD28
activation phosphorylates and inactivates GSK3, hence NFAT
enters the nucleus in a de-phosphorylated state and induces
T cell proliferation. In addition to enhancing NFAT nuclear
translocation, GSK3 inhibition augments binding of NFAT2
to DNA (40). Alternatively, PI3K/AKT activation by CD28
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FIGURE 1 | Description of the GSK3β to regulate the WNT pathway and the Receptor Tyrosine Kinase pathway illustrated here by the insulin receptor. In (A), in the

absence of WNT ligands (left), the scaffolding protein Axin forms a complex with beta catenin, Adenomatous Polyposis Coli (APC), GSK3β and Casein Kinase 1 (CK1).

GSK3β phosphorylates beta catenin in the complex and ubiquitination by the ubiquitin ligase βTrcP follows. Ubiquitinated beta catenin is then degraded by the

proteasome. In the presence of WNT ligands (right), the WNT receptors Low Density Lipoprotein Receptor related protein 6 (LRP6) and Frizzled (FZD) recruit

Disheveled (DVL) that binds to the complex and separates beta catenin. Beta catenin in this condition translocates to the nucleus to activate WNT responsive genes.

In (B), the insulin receptor (other RTKs also), activates the PI3K/AKT pathway in the presence of insulin. AKT negatively regulates GSK3β by phosphorylating GSK3β

at Ser-21. GSK3β in this cellular pool is constitutively active and is inactivated in the presence of growth factors. Created with BioRender.

activation/GSK3β inhibition and concurrent MAPK activation
by TCR, are required to reduce the levels of p27kip1, a negative
cell cycle modulator. The net effect is hyperphosphorylation of
retinoblastoma protein, progression of cell cycle and proliferation
of primary T lymphocytes (36). BeyondNFAT and p27kip1, CBLB,
an E3 ubiquitin ligase with known inhibitory role in T cell
activation, is a GSK3 substrate (41). Inactivation of GSK3 leads to
reduced levels of Cbl-b and enhancement of T cell activation and
autoimmunity in murine models (Figure 2B). The central role
of GSK3 downstream of CD28 is also impactful in the immune
tumor microenvironment. In a lymphoma model, Taylor et al.
showed that GSK3 inhibition substitutes for CD28 activation and
suppresses the PD1 axis (38).

GSK3β inhibition causes NFAT2 to accumulate in the nucleus

of T cells and increase proliferation of T cells as well as to
support maximal interleukin 2 production (42). Particularly,

inactivation of GSK3β by the GTPase of immunity-associated
protein 5 (GIMAP5) increases proliferation of CD4+T cells in

autoimmune models (Figure 2B) (43). Conversely, Gattinoni

et al. showed that GSK3β inhibition promotes the formation

of a special population of T memory cells with stem cell
properties (44). These cells have reduced proliferation rates and
exert multipotency. Importantly, they expand fast and are more

effective compared to other memory cell subsets when challenged
by antigen and function against tumors.

GSK3β REGULATES THE PD1/PDL1 AXIS
IN CANCER CELLS INTERACTING WITH T
EFFECTOR LYMPHOCYTES

Tumor cells express PDL1 in their cell surface which interacts
with PD1 in CD8 positive T cells (45, 46). The PD1/PDL1 axis
causes T cell exhaustion and is a mechanism of immune escape
for tumors. Interestingly, PD1 expression defines the population
of tumor reactive CD8 positive T lymphocytes with neoantigen
specificity (45). Exhausted T cells retain some anti-tumor activity
but do not control tumors efficiently. The benefit of drugs
with anti-PD1 and anti-PDL1 activity in a subgroup of patients
with a range of malignancies highlights the importance of this
molecular checkpoint (47).

PDL1 is a substrate for GSK3β. This interaction leads to
a number of phosphorylation steps and finally ubiquitination
and proteasome degradation of PD-L1 (Figure 2C) (48). In
the presence of growth factors, like Epidermal Growth Factor,
AKT phosphorylates and inactivates GSK3β. In these conditions,
GSK3β no longer phosphorylates PDL1 and the levels of
the latter molecule rise in the cancer cell. Additionally, N-
glycosylation of PDL1 further protects PDL1 from GSK3β
dependent phosphorylation in breast cancer, melanoma and
colon cancer models (19). Conversely, on the CD8 positive T
cell, GSK3α/β induces the transcription of pdcd1 that codes
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FIGURE 2 | (A) In the absence of co-stimulation, typically in a T lymphocyte that has not been exposed to antigen yet (naive T cell), GSK3β is constitutively active and

phosphorylates NFAT2. Phosphorylated NFAT2 exits the nucleus and does not induce expression of target genes. Additionally, GSK3β phosphorylates CBLB, an

inhibitor of TCR. Phosphorylated CBLB is protected from degradation. (B) In the presence of co-stimulation, typically when an APC presents a peptide to a CD4+ T

cell, the second signal initiated by CD28 activates the PI3K/AKT pathway which phosphorylates and inactivates GSK3β. In these conditions, NFAT2 is not

phosphorylated, enters the nucleus and induces transcription of genes like TBX21 and IL2 which promote T cell activation and proliferation. Also, CBLB is degraded in

a de-phosphorylated state and no longer inhibits TCR. Finally, the GTPase GIMAP5 can independently inhibit GSK3β. (C) PD-L1 is phosphorylated by GSK3β and

marked for degradation in the proteasome of cancer cells. (D) Summary of GSK3β inhibitor effects in the tumor immune microenvironment highlighting both

immunogenic and immunosuppressive possibilities. Created with BioRender.

for murine PD1 in murine melanoma and lymphoma models
(49). Interestingly, ex vivo inhibition of GSK3α/β enhances the
efficacy of adoptive T cell transfer in these models mirroring PD1
inhibition (49).

TH17 POLARIZATION DEPENDS ON GSK3β

The discovery of Th17 subset of CD4+ T lymphocytes, distinct
from Th1 and Th2 cells was followed by exploration of their
role in the tumor microenvironment (50). Th17 cells originate
from naive CD4+ T cells that are exposed to TGFβ and IL6
or IL23, express the RAR orphan receptor gamma (RORγ)
transcription factor and secrete IL17A, IL17F, IL21, IL22, and
IL23. Additionally, Th17 cells can both originate from and
also transform to Treg cells in a process known as Th17-Treg
plasticity. Importantly, Th17 cells promote tumor growth in
some models, while in others the effect is inhibitory. Dependence
on context partially explains the Th17 paradox with TGFβ
inducing an immunosuppressive, whereas IL23 an inflammatory
phenotype on Th17 cells (51).

Polarization of CD4+T cells into Th17 cells depends on active
GSK3β in vitro and in vivo (52). Intriguingly, Th17 cells have

10-fold higher levels of GSK3β compared to other types of cells.
Mechanistically, inhibition of GSK3 prevents IL6 production as
well as STAT3 activation which are necessary steps for generation
of Th17 cells. In disease models of F. tularensis pneumonia and
experimental autoimmune encephalomyelitis (EAE), inhibition
of GSK3β with lithium reduces the numbers of IL17A+CD4+
and IFNγ+CD4+ but spares Tregs in the lungs and spinal
cords of mice, respectively. In both models, disease requires
functional Th17 cells. In the EAE model, pre-treatment with
lithium prevents development of the autoimmune phenotype and
treatment of established EAE attenuates severity of symptoms.
Notably, recruitment of CD8+ cells was reduced in the EAE
model but was not affected in the F. tularensis pneumonia
model. The role of GSK3β inhibition in Th17 cells in the tumor
microenvironment is less well-studied.

GSK3β INHIBITION ENHANCES TREG
FUNCTION

Tregs are important negative regulators of the adaptive immune
response; they prevent autoimmune disease and maintain
homeostasis (9, 10). They express CD4 and CD25, the high
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affinity receptor for interleukin 2 (IL-2). They also express the
cytotoxic T-lymphocyte associated protein 4 (CTLA4) which
binds to and induces endocytosis of B7-1 and B7-2, thereby
antagonizes CD28 and blocks antigen presentation (9). The
forkhead box P3 (FOXP3) transcription factor induces the
expression of genes that promote Treg stability and immune
suppressive function. GSK3α/β is among the genes identified
as positive regulators of FOXP3 in an siRNA screen (53).
Interestingly, pharmacological inhibition of GSK3β in Tregs
enhances their suppressive function and limits the turnover
of FOXP3 (53). GSK3β inhibition enhances the survival of
islet transplant in vivo (54). Although this was shown with
one inhibitor only, results are intriguing as they point out a
possible immunosuppressive effect of GSK3β inhibitors in the
tumor microenvironment.

WNT/β CATENIN AND PI3K/AKT
PATHWAYS ARE ASSOCIATED WITH COLD
TUMORS

In a landmark study, Spranger et al. reported that the WNT/β
catenin pathway is inversely correlated with T cell infiltration
in melanoma tumors (55). The association was subsequently
shown to occur in bladder cancer as well (4). Mechanistically,
stabilization of β catenin and binding of the latter to the ATF3
promoter inhibits CCL4 expression. The chemokine CCL4, along
with CCL3, CXCL1, and CXCL2 are ligands for the receptor
CCR5 found in the cell surface of BATF3 positive dendritic cells.
Activation of WNT/β catenin pathway inhibits the expression of
these chemokines and prevents BATF3 positive dendritic cells
from infiltrating the tumor (4, 55). In the absence of dendritic
cells, CD8 positive T lymphocytes also fail tomigrate in the tumor
resulting in a “cold” or non-inflamed tumor microenvironment.
Likewise, PTEN loss and PI3K/AKT pathway activation induce
CCL2 and VEGF expression and inhibit infiltration of T
lymphocytes in melanoma tumors (56). Although these studies
did not look into the role of GSK3β directly, it is noteworthy that
both WNTt/β catenin and PI3K/AKT pathways are activated by
GSK3β inhibition.

Additionally, inhibition of GSK3β reduces interleukin 6 (IL-6)
and increases interleukin 10 (IL-10) levels in lipopolysaccharide
models of inflammation (57–59). IL-6 mediates an inflammatory
reaction in the tumor microenvironment while IL-10 is

immunosuppressive and associated with an M2 macrophage
profile. Importantly, GSK3β inhibition in memory T cells
induces IL-10 levels, while the effect on proliferation is minimal
compared to naïve T cells. In this context, memory T cells adopt
a regulatory/immunosuppressive role, as supernatants from
memory T cell cultures with prior inhibition of GSK3β, limit
the proliferation of receptor T lymphocytes in a IL-10 dependent
fashion (58). Collectively, these data illustrate the multifaceted
effects of GSK3β on the immune system as potentially both
promoting and suppressing aspects of anti-tumor immunity.

DISCUSSION

A growing body of literature supports a multifaceted role for
GSK3β in the immune tumor microenvironment. This is not
a surprise as GSK3β is the busiest kinase in the cell based
on the number of known and predicted substrates, many of
which are key regulators of the immune response to tumors.
Publication bias exists to some degree as there are either reports
of GSK3β inhibitors as positive regulators of the immune
response against tumors or negative regulators of the immune
response in autoimmune conditions. In both contexts, GSK3β
inhibitors are suggested as putative treatments. Both suppressing
and enhancing immunity functions are possible for GSK3β.
In fact, this has been shown in diverse models and comes as
no surprise given the diversity of GSK3β substrates. Figure 2D
summarizes the possible effects of GSK3β inhibitors on the
immune system in the tumor microenvironment.

With this is mind, it is difficult to predict whether clinical
GSK3β inhibition will enhance or suppress immunity against
tumors. Further study of GSK3β regulation is required to define
the context where GSK3β can be beneficial and support design
of more precise drugs, such that target pro-tumorigenic while
sparing the anti-tumorigenic functions of GSK3β.
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