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Glycans are primarily generated by “glycogenes,” which consist of more than 200 genes

for glycosynthesis, including sugar-nucleotide synthases, sugar-nucleotide transporters,

and glycosyltransferases. Measuring the expression level of glycogenes is one of the

approaches to analyze the glycomes of particular biological and clinical samples.

To develop an effective strategy for identifying the glycosylated biomarkers, we

performed transcriptome analyses using quantitative real-time polymerase chain reaction

(qRT-PCR) arrays and RNA sequencing (RNA-Seq). First, we measured and analyzed

the transcriptome from the primary culture of human liver cells and hepatocarcinoma

cells using RNA-Seq. This analysis revealed similar but distinctive expression profiles of

glycogenes among hepatic cells as indicated by the qRT-PCR arrays, which determined

a copy number of 186 glycogenes. Both data sets indicated that altered expression

of glycosyltransferases affect the glycosylation of particular glycoproteins, which is

consistent with the mass analysis data. Moreover, RNA-Seq analysis can uncover

mutations in glycogenes and search differently expressed genes out of more than 50,000

distinct human gene transcripts including candidate biomarkers that were previously

reported for hepatocarcinoma cells. Identification of candidate glyco-biomarkers from

the expression profile of the glycogenes and proteins from liver cancer tissues available

from public database emphasized the possibility that even though the expression

level of biomarkers might not be altered, the expression of the glycogenes modifying

biomarkers, generating glyco-biomarkers, might be different. Pathway analysis revealed

that ∼20% of the glycogenes exhibited different expression levels in normal and

cancer cells. Thus, transcriptome analyses using both qRT-PCR array and RNA-Seq in

combination with glycome and glycoproteome analyses can be advantageous to identify

“glyco-biomarkers” by reinforcing information at the expression levels of both glycogenes

and proteins.
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INTRODUCTION

Expression of glycoproteins on the cell surface and into extra
cellular space depends on the cellular conditions that are
evidenced by the altered expression profiles of glycoproteins in
conditions such as acute or chronic diseases and cancers,
as compared to normal conditions (1–4). We recently
succeeded in identifying glyco-biomarkers in liver fibrosis
and cholangiocarcinoma by the systematic identification of
these glycoproteins (5–9). Importantly, the expression of
glycoproteins can be determined by analyzing the glycogenes,
including glycosyltransferases, nucleotide-sugar transporters,
and glycosidases as well as certain proteins that act as glycan
acceptors. Evaluating the expression levels of glycogenes is a
useful step in studying the biological phenomena involving
biomarkers. So far, more than 200 genes have been listed as
glycogenes (10) and can be partly found in the GlycoGene
DataBase (GGDB, https://acgg.asia/db/ggdb/) (11). Currently,
there are multiple gene expression profiling techniques such as
DNA microarray that can be used to analyze genome-wide gene
expression, although it is still difficult to detect weakly expressed
genes (12–14). Since the expression levels of several glycogenes
are generally low, some of them were barely detectable in our
DNA microarray analysis. Thus, it was necessary to obtain
accurate quantification and comprehensive expression profiling
of as many glycogenes involved in the glycan synthesis pathway
as possible.

Quantitative PCR (qPCR) assay is considered as the most
reliable method for studying gene expression due to its high
accuracy and detection sensitivity (14). As it is generally time-
consuming to perform qPCR analysis for multiple assays,
improvements have been made for enhancing the capacity and
multiplicity of the qPCR method (15–17). Recent digital PCR
applications are sensitive enough to analyze the expression of
low expressing glycogenes. Although these techniques can be
effectively used for high-throughput analysis, it is still hard to
prepare a set of target genes of interest. In fact, many glycogenes
are expressed at relatively low levels and are not listed in
commercially available assays. Thus, we designed a one-shot
expression assay for 186 genes using a multi-parallel qPCR array
that can be performed using existing devices.

On the other hand, recent innovations in next-generation
sequencing (NGS) allow us to analyze the transcriptome of
particular cells and tissues (18–22). As described previously,
it is crucial to identify the glycoproteins that are expressed
differently in the disease cells with aberrant glycosylation than
the normal cells for glyco-biomarker discovery (5, 23). Further,
we need to test if the NGS-based transcriptome analysis can be
applied to measure the expression levels of glycogenes to uncover
differences in the expression of glycoproteins between normal
and cancer cells.

In the present study, we report a quantitative analysis
using a quantitative real-time PCR (qRT-PCR) array for
evaluating the expression levels of 186 glycogenes in normal
and cancerous hepatic cells. We also measured glycogene
expression of the same cell lines using RNA sequencing (RNA-
Seq) along with NGS. Comparative study revealed that the

transcriptome analysis is reliable enough to obtain the glycogene
expression profiles to identify the candidate glycoproteins that
are differentially expressed in cell lines. Thus, we propose
that introducing both a qRT-PCR array and RNA-Seq analysis
into our experimental strategy will promote the identification
of glyco-biomarkers.

MATERIALS AND METHODS

Cell Culture
Primary human hepatic (PHH) cells were purchased and cultured
in hepatocyte culture media (LONZA, Walkersville) at 37◦C
with 5% CO2 according to the manufacturer’s recommendations.
The hepatocarcinoma cell (HCC) lines, HepG2, HuH7, HLF,
and PLC/PRF/5 and the control cell line HEK293 obtained
from ATCC or JCRB cell bank were cultured in Dulbecco’s
modified Eagle’s medium or RPMI1640 medium supplemented
with antibiotics and 10% fetal bovine serum.HAK1A andHAK1B
(24) kindly gifted HCC lines were cultured in RPMI1640medium
with antibiotics and 10% fetal bovine serum.

qRT-PCR Array
To establish the qRT-PCR array system, we first generated
the reference plasmids containing 186 glycogenes and three
control genes. The nucleotide sequences of the target genes
were obtained from the RefSeq collection on the National
Center for Biotechnology Information website. Primer pairs
and probe sequences used for the arrays were designed
using the ProbeFinder software (https://www.roche-applied-
science.com/) and synthesized by FASMAC (Japan). The
template cDNAs for PCR were either obtained from the
glycogene library at our institute [AIST, Japan (25)] or were
purchased from Open Biosystems (Huntsville, AL). After
sequencing the target regions to be amplified, the quality
and quantity of the cloned plasmid DNAs were confirmed
using a photometer and agarose gel electrophoresis. Each
plasmid DNA was linearized using the appropriate restriction
enzymes, and the concentration of each DNA was adjusted
to 16 nM, which was used as the reference template in the
qRT-PCR assay.

Next, we performed qRT-PCR arrays using 384-well-plates
with a programmable dispenser (MLS-96; Nikkyo Technos,
Tokyo, Japan), which was equipped with 96 cylindrical heads
and three chilled stages. Following that, all 189 primer pairs and
probes were placed in a pair of 96-well-reservoirs and dispensed
into the 384-well-plates in duplicates. The assay plates were
dried, sealed individually, and stored in plastic shaded bags with
a desiccant in a cool and dark place until further use. The
reaction mixture, including qPCR Quick GoldStar Mastermix
Plus (Eurogentec) and templates, was dispensed into the assay
plate on the chilled stage with the concentration of each PCR
primer or hydrolysis probe was set at 0.1µM. A LightCycler 480
(Roche Diagnostics) was used to measure the concentration of
each target DNA under optimal cycling conditions (50◦C for
2min, 95◦C for 2min, and 55 cycles of 95◦C for 15 s and 60◦C
for 1min 20 s). The calibration curves for the individual assay
sets were generated from triplicate measurements using reference
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plasmid templates, which contained 105 or 103 copies of the
template cDNAs as described above.

The hepatic cells were cultured and the total RNA was
extracted using a RNeasy plus mini kit (QIAGEN) according
to the manufacturer’s instructions. First-strand cDNA was
synthesized with a QuantiTect Reverse cDNA Transcription kit
(QIAGEN) using 4 µg of total RNA and the serially diluted
cDNAs were subjected to the qRT-PCR array as described above
by replacing the templates with the cDNAs. The measured values
of the crossing points (Cp) were determined by the second
derivative max method (26). The normalization procedure was
similar to the average-scaling method commonly used for DNA
microarray analysis.

RNA-Seq Using NGS
The total RNA from the same cell lines was prepared using an
RNeasy Plus Mini kit as described above. The mRNA from each
cell line was further purified with a Dynabeads mRNA DIRECT
Micro Kit (Thermo Fisher Scientific). To prepare the cDNA
libraries for NGS, an Ion Total RNA-Seq Kit (Thermo Fisher
Scientific) was used to digest the mRNAs using RNase and to
amplify the fragmented DNA after cDNA synthesis according to
the manufacturer’s instructions. The RNA or DNA concentration
was measured using the Agilent Bioanalyzer and the cDNAs
were further amplified on Ion Sphere Particles using emulsion
PCR with Ion One Touch 2 and enriched using One Touch ES
(Thermo Fisher Scientific).

The cDNA library on the Ion Sphere Particles was applied to
an Ion 318 chip and the sequencing reactionwas carried out using
an Ion PGM Sequencing 200 Kit (Thermo Fisher Scientific).
The sequences obtained from the Ion PGM were collected and
analyzed using a CLC Genomics Workbench (Qiagen). We
repeated both the RNA preparation and NGS run twice from
each cDNA library preparation, resulting in four cycles of NGS
and about 10 million reads per cell line to perform statistical
analyses of differential gene expression. The data output in the
fastq file format contained information about sequences and
quality (Phred quality score) and the sequences with average
Phred scores higher than 20 per position were used for alignment.
All the sequenced data have been deposited in DDBJ database
(BioProjet Accession: PRJDB9068, DRA Accession: DRA010254
to DRA010261).

Comparative Analysis of RNA-Seq and
Microarray Data
To confirm the quantitative accuracy of the gene expression
data obtained by RNA-Seq, we compared the RNA-Seq data
with the transcriptome data analyzed using DNA microarrays.
The transcriptome data, GSM618131 registered to the Gene
Expression Omnibus (GEO) database (http://www.ncbi.nlm.nih.
gov/geo/), were used as raw data of HuH7 cells based on
the DNA microarray analysis (27). The data were normalized
with R software according to the robust multi-array average
(RMA) method. The transcriptome data of HuH7 cells obtained
by the RNA-Seq technique were normalized and then Log2-
converted, followed by the correlation analysis by using JMP11
(SAS Institute Inc.).

Analyses of RNA-Seq Data From Hepatic
Cells
The reads were mapped on the genomic DNA data from hg19
and assembled after removing low-quality reads or adaptors
sequences using the CLC Genomics Workbench (Qiagen). To
compare the expression level within the same cell lines, we
calculated the reads per kilobase of exon model per million
mapped reads (RPKM). On the other hand, the total reads
were used for analyzing the differential gene expression. For
comparative analysis of the glycogenes, only the glycogenes were
extracted from the mapped sequences by using an in-house
program. We matched the aligned data with the RefSeq genes
for RNA-Seq to identify and quantify the directions of variability
in the data. We compared the RPKM of each glycogene using
Microsoft Excel and JMP13 (SAS Institute Inc.) to perform a
principal component analysis (PCA) and cluster analysis by
Ward’s method.

Collection of RNA-Seq Data From the
Cancer Genome Atlas (TCGA)
We used the RNA-Seq data generated by the TCGA Research
Network (https://www.cancer.gov/tcga) to analyze the expression
levels of the glycogenes and candidate biomarker proteins. To
ensure uniformity in the data quality in the Liver Hepatocellular
Carcinoma project (TCGA-LIHC, 377 cases), we selected TCGA-
DD and retrieved 32 of 151 cases (summarized in Table S3).

Analysis of Differential Gene Expression
We obtained the RefSeq gene annotation for all known genes in
the human genome, hg19 using the CLC Genomics Workbench
ver.12. Approximately 57,000 unique transcripts with genomic
information were included in this annotation. The total reads
mapped to hg19 were used to calculate the number of reads and
were listed in a table with the RefSeq annotation. The obtained
total read counts from RNA-Seq of PHH and HCC cells were
used to calculate the fold changes and p-values with a false
discovery rate (FDR)-correction by Empirical analysis of DGE,
which implements the Exact Test used in the edgeR package, in
Genomics Workbench. This generated table was further utilized
to make volcano plots to present differential gene expression with
p-values using the RNA-seq analysis tools.

Pathway Analysis
To analyze the dynamic changes in gene expression between
PHH and HCC cells, a list of genes involved in pathways
determined by KEGG (https://www.genome.jp/kegg/) were
retrieved using Gene Set Enrichment Analysis (GSEA). The fold
changes for the selected genes calculated as shown above were
extracted and expressed in a table of differentially expressed
genes for each pathway. The number of genes with a fold
change >2 and an FDR-corrected p-value lower than 0.05 was
counted to compare the differences in the expression profiles
among pathways.

Statistical Analysis
As described above, we used the JMP13 and CLC Genomics
Workbench for the statistical analysis of the expression profiles
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obtained from RNA-Seq, The implementation of the “Empirical
analysis of DGE” algorithm in the Genomics Workbench
generally used for the most parts the default settings in the
edgeR package according to the manufacture’s manual (Qiagen).
An adjustment of the p-value was performed with an FDR
calculation (28).

RESULTS

Establishing qRT-PCR Array System
We previously proposed that the expression profile of glycogenes

is applicable for determining the glyco-biomarkers (Figure 1).

During the comprehensive analysis of the expression levels

of glycogenes, we aimed for precise measurements, which

can enable the estimation of transcript copy numbers by
a single measurement per specimen using the calculation
of inter-plate calibration curves, without requiring repetitive
experiments. First, we prepared an equimolar mixture of
double-stranded DNAs (dsDNA) from 186 glycogenes and three

control genes as reference (Table S1). Since the calculation
using this mixture is a critical step for performing accurate
qRT-PCR array, we measured six plates, triplicates of 105
or 103 copies, every time we prepared new plates with new
reagents and primers (refer to the Methods section). Next, we
selected the most suitable PCR enzyme for our system from
commercially available premixed PCR enzymes. The qRT-PCR
system developed by us has four advantages: (1) a single assay
contains as many as 186 glycogenes in duplicates on a 384-
well PCR plate; (2) automated liquid handling for accurate
and precise operations during qPCR array assay; (3) use of
a reference equimolar template mixture containing all target
glycogenes, allowing us to evaluate inter-plate variations and
standardize the calibration among the preparations; and (4)
versatile hydrolysis probe library to facilitate the validation
of multiple assays. Once we normalized the array plates,
we could easily estimate the expression level of glycogenes
as a copy number and compare the values among samples.
Using this system, we successfully measured the expression of

FIGURE 1 | Comparison of qRT-PCR array and RNA-Seq in expression analysis of glycogenes to search for glyco-biomarker. The green part is the current glycome

and glycoproteome analysis using cultured media of cancer cells. The blue part is described in this study using RNA from the cultured cells. Quantitative PCR can

measure the expression level as the copy number of 186 glycogenes, while RNA-Seq can collect the expression profile of all protein genes including glycogenes.
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glycogenes from more than 100 cell lines including lung cancer,
colon cancer, prostate cancer as well as hepatocarcinoma cells
(HCC) (results other than HCC will be published elsewhere by
Sawaki et al.).

Whole Transcriptome Sequencing
As the NGS technology is already established, RNA-Seq can be
used for comparative expression analysis. Since the expression
level is determined using the total read number of RNA-Seq,
it is possible that genes with low expression levels such as
certain glycosyltransferase might not be detectable enough for
accurate comparison. To avoid counting the sequences encoded
in both strands in the same region, we chose an RNase-based
library preparation and obtained strand-specific sequences. We
prepared two different libraries per cell line and performed two
RNA-Seq experiments to test the minimum requirement of the
library scale. Approximately 10 million reads per cell line using
two preparations were utilized to estimate the relative expression
level of each gene, or in other words, an average of 400 reads

out of 25,000 genes. To determine if RNA-Seq can generate an
expression profile comparable to a micro array using HuH7 cells
(Figure S1), the RNA-Seq read number from the HuH7 cells was
log2 normalized and compared with GeneChip RMA retrieved
from the GEOdatabase. The results indicated that RNA-Seq, even
from a small size library, presented an expression profile similar
to that of a microarray although the detailed distribution pattern
of certain genes was different.

Comparison of Glycogene Expression in
Hepatic Cells
In our previous study, we found that glycosylation of AFP
expressed in HuH7 and HepG2 cell lines was different (29). Since
glycosylation is largely affected by glycosyltransferases that are
involved in glycan synthesis, we compared the expression profile
of glycogenes between normal liver cells (PHH) and HCC lines
(Figure 2, Table S1). In HepG2 cells, the expression of B3GNT3,
FUT6, GALNAC4S-6ST, HS6ST1, and ST6GALNAC4 were

FIGURE 2 | Expression of glycogenes in liver cells and hepatocarcinoma cell lines measured by RNA-Seq. The read number of the glycogenes from the RNA-Seq

results of primary human hepatic (PHH) cells, HuH7 cells and HepG2 cells was used to calculate RPKM per cell line. The glycogenes are aligned from the highest to

the lowest expression based on RPKM from PHH cells. Red indicates high expression levels while blue indicates low. The numbers in the figure are shown as

RPKMx10,000.
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higher than those in HuH7 cells. In contrast, the expression of
ST3GAL5, CHST11, GALNT7, GALNT12, B3GNT5, B3GALT1,
B3GALNT1, and B4GALNT2 was higher in the HuH7 cells than
HepG2 cells. When the expression profile of glycogenes was
compared between PHH and HCC cells, MGAT4A, HS3ST5,
B4GALNT3, B4GALNT4, and GYLTL1B (LARGE2) were found
to be higher in HCC while CHST2, CHST4, B3GALT4, GBGT1,
B3GAT1, and GALNTL4 were higher in PHH cells. As shown in
Figure 2, the heat maps representing the expression levels of each
glycogene analyzed by RNA-Seq also indicate differences in the
gene expression levels between PHH and HCC cells. Although
qRT-PCR has a wider measurable range than RNA-Seq, similar
trends were observed in the expression pattern, indicating that
RNA-Seq can be useful to determine changes in the expression of
glycogenes including low expressing genes.

Differential Gene Expression Analysis
Another advantage of using NGS over a micro array is that RNA-
Seq can determine the sequence information of all the expressed
genes, while a micro array can assess the only measured area
of targeted genes. First, we compared the expression profile of
all the mapped genes. To identify the differentially expressed
genes (DEGs) between PHH and the two HCC lines (HepG2
and HuH7), we subjected the RNA-Seq data sets to DEG
analysis. In both cases, more than 2,000 genes showed 2-fold
increase or decrease in expression level. Then, volcano plot
analysis was used to find the DEGs in hepatic cells (Figure 3).
For instance, SLC10A1(NTCP), a recently found receptor for
hepatitis B virus (30), is expressed only in normal hepatic cells
and not in HuH7 and HepG2 cells. Based on our recent report

(8, 31), mass spectrometry (MS) followed by bioinformatics
analysis successfully narrowed down the candidate genes for liver
cirrhosis. Some of these candidate genes are also located on the
volcano plots, indicating that RNA-Seq is useful for classifying
the candidate genes based on their expression level. For instance,
AFP, ICAM2, and MASP were highly expressed in HuH7 cells
compared to PHH cells (Figure 3A). Similarly, AHSG, ICAM2,
and TF were highly expressed in HepG2 cells (Figure 3B),
demonstrating that RNA-Seq can support the MS data by adding
information on the expression level of the candidate glycoprotein
biomarkers (Table 1). As APOD, CSF1R, and PIGR were hardly
detected in the RNA-Seq of HCC in the same data, we also
confirmed that for RNA-Seq, cancer tissues, but not cell lines, are
better sources for collecting more accurate information to find
the above glyco-biomarkers (8).

Changes in the Expression Levels of
Glycosyltransferases
The aforementioned results demonstrated that an increase
in the biomarker protein expression could not be observed in
all the cancer cell lines, which is a major difficulty in biomarker
discovery. For instance, the expression of LGALS3BP (M2BP) is
lower in HuH7 than PHH cells, which makes it unsuitable as an
HCC biomarker. However, as the expression level of LGALS3BP
is detectable enough from the culture medium and/or serum, this
protein is considered as a good indicator of altered glycosylation.
The function of LGALS3BP (M2BP) as a glyco-biomarker can
be attributed to Wisteria floribunda agglutin (WFA) reactivity
(7), which can bind to LacdiNAc and LacNAc (32). In the
HuH7 and HepG2 cell lines, B4GALNT3 is high in HuH7 cells

FIGURE 3 | Volcano plot analysis to find differentially expressed genes in hepatic cells. Differentially expressed genes between PHH and HCC cells (A: PHH vs. HuH7,

B: PHH vs. HepG2) were extracted from RNA-Seq data and the genes are plotted on significance vs. fold-change on the y- and x-axes, respectively. The y value

indicates −log10 of the p-value obtained from the Empirical analysis of DGE. Candidates for glyco-biomarker identified in previous reports (red, 8, 29, Table 1) and

glycogenes (green) are indicated as examples.
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TABLE 1 | Expression of biomarker candidates*.

Candidate

gene symbol

Gene name PHH HuH7 HepG2 Fold

change

HuH7/PHH

FDR P-value

correction

Fold change

HepG2/PHH

FDR P-value

correction

Stage i Stage ii Stage

iii, iiia, iv

A1BG Alpha-1-B glycoprotein 35.3 6.8 70.5 −6.9 5.E-05 1.7 4.E-01 18.6 17.3 29.5

AFM Afamin 43.8 10.3 0.0 −5.4 1.E-03 −364.1 3.E-14 66.2 55.3 72.0

AFP Alpha fetoprotein 10.5 36568.8 235.5 2568.6 7.E-127 19.5 6.E-12 662.7 1.6 16.6

AHSG Alpha-2-HS-glycoprotein 614.5 1490.5 15214.8 1.8 2.E-01 21.4 2.E-38 1694.7 543.2 1606.9

APOD Apolipoprotein D 0.3 0.8 0.0 1.9 1.E+00 −3.1 1.E+00 0.9 1.6 0.7

AZGP1 Alpha-2-glycoprotein 1,

zinc-binding

1453.5 0.3 531.3 −4778.0 5.E-58 −3.1 2.E-04 309.0 158.2 266.7

C1R Omplement C1r 470.5 32.5 68.8 −18.7 8.E-13 −7.7 2.E-06 206.7 173.7 235.2

C4A Complement C4A 2803.0 15.5 3032.3 −226.2 3.E-18 −1.1 1.E+00 N/A N/A N/A

C4BPA Complement component 4

binding protein alpha

179.3 45.5 169.0 −5.2 4.E-13 −1.2 1.E+00 510.1 733.4 422.2

C4BPB Complement component 4

binding protein beta

205.0 20.3 193.3 −13.5 2.E-19 −1.2 1.E+00 115.2 111.7 91.5

COMP Cartilage oligomeric matrix

protein

0.3 0.0 4.3 −3.3 1.E+00 10.5 1.E-02 0.3 0.4 0.7

CPB2 Carboxypeptidase B2 214.8 256.3 119.3 −1.1 1.E+00 −2.0 5.E-01 289.8 246.4 271.0

CPN2 Carboxypeptidase N

subunit 2

707.5 52.3 264.3 −17.9 8.E-15 −3.0 5.E-03 67.9 88.9 90.5

CSF1R Colony stimulating factor 1

receptor

1.8 0.3 1.0 −6.1 3.E-01 −1.9 1.E+00 6.2 5.0 5.0

F13B Coagulation factor XIII B

chain

34.3 76.3 0.3 1.7 6.E-01 −102.1 2.E-10 41.7 58.5 35.4

F5 Coagulation factor V 201.0 238.0 277.3 −1.1 1.E+00 1.2 1.E+00 79.9 104.7 80.8

FGB Fibrinogen beta chain 4948.5 7075.3 372.0 1.1 1.E+00 −14.8 0.E+00 1727.7 2346.9 1654.8

FGG Fibrinogen gamma chain 1060.8 2959.5 2457.3 2.1 7.E-02 2.1 1.E-02 1294.5 1713.1 1136.4

FN1 Fibronectin 1 32009.0 22277.5 45910.3 −1.9 4.E-02 1.2 1.E+00 190.1 232.8 244.8

GOLM1 Golgi membrane protein 1 524.8 76.3 3.8 −9.1 2.E-18 −151.6 9.E-44 8.0 30.8 13.6

HRG Histidine rich glycoprotein 423.0 17.5 0.0 −31.4 3.E-29 −3594.5 5.E-44 501.7 402.5 447.9

ICAM2 Intercellular adhesion

molecule 2

3.5 32.5 67.5 6.9 1.E-08 16.5 2.E-12 2.0 1.8 1.6

ICOSLG Inducible T cell costimulator

ligand

40.8 98.5 40.8 1.8 3.E-02 −1.1 1.E+00 0.1 0.2 0.2

ITIH2 Inter-alpha-trypsin inhibitor

heavy chain 2

1314.3 4061.0 6631.3 2.3 3.E-03 4.4 1.E-11 827.4 526.7 741.9

LAMP2 Lysosomal associated

membrane protein 2

409.0 307.3 281.3 −1.8 4.E-02 −1.6 1.E-01 50.9 37.9 43.3

LGALS3BP Galectin 3 binding protein 554.0 18.3 2436.0 −41.6 1.E-34 3.7 6.E-05 150.1 144.9 96.9

MASP1 Mannan binding lectin

serine peptidase 1

92.0 973.3 274.8 8.0 9.E-14 2.6 8.E-03 7.7 5.2 11.6

NRP1 Neuropilin 1 111.5 488.8 0.5 3.4 3.E-06 −197.3 4.E-26 7.8 8.0 9.2

ORM2 Orosomucoid 2 743.5 90.3 898.8 −11.1 3.E-07 1.1 1.E+00 1091.6 903.6 1273.9

PGLYRP2 Peptidoglycan recognition

protein 2

8.0 1.5 4.5 −6.6 1.E-03 −2.1 5.E-01 46.5 27.9 55.5

PIGR Polymeric immunoglobulin

receptor

37.8 0.5 0.0 −76.2 2.E-08 −323.5 1.E-09 25.2 44.4 23.2

PTGDS Prostaglandin D2 synthase 0.5 0.5 12.5 −1.2 1.E+00 17.8 3.E-07 38.2 996.0 9.4

SERPINA1 Serpin family A member 1 30859.3 11748.8 19181.8 −3.5 4.E-07 −1.8 1.E-01 4223.5 3457.2 3750.0

SERPINA3 Serpin family A member 3 2522.0 27.5 2638.5 −117.7 9.E-15 −1.1 1.E+00 3.2 4.1 3.3

SERPINA7 Serpin family A member 7 43.3 5.8 406.8 −9.8 7.E-08 8.4 6.E-09 75.7 69.6 77.1

SHBG Sex hormone binding

globulin

9.5 6.3 9.5 −2.0 3.E-01 −1.1 1.E+00 17.3 9.2 9.7

SLC10A1 Solute carrier family 10

member 1

66.5 0.3 0.0 −224.1 2.E-11 −562.0 8.E-11 57.1 59.4 59.8

TF Transferrin 1064.5 6754.5 9728.0 4.8 8.E-03 8.1 5.E-04 755.6 540.9 857.8

*Expression level is indicted by the average of RPKM or FPKM, N/A, not available.

In the fold change column, black and red indicate increase and decrease, respectively.
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FIGURE 4 | Comparison of glycosyltransferase expression among hepatic cells. RPKM obtained from PHH (white), HuH7 (black), and HepG2 (gray) were compared in

N-acetylglucosaminyltransferases (A), fucosyltransferases (B), N-acetylgalactosaminyltransferases (C), and sialyltransferases (D). Average of four measurements is

indicated and error bars shows standard deviations.

while B4GALNT4 is high in HepG2 cells (Figure 4), suggesting
that LacdiNAc can be synthesized on LGALS3BP secreted from
both cells. As previously reported (29, 31), fucosylation of
HepG2 and HuH7 cells is different and the expression profile
of fucosyltransferases also supported the fact that glycoproteins
from the HepG2 cells had higher reactivity to fucose-binding
Aleuria aurantia lectin (AAL) than glycoproteins from HuH7
cells. Both cells express higher FUT8, which can synthesize AFP-
L3, in contrast to PHH cells (Figures 3, 4).

Changes in the Glycosylation Pathway in
Cancer
Next, we analyzed the differences in the expression profiles
of the pathways between the PHH and HCC cells (HepG2
and HuH7, respectively). The pathways including hepatic cell
activity, cell adhesion, cell growth, membrane proteins, and

extra cellular proteins were selected from the KEGG database
(Figure 5, Table S2). The pathways for cell cycle, TGF-β andWnt
signaling were found to be higher in the HuH7 cell line, while
metabolic pathways for fatty acids and drug metabolism were
higher in PHH cells. This analysis also demonstrated that there
were simultaneous alterations in ∼20% of the glycogenes in the
pathways for N-glycan andO-glycan synthesis in cancer cell lines,
resulting in altered glycosylation of the biomarker proteins.

Comparison of Glycogene Expression in
Cancer Tissue
The above results indicated that changes in glycosylation,
which were caused by the alteration of the expression of
glycogenes, took place in cancer cells. To examine how the
glycosylation changed in HCC cell lines, we performed RNA-
Seq of PLC/PRF/5, HLF, HAK1A, and HAK1B (Table S3),
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FIGURE 5 | Altered expression profiles between normal and hepatic cancer cell lines in the selected pathways. To examine the changes in gene expression between

PHH and HCC cells, the expression profiles of genes in different pathways were compared. Expression levels of the genes listed in 15 pathways designated by the

KEGG database were extracted and the genes with fold-changes >2 and an FDR-corrected p-value lower than 0.05 were selected. The highly expressed genes in

PHH cells compared to HuH7 cells (A) and HepG2 cells (B) are denoted at the left side of each panel while the right side shows increased expression in HCC cell lines.

and the PCA was carried out using the expression profile of
glycogenes. HCC cell lines were clearly separated from PHH
and HEK293 cells as a control, suggesting HCC cell lines,
except HepG2 cells, have similar changes in the expression of
glycogenes. Since HepG2 is only on the same side with PHH
and HEK293 cells, glycosylation in HepG2 might not be typical
in HCC cell lines (Figure 6A). Furthermore, expression profiles
of each cell line were analyzed by clustering analysis using
Ward’s method, which can display genes closely associated (red
color in the heat map of Figure 6B). Consistent with the PCA
analysis, the cluster analysis showed that HepG2 is the closest
to PHH cells compared to other HCC cell lines (Figure 6B).
Next, to evaluate the expression profile of the glycogenes in

hepatic cancer tissues, RNA-Seq data of HCC were collected
from The Cancer Genome Atlas (TCGA, https://www.cancer.
gov/tcga) (33). Comparison of the expression of glycogenes in
HCC indicated that the expression of ST3GAL1, ST6GAL1, and
ST6GALNAC6 was relatively higher than other sialyltransferases
(Table S4). Similarly, MGAT1 and MGAT4B were highly
expressed in HCC, but MGAT4A and fucosyltransferases except
POFUT1, were moderately expressed. The PCA demonstrated
that the picked 31 HCC were nearly in the same area as
expected (Figures 6C,D), and the distribution of stages i to iv
was not observed by cluster analysis (Figure S2), suggesting that
alteration of the expression of glycogene was not stage-specific
but rather HCC specific.
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FIGURE 6 | Principal component analysis (PCA) of hepatic cancer cells. Data set of the expression of glycogenes from HCC cell lines (A,B) and HCC tissues from

TCGA (C,D). (A) Six HCC cell lines shown in the plot were analyzed. PHH and HEK293 were used as control cells. PC1 vs. PC3 is shown. (B) Cluster analysis of

glycogenes expression from hepatic cells. Heat map of glycogenes expression is displayed as red (strong) to blue (weak), and gene symbols are indicated under a

hierarchical clustering tree. PHH, HepG2, and HuH7 are closer in this analysis. (C,D) The expression of glycogenes obtained from 31 patients in the TCGA-LIHC

project was analyzed and plotted. PC1 vs. PC2 is in (C), and PC1 vs. PC3 is in (D). Note: scale is different from A. Blue: Stage i, Green: Stage ii, Red: Stage iii, iiia,

and iv; Square: male, Circle: female.

DISCUSSION

Using RNA-Seq for Quantification of
Glycogenes
We aimed to estimate glycosylation changes in cancer cells

using the expression profile of glycogenes. We established a

qRT-PCR array to analyze 186 basic glycogenes in a 384-well-

format as qRT-PCR is the most sensitive method to quantify

mRNA. Our analysis indicated that RNA-Seq could measure the

expression of even low expressing glycogenes and its profile is

comparable to the qRT-PCR (Table S1, Figure 2). Expression of
some glycosyltransferases such as fucosyltransferases in HepG2
and HuH7 were consistent with a previous report (29), and most
importantly, correlated with the increase of fucosylated glycans
(29, 31). Thus, RNA-Seq can be used for the quantification
of glycogenes and possibly predict alterations in glycosylation
(34). One of the advantages of using NGS over a microarray
is that NGS can distinguish mutated genes from normal genes.
In the case of a microarray and qRT-PCR array, the results
highly depend on the DNA and primers for specific genes

that are spotted on the arrays. As alternative splicing has been
found in many genes, it is hard to identify the splice variants
using a microarray and qRT-PCR array. RNA-Seq allows us to
identify RNA editing, nucleotide mutations, and expression of
fused genes resulting from translocation. Furthermore, mRNAs
with non-sense mutations cannot be distinguished from normal
transcripts in a microarray and qRT-PCR array leading to the
wrong estimation due to their false-positive signals. In fact, RNA-
Seq of human colon cancer LSC confirmed a non-sense mutation
in N-terminal area of C1GALT1C1 (COSMC) as we previously
reported [(35), data not shown]. This suggests that RNA-Seq can
avoid errors in counting transcripts withmutations, which causes
no or low enzymatic activity that is consistent with the recent
reports (36, 37).

Search for Glyco-Biomarkers Using
Transcriptome Analyses
We previously described that identifying aberrant glycosylation
patterns, which differs from that in the normal cells, is the
most critical step in glyco-biomarkers discovery. Since we
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need to detect alterations in glycans, which might occur in a
minor population of glycoproteins during the early stages of
cancers, we proposed to use multiple technologies for glycan
analysis including a lectin microarray, tandem MS, and qRT-
PCR (5). Briefly, glycan profiling of the secreted proteins
using a lectin microarray helps in identifying a probe for
capturing glycoproteins and for detecting biomarkers. qRT-PCR
determines the expression levels of glycogenes to estimate and/or
confirm alterations in the glycan structures. MS analyses can be
used to identify glycan structures and sequences of the target
glycopeptides, resulting in a list of potential candidates for
a novel glyco-biomarker. However, in this strategy, using an
antibody to detect the glycoproteins after the screening step is
troublesome due to a lack of information on the expression levels
of glycoproteins. Thus, we added bioinformatics to narrow down
the biomarker candidates by mining the microarray database
(8). Here, we added RNA-Seq in addition to qRT-PCR array for

glycogenes for the identification of glyco-biomarkers (Figure 7).
Although the relative expression level (= number of reads) could
be affected by the expression of other genes, RNA-Seq can be
used to overcome the aforementioned problems. Thus, RNA-Seq
is useful to find candidate glycogenes as the first screening. It is
likely that qRT-PCR collect accurate expression levels, especially
low expresser genes, which reflect real biological signaling. In
addition, a qRT-PCR array is convenient for the comparison of
the expression level of glycogenes in multiple cell lines or tissues.
Thus, using both transcriptome analysis systems, the expression
levels of glycogenes and carrier molecules can be determined,
which can accelerate the identification of glyco-biomarkers.

Although RNA-Seq information of cancer cell lines is
necessary to characterize the glyco-biomarkers, it is important
to find the best cell line representing cancer tissues. Recent
bioinformatics tools and databases help in collecting basic
information from clinical data such as TCGA (33, 38–40). In our

FIGURE 7 | Schematic representation of glyco-biomarker identification using transcriptome analysis. RNA-seq using NGS technology is introduced into the

glyco-biomarker identification strategy previously proposed by us (5). qRT-PCR array in combination with RNA-Seq will be used to determine the expression profile of

glycogenes (transcriptome) and will support the glycan structure analysis by lectin microarray (glycome). Furthermore, RNA-Seq analyses will be used to determine the

expression profile of candidate protein genes listed in the glycoproteome analyses. Some of these data will be stored in the indicated databases. The permissions to

use logos for GGDB, LfDB, and GlycoProtDB or LM-GlycomeAtlas have been obtained either from ACGG-DB (https://acgg.asia/db/) or GlyCosmos (https://

glycosmos.org).
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analysis, we partly analyzed the TCGA-LIHC data, which has also
been included in the pathology information of the human protein
atlas (www.proteinatlas.org/pathology). As described above, we
demonstrated that the expression of glycogenes is well-altered in
hepatic cancer. B4GALT2, B4GALT3, DPM1, DPM2, HS2ST1,
and PIGS are unfavorable prognostic markers in liver cancer
according to the analysis by human protein atlas. Generally,
glycogenes are expressed at low cancer specificity. Some of
the glycogenes altered in our analysis (liver cancer) correlate
with survival rate in particular cancers as shown in the same
analysis. For instances, MGAT1, MGAT4A, and GXYLT2 are
unfavorable prognostic markers, while MAN1C1, GCNT4, and
STT3B are favorable markers in non-hepatic cancers. Protein
biomarker candidates listed in Table 1 (based on 8, 30) were
partly analyzed using retrieved data. As similarly shown in HCC
cell lines, varied mRNA levels were detected for the candidate
proteins. For example, AFP was from 0 to 3990 in FPKM and
LGALS3BP (M2BP) was from 3 to 662 in FPKM. The differences
in the stages were not clear in both cases. This is consistent
with the interpretation of the pathology atlas of the human
cancer transcriptome as non-prognostic. Because AFP-L3 and
WFA-M2BP have been used as effective biomarkers, measuring
only the protein expression levels is not enough to distinguish
cancer cells from normal cells or diagnose the stages. Thus, these
observations emphasize the importance of detecting proteins
with glycosylation.

Currently, the expression level of each gene obtained by
RNA-Seq is available through the human protein atlas as
described above. However, it is necessary to compare the
expression level among glycogenes on the way to the discovery
of glyco-biomarkers. In fact, the glycogene expression profiles
reflect the origin of cancer (41), suggesting the common
glycosylation changes specific to each cancer type. Thus,
it would be useful to open the data of the expression
profile of glycogenes with their biological information, such
as on the Glycogene Database (GGDB, https://acgg.asia/db/
ggdb/). The data set in this manuscript will be available
through the site in the near future. The difference in
glycosylation can be detected by lectin microarray technology.
Recently, a glycome atlas analyzed by lectin microarray (LM-
GlycomeAtlas) was opened [(42), https://glycosmos.org/lm_
glycomeatlas/index]. Glycan structures recognized by each
lectin are available through the Lectin Frontier Database
[(43), LfDB, https://acgg.asia/db/lfdb/]. If a human version of
LM-GlycomeAtlas is available, glycogenes expression will be
connected to glycome (glycan structures recognized by lectin).
Furthermore, glycosylations on the glycoproteins are stored in
the Glycoprotein Database [(44), GlycoProtDB, https://acgg.asia/
db/gpdb/]. In the GlycoProtDB, glycosylation sites identified on
the glycoproteins from cultured medium of HepG2 or HuH7
cells and serum of HCC patients or healthy volunteers are
available as used in this analysis. Importantly, AAL recognized
more glycosylation sites onmany glycoproteins including FN and
LGALS3BP in HepG2 and HuH7, probably due to the higher
expression of fucosyltransferases in HepG2 and HuH7 than that
of PHH. Similarly, many glycoproteins from HCC patients have
more fucosylated sites than those from healthy volunteers as

found in the GlycoProtDB. Thus, collecting the glycosylation
information of serum proteins from other cancer patients using
different lectins together with the glycogene expression profile
will accelerate the identification of glyco-biomarkers.

In summary, we established a qRT-PCR array for glycogenes
using reference DNAs to measure accurate gene expression
levels and demonstrated that RNA-Seq is a powerful tool to
obtain the expression profile of glycogenes together with all
other genes coding for various proteins in PHH and HCC
cells. Transcriptome analyses by combining qRT-PCR and RNA-
Seq analyses suggested that glycan synthesis is almost regulated
at the transcription level in the examined cells. In glyco-
biomarker screening, comparative analyses of the transcriptomes
between normal and cancer cells will facilitate the screening of
candidate glycoproteins with altered glycan structures, which can
be analyzed by lectin microarray (glycomic) and MS analysis
(glycoproteomic) approaches.
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Figure S1 | RNA-Seq data were compared using the GeneChip RMA from the

GEO database obtained from HuH7 cells (GSM618131, 26). The x-axis is from the

GeneChip RMA and the y-axis presents log2 transformed RNA-Seq data. The

linear distribution indicates a similar expression of the gene between two different

transcriptome analyses.

Figure S2 | Cluster analysis of glycogenes expression from 31 patients in the

TCGA-LIHC project (listed in Table S4). Cluster analysis was performed as

described in “MATERIALS AND METHODS.” Patients 1–11 are stage i, patients

12–19 are stage ii, and patients 20–31 are stages iii, iiia, and iv.

Table S1 | Comparison of expression profiles obtained from qRT-PCR and

RNA-Seq.

Table S2a | Expression difference between PHH and HuH7 cells for

Figure 5A.

Table S2b | Expression difference between PHH and HepG2 cells for Figure 5B.

Table S3 | Expression profile of glycogenes from hepatic cells.

Table S4 | Comparison of expression of glycogenes and biomarker candidates in

RNA-Seq data extracted from TCGA-LIHC.
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