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Breast carcinomas are characterized by anomalous gene regulatory programs. As is

well-known, gene expression programs are able to shape phenotypes. Hence, the

understanding of gene co-expression may shed light on the underlying mechanisms

behind the transcriptional regulatory programs affecting tumor development and

evolution. For instance, in breast cancer, there is a clear loss of inter-chromosomal (trans-)

co-expression, compared with healthy tissue. At the same time cis- (intra-chromosomal)

interactions are favored in breast tumors. In order to have a deeper understanding

of regulatory phenomena in cancer, here, we constructed Gene Co-expression

Networks by using TCGA-derived RNA-seq whole-genome samples corresponding to

the four breast cancer molecular subtypes, as well as healthy tissue. We quantify

the cis-/trans- co-expression imbalance in all phenotypes. Additionally, we measured

the association between co-expression and physical distance between genes, and

characterized the ratio of intra/inter-cytoband interactions per phenotype. We confirmed

loss of trans- co-expression in all molecular subtypes. We also observed that gene

cis- co-expression decays abruptly with distance in all tumors in contrast with healthy

tissue. We observed co-expressed gene hotspots, that tend to be connected at

cytoband regions, and coincide accurately with already known copy number altered

regions, such as Chr17q12, or Chr8q24.3 for all subtypes. Our methodology recovered

different alterations already reported for specific breast cancer subtypes, showing how

co-expression network approaches might help to capture distinct events that modify the

cell regulatory program.

Keywords: breast cancer molecular subtypes, loss of trans- co-expression, gene co-expression networks,

distance-dependent gene co-expression, breast cancer

1. INTRODUCTION

A cellular context is determined by the coordinated expression of specific sets of genes, hence,
gene transcription is a highly regulated process. In this sense, gene expression profiles and co-
expression patterns might provide insight about shared transcriptional regulatory mechanisms (1,
2). Among the elements involved in those regulatory mechanisms there are proteins that constitute
the transcriptional machinery such as the RNA polymerase II and its associated enzymes (3),
transcription factors and their cofactors, sequences identified by those transcription factors such
as promoters (4) and enhancers (5, 6), histone modifications, both repressing or promoting gene
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expression, and structural proteins associated with chromatin
architecture (7) [for a comprehensive review see (8, 9)].

Interactions among those elements allow the emergence of
long-range regulatory instances and functional relationships have
been characterized between regulatory elements and distal target
genes (10). Although these long-range instances are clearly
important, transcription of a specific gene is also influenced by
its physical location: gene order is not random and neighboring
genes tend to be co-expressed in several eukaryotic cells (11–
13). Moreover, there is evidence that the transcription process
contributes to the formation of gene clusters and influence
chromatin organization at a fine scale (14).

In cancer there is a dramatic disruption of the transcriptional
process leading to altered gene expression and the promotion
of tumor progression (15). Elements in nearly all levels of
transcriptional control can suffer from modifications in cancer.
A mutation can alter gene expression directly when it takes
place in gene control sequences such as enhancers, promoters or
insulators. On the other hand, transcriptional dysregulation can
arise from genomic alterations indirectly when they modify the
activity of signaling factors such as transcription factors, signaling
proteins or when they cause a disruption in chromatin regulators
or chromosome structuring proteins (16).

Heterogeneity in the aforementioned alterations is displayed
in the diversity of cancer-associated gene expression profiles
and their related phenotypes. In this sense, breast cancer and
its molecular subtypes, Luminal A, Luminal B, HER2+, and
Basal-like (17, 18), are an emblematic example because they
have distinct patterns of gene co-expression profiles and lead to
different breast cancer manifestations both at the molecular and
clinical levels.

Breast cancer subtypes have been associated with different
prognosis, survival rates and metastatic behavior (19, 20). The
longest survival has been observed in patients with the Luminal A
subtype, followed by those with Luminal B and HER2+. Finally,
Basal-like subtype patients have been associated with the poorest
survival (21). Median duration of survival from time of first
distant metastasis follows the same trend (22). Hence, outcomes
in breast cancer can be traced back to the transcriptomic level.

The altered gene expression patterns observed in breast cancer
are usually studied using next generation sequencing (NGS)
techniques such as RNA-Seq (23). Computational methods can
be used to analyze the resulting data and to understand different
features of the biological system. In particular, co-expression
networks capture important aspects of the connectivity structure
of the transcriptional profile (24, 25). Moreover, global and local
properties of co-expression networks may provide some insights
into the actual biological mechanisms associated to the gene
co-expression program (26–28).

Previously, by comparing the gene co-expression network
derived from RNA-Seq data from the unclassified breast
cancer samples in TCGA and the co-expression network from
the healthy samples, we reported a significant reduction in
the number of interactions linking inter-chromosomal genes

Abbreviations: LC, Largest Component; MI, Mutual Information; TCGA, The
Cancer Genome Atlas.

(trans-) and an increase on the strength of co-expression
between intra-chromosomal (cis-) genes (29, 30). On the other
hand, in the healthy breast tissue, gene co-expression was
apparently independent of the chromosome location of genes.
This phenomenon evidenced that in breast cancer, there is an
influence of the physical distance between genes and their related
co-expression values.

With the aim to provide a broader and deeper landscape of
the transcriptional regulation changes in the context of breast
cancer heterogeneity, in this work, we characterized the cis-
/trans- co-expression imbalance for each breast cancer molecular
subtype compared with the co-expression profile of the healthy
phenotype. We also assessed the gene co-expression distance
dependency between cis- genes. Additionally, to have a more
comprehensive description of the distance level of cis- co-
expression, we characterized the intra-cytoband/inter-cytoband
co-expression ratio per subtype.

With our network approach, we confirmed the loss of trans-
co-expression in all breast cancer molecular subtypes. The cis-
/trans- co-expression imbalance is specific for each subtype. We
observed that gene cis- co-expression decays with distance in
all breast cancer subtypes, but not in the healthy phenotype.
We observed highly co-expressed gene hotspots, that tend to
be confined at cytoband regions, and coincide accurately with
already known copy number altered regions, such as the case for
Chr17q12, or Chr8q24.3 for all subtypes.

2. MATERIALS AND METHODS

2.1. Databases
A collection of The Cancer Genome Atlas (TCGA) breast
invasive carcinoma datasets were used in this work (26). Briefly,
780 tumor and 101 normal IlluminaHiSeq RNASeq samples were
acquired and pre-processed to log2 normalized gene expression
values were obtained as described in (29).

2.2. Data Processing
The tumor log2 normalized expression values were classified
using PAM50 algorithm into the respective intrinsic breast
cancer subtypes (Normal-like, Luminal A, Luminal B, Basal and
HER2-Enriched) using the Permutation-Based Confidence for
Molecular Classification (31) as implemented in the pbcmc R
package (32). Tumor samples with a non-reliable breast cancer
subtype call, were removed from the analysis. The number of
reliable samples were 113, 217, 192, 105, and 221 for control,
Luminal A, Luminal B, HER2+, and Basal subtypes, respectively.

Multidimensional Principal Component Analysis (PCA)
over gene expression values showed a blurred overlapped
pattern among the different breast cancer subtypes.
Hence, multidimensional noise reduction using ARSyN R
implementation was used (33). Finally, PCA visual exploration
showed that the noisy pattern was removed, thus breast cancer
subtypes clustered without overlap.

2.2.1. Statistical Analyses
Fisher’s least significant difference analysis (FLSDA) was
performed to test whether Mutual Information (MI)
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FIGURE 1 | Abundance of cis-/trans- interactions in healthy and Basal networks. The circos plots and heatmaps show difference in cis-/trans- co-expression patterns

between the healthy and Basal phenotypes. Plots contain the most significant interactions (P ≤ 1e−8). Orange links join genes from different chromosomes (trans-);

meanwhile purple links represent cis- interactions. External arcs represent each chromosome. Heatmap shows the number of adjacent cis- and trans- links for both

phenotypes in all chromosomes. Notice the difference in the purple/orange proportion. The Basal subtype is almost depleted of trans- (orange) interactions in all

chromosomes.

distributions in the different groups were significantly different
or there is some overlapping. FLSDA is a two-stage test for
(multiple) pairwise comparison. The first stage consists in
performing a “global” test for the null hypothesis that the
expected value of the mean of the different groups is equal.
In the (trivial) case that this null hypothesis is accepted, no
further analysis is needed. If the global null hypothesis is
rejected at a pre-specified level of significance, then a second
stage is performed on all pairwise comparisons at the same
level of significance (34). Here we performed FLSDA with
the LSD.test function in R using the default significance value
(α = 0.05) and FDR correcting for multiple testing. LSD.test
is an implementation of Fisher’s Least Significant Difference
analysis as implemented in the agricolae v1.3-2 R package.

2.2.2. Network Construction
Gene regulatory network deconvolution from experimental
data has been extensively used to unveil co-regulatory
interactions between genes by looking out for patterns in
their experimentally-measured mRNA expression levels.
A number of correlation measures have been used to
deconvolute transcriptional interaction networks based on
the inference of the corresponding statistical dependency
structure in the associated gene expression patterns (35–
39). It has long been known that the maximum likelihood
estimator of statistical dependency is mutual information
(MI) (38–41). ARACNE (42) is the flagship algorithm used
to quantify the degree of statistical dependence between pairs
of genes.
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In a nutshell, the algorithm calculates the MI—a non-
parametric measure that captures non-linear dependencies
between variables—in a relatively fast implementation. The
method associates aMI value to each significance value (p-value)
based on permutation analysis, as a function of the sample size.
To make comparable the five networks, the highest interactions
in terms of their statistical significance (P ≤ 1e−8) were kept.
In this way, we better assessed the differences among groups.
The number of interactions in the five networks were reduced to
13,317 interactions, which is the lowest number of interactions
in our networks with significant p-value. This was the case of
HER2+ network.

3. RESULTS

3.1. cis-/trans- Imbalance Is a Common
Feature in Breast Cancer Subtypes
To characterize the co-expression patterns for breast cancer
molecular subtypes and the healthy phenotype, gene pair co-
expression values were calculated (see section 2). Only the highest
interactions in terms of their statistical significance (P ≤ 1e−8)
were kept to better assess the differences among groups and the
number of interactions for all datasets were reduced to match
the lowest one (13,317 interactions, in the case of HER2+ co-
expression network).

Figure 1 exhibits circos plot representations of the most
significant interactions for healthy and Basal subtype. Purple
links represent cis- interactions, meanwhile orange links account
for trans- relationships. Heatmap displays the number of adjacent
links for every chromosome. Lowest row displays cis- interactions
in purple, while the rest of the rows in the triangle refer to
inter-chromosomal (orange) interactions. The number of cis- and
trans- interactions for each phenotype is indicated in Table 1

and circos plot and heatmaps for all groups are included in
Supplementary Figure 1.

The circos plot and the cis-/trans- ratio values in Table 1

show that among themost significant co-expression relationships
in the healthy phenotype there are more interactions between
genes in different chromosomes than between genes in the
same chromosome. Meanwhile, each one of the breast cancer
molecular subtypes present an inverted proportion than the
healthy phenotype indicating that cis-/trans- imbalance is a
common feature in breast cancer subtypes. In fact, the Basal
breast cancer heatmap shows that this subtype is almost depleted
of trans- interactions. Additionally, cis- interactions in Basal
circos plot appear to be straight lines, since genes with a high
co-expression values are physically close.

The cis-/trans- ratio values where compared with those
obtained from a configuration null model that takes into account
the connectivity patterns displayed by the sets of the most
significant co-expression interactions. According to Z-scores
(Table 1), cis-/trans- ratio values lie far from expected values in
the configuration models, being the Basal suptype the set with
the most extreme value. The fact that the healthy phenotype also
displays a significant Z-score reveals that the cis-/trans- ratio in

TABLE 1 | Structural and distance-related features of the co-expression networks.

Feature
Breast cancer subtypes

Control Luminal A Luminal B HER2 Basal

Number of samples 113 217 192 105 221

Number of genes 4,922 4,843 5,156 5,092 5,262

Total interactions 13,317 13,317 13,317 13,317 13,317

Intra (cis-) 1,424 12,388 13,155 13,163 13,203

Inter (trans-) 11,893 929 162 154 114

Clustering coeff. 0.119 0.291 0.360 0.339 0.408

cis-/trans- ratio 0.120 13.335 81.204 85.474 115.816

cis-/trans- ratio Z-score 24.97 4709.15 31819.15 32703.35 56963.85

Genes in LC 4,005 1,200 174 154 120

Out of the 1102 original breast cancer samples, 735 samples have been reliably classified

into the molecular subtypes.

the healthy phenotype is greater even than what it is expected in
a random model.

3.1.1. Gene Co-expression Networks Show Unique

Structures
Gene co-expression networks were assembled to analyze the
structure that emerges from the most significant interactions.
Figure 2 displays the healthy network structure as well as the
four network subtypes. In these visualizations, genes are colored
according to the chromosome in which they are located. The five
networks depicted show different structural features regarding
size of components (set of nodes that are connected among them
but have no interactions with other nodes) and gene connectivity.

In the healthy network, the largest component (LC) comprises
almost all genes, contrary to any tumor subtype network, where
the size of the LC is smaller (Table 1). Furthermore, the vast
majority of genes in each component of any breast cancer subtype
network belongs to a single chromosome. LC in the Luminal
A subtype network displays a mixed behavior: while there are
genes from different chromosomes linked inside the component,
they are mostly assembled into clusters of cis- interactions. In
terms of connectivity, genes in breast cancer networks are highly
connected between them, i.e., network components in cancer
networks present a higher clustering coefficient compared to the
healthy network.

3.2. Gene Co-expression Is
Distance-Dependent in Breast Cancer
3.2.1. Physically Close Genes Exhibit Higher

Co-expression in Breast Cancer Subtypes
To evaluate the relationship between gene-pair physical
distance and the strength of co-expression, the entire set of
cis- interactions were analyzed by calculating gene-pair co-
expression values measured by Mutual Information (MI) for
every cis- gene pair in the five phenotypes. MI values were
normalized per phenotype to allow for comparison. In Figure 3,
gene pairs are grouped into 5 Mbp distance bins and the mean
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FIGURE 2 | Gene co-expression networks. In this representation we observe the most significant interactions per network. Genes are colored according to the

chromosome in which they are located. Notice the evident difference between size and color combination in the largest component in the healthy network vs. the four

subtypes. Cancer networks have almost the same color in the largest component. A particular case is the Luminal A subtype; despite the largest component (circled)

has several genes from different chromosomes, they are grouped according to their corresponding chromosome.

normalized-MI value for each bin is plotted. The area displays
the standard deviation for each group.

In the healthy phenotype plot, co-expression values remain
almost constant with slightly greater MI values for the closest
distances. Meanwhile, breast cancer subtype plots display similar
behavior: short gene-pair distances have the highest MI values
and, as distance increases, co-expression is lower, reaching a
plateau close to 100 Mbp. Notice that the plateau in cancer is
lower than the plateau observed in the healthy plot.

3.2.2. Co-expression Decay Associated to Distance

Is Specific for Each Chromosome and Subtype
Once observed that gene co-expression decays with distance
in each breast cancer subtype, the decay was evaluated for

every chromosome individually. Normalized-MI values from
cis- interactions were grouped into 100-gene-pair-bins and
plotted vs. gene-pair distance for every chromosome and for
each subtype.

Figure 4A displays plots for chromosomes 8 and 17 for the
non-cancerous and the different breast cancer subtypes, while
Figure 4B displays values for all chromosomes in the healthy and
the Basal phenotypes.

Values in the MI-distance plots were adjusted using a linear
model that accounts for an independent intercept for each
chromosome (see section 2). The complete model has an
adjusted R2

= 0.94. The ANOVA table results are presented in
Supplementary Table 1, which confirms the distance-dependent
decay in breast cancer subtypes (P <1e-4). The shape of this

Frontiers in Oncology | www.frontiersin.org 5 July 2020 | Volume 10 | Article 1232

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


García-Cortés et al. Co-expression Is Distance-Dependent in Cancer

FIGURE 3 | Strongest interactions occur between physically close genes in breast cancer subtypes. Mean co-expression MI values (black line) and the standard

deviation (colored shadows) for all cis- interactions grouped at 5 Mbp gene-pair distance. In the case of healthy phenotype, co-expression remains constant at higher

distances, contrary to any case of breast cancer. Furthermore, the plateau reached by all cancer phenotypes is clearly lower compared to the healthy one.

decay in all cancer phenotypes is similar to that showed by
our group for Basal breast cancer (43). There, co-expression
strength diminished with distance in an exponential-like form.
Supplementary Figure 2 contains the scatter plots for all
chromosomes in the four breast cancer subtypes and the non-
cancerous phenotype.

In Figure 4A for any subtype, MI follows a decay relative to
gene-pair distance. On the other hand, Figure 4B shows that the
strength of cis- interactions in the healthy phenotype is higher for
extremely close gene pairs and then remains constant along the x-
axis. Furthermore, the decay is different for each chromosome in
breast cancer. This can also be observed in Figure 4A, in Chr17
the decay is more abrupt than the case of Chr8.

Between chromosomes, the same subtype has slightly different
patterns of decay, but that is not the case for the healthy co-
expression program (Figure 4). The inserts of Figure 4B are a
zoom over the closest distances. Color distribution allows the
observation that there is more variability of cis- interactions in
the Basal co-expression values than in the healthy phenotype.

By means of a Fisher’s Least Significant Difference test (see
section 2) it was proved that co-expression strength decay is
different for each breast cancer subtype as they are classified into
individual groups displayed in Figure 4C.

3.3. High Density Intra-Cytoband Hotspots
Emerge in Breast Cancer Subtypes
Patterns of highly connected individual chromosome regions
emerge for each subtype when individual chromosomes are
analyzed. Cytogenetic bands where used to define chromosome
regions of physically close genes: cis- interactions in the co-
expression networks are classified into intra-cytobandwhen they

link genes in the same cytogenetic band, and inter-cytoband,
when genes are on different cytogenetic regions.

In the four subtype networks, a highly interconnected region
composed only by intra-cytoband links is observed in chr8q24.3
(Figure 5). This intra-cytoband hotspot is not recovered in
the healthy network. This region is important because it is
commonly amplified in breast cancer tumors associated with
altered function ofMYC (44). Furthermore, intra-cytoband genes
in p-arm of chromosome 8 are also highly connected in the four
cancer networks.

In Luminal A network, an important increment in cis- density
in chromosome 17 is observed. A high number of inter-cytoband
interactions in Chr17p can be appreciated (left part, Figure 6). As
in Figure 5, hotspots of co-expression can also be appreciated. p-
arm of Luminal A network contains highly dense intra-cytoband
interactions, but also inter-cytoband ones. In the rest of subtypes,
intra-cytoband hotspots appear in different regions. Finally,
chr17q25.3 region contains a highly dense hotspot in all subtypes.
Bottom part of the figure is a zoom-in of chr17q12 region, where
ERBB2 gene is located. There, several intra-cytoband interactions
may be observed. The ideogram-like figures for all chromosomes
in each phenotype are presented in Supplementary Figures 3–7.

3.4. Strongest Interactions Are Most
Commonly Intra-Cytoband in Breast
Cancer
To further analyze the co-expression patterns of the five
phenotypes, we used cytogenetic bands since they delimit
chromosome regions of physically close genes.
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FIGURE 4 | Strength of cis- insteractions decays with chromosomal distance in breast cancer subtypes. (A) Chromosomes 8 and 17 gene co-expression through

distance. For both chromosomes, there is a remarkable difference between the strength of co-expression in healthy phenotype compared to any subtype. Each point

represents the average of gene co-expression (MI) of 100 gene pairs according to the distance between them. Green and turquoise curves are the fitting to a 4th

degree linear model. (B) Gene co-expression by distance in all chromosomes for healthy and Basal subtype. Color code of the chromosomes appears at the right of

the figure. (C) Fisher’s Least Significant Difference test result of MI mean values at 1 Mbp gene-gene distance. Test assigns a different group for each phenotype,

which confirms they are significantly different.

When genes linked by the most significant interactions
are classified according to their cytogenetic band, the healthy
phenotype displays a greater number of inter-cytoband than
intra-cytoband links (apart from the already mentioned
difference between cis- and trans- interactions). On the
contrary, for any breast cancer subtype there are much more
intra-cytoband interactions than inter-cytoband interactions.

In upper panel of Figure 7 differences between intra-
cytoband/inter-cytoband proportion between healthy and cancer
networks are displayed. It is also remarkable the already
mentioned difference between cis- and trans- interactions
(orange bars). Boxplots in the bottom panel show the differences
of co-expression values between intra/inter-cytobands, and also
between trans- co-expression values.

4. DISCUSSION

In this work we have described the co-expression patterns in
breast cancer molecular subtypes by analyzing the structure

established by the strongest interactions in co-expression
networks, as well as the relationship between the entire set
of co-expression values and physical distance between gene
pairs. There are four main characteristics displayed by the co-
expression patterns in breast cancer molecular subtypes that
are not present in the healthy phenotype: (1) there is a cis-
/trans- interactions proportion imbalance, (2) the strength of
gene-pair co-expression depends on physical distance, (3) there
is an emergence of high density co-expression hotspots and (4)
strongest interactions as well as hotspots are preferably intra-
cytoband in breast cancer.

The cis-/trans- ratio imbalance in the co-expression networks
is a phenomenon that was already observed for the unclassified
set of breast cancer samples (29). However, differences in
transcriptional profile are widely accepted to recover clinical
features such as prognosis and response to treatment (45).
Transcriptional profiles are the basis of the classification into
the main four molecular subtypes: Luminal A, Luminal B, Her2-
enriched and Basal. Our group has shown that co-expression
networks of breast cancer molecular subtypes are different in
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FIGURE 5 | Chromosome 8 in breast cancer networks. This ideogram-like network layout shows the number of intra-cytoband (blue), inter-cytoband (purple),

gene-gene interactions for all phenotypes. Notice the four hotspots observed in Chr8q24.3 region (right part) in the four subtypes, absent in the healthy network.

terms of their modularity (46) and network architecture (47).
Here, it is shown that the cis-/trans- ratio imbalance is another
feature that characterizes each network (Table 1, Figure 3).

When compared to a null model, the healthy co-expression
network received a significant Z-score on its cis-/trans- ratio. This
is an expected observation given the well-described influence
from neighboring transcription in eukaryotic genome (12, 13).
Although it has been shown that some clustered genes are
not only co-expressed but also functionally related (48), the
phenomenon has been mostly explained as a mechanism to
control dose-sensitive genes, allowing the modification of the
expression of multiple genes by the same epigenetic marks (13,
49, 50).

In agreement with this feature, MI values for the healthy
phenotype in Figure 3 display high co-expression at a very
close distance but they quickly reach a plateau and then remain
unchanged. In contrast, for any breast cancer subtype, there
is a decay in gene co-expression associated with physical gene
pair distance. This result suggests that co-expression from
neighboring genes gets exacerbated in breast cancer and presents
different patters for each molecular subtype.

During the oncogenic process, there is a disruption of
the regulatory elements that control gene transcription (15).
The result is an altered expression profile associated with
the promotion of a tumorigenic phenotype. Among these
alterations, there are some examples that might favor the
formation of clustered genes with similar expression. For
instance, it has been shown that Topologically Associated
Domains (TAD) boundaries are altered in cancer promoting
the formation of additional TADs, smaller and within normal
TAD-architecture (51, 52).

Furthermore, Estrogen receptor, usually upregulated in the
luminal subtypes, is known to have an influence in the
structural organization of chromatin in estrogen-regulated genes,
particularly, by promoting long range interactions (53–56). This
feature may have an influence in the co-expression profiles, for
example, in the higher number of trans- interactions in Luminal
subtypes (Figure 2). Additionally, Luminal A and Luminal B
maximal co-expression values at closest distances are smaller
than in the remaining breast cancer subtypes (Figure 3).

Alterations in the methylation patterns of contiguous
gene regions have also been identified in cancer. Through
hypermethylation and subsequent gene repression, regions
of long-range epigenetic silencing (LRES) are found to be
functionally inactivated in breast (57) and prostate cancer (58).
Long-range epigenetic activation (LREA) of adjacent genes
within a region have also been found in prostate cancer (59).
These alterations might favor the formation of high density intra-
cytoband hotspots, observed in the breast cancer co-expression
profiles but not in the healthy one.

Among the most documented genomic modifications in
breast cancer are gene copy number alterations (CNAs). CNAs
are also known to affect gene expression over clusters of
genes (60–62). Amplification and protein overexpression of
HER2 actually define a specific molecular subtype (63, 64).
According to (65), the HER2-amplicon was narrowed to
an 85.92 kbp region including the TCAP, PNMT, PERLD1,
HER2, C17orf37 and GRB7 genes. Four out of those
six genes appear in the HER+ co-expression network,
HER2 included.

There is another amplicon that has been associated with
the BRCA1 mutated triple negative breast cancer in the region
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FIGURE 6 | Chromosome 17 presents different intra/inter cytoband patterns for each subtype. As in the previous figure, inter/intra-cytoband interactions are depicted

for genes in chromosome 17. Notice the inversion of proportion from the healthy case to any other subtype. The bottom part corresponds to a zoom-in of chr17q12

region. Inter-cytoband links does not appear since we depicted one cytoband only.

17q25.3, that was also observed inHER2+ and Luminal B subtype
(66) (Figure 6). We recovered the region as an intra-cytoband
hotspot but it was more dense in the HER2+ subtype. Region
6p21.2-6p12 in the triple-negative breast cancer, associated with
the Basal subtype has been also identified as an amplicon (67) and
as a hotspot in our network (Supplementary Figure 7). We also
identified the 17q21.3 amplicon in the HER2+ subtype (61).

Chr 16p13 hotspot was also found in our networks for all
cancer phenotypes, but not for the healthy one. Genomic loss in
this region has been associated with poor prognosis in colorectal
cancer (68). However, a copy number gain in breast cancer has
been observed (69). Here we report a co-expression hotspot in
said region, which coincides with the observation of (69). Hence,
the observed hotspots may serve as a proxy of other genomic and
epigenomic alterations in cancer.

It is widely known that the DNA-binding protein CCCTC-
binding factor (CTCF) regulates higher-order chromatin
organization in mammalian cells, (70). It has been observed

that CTCF binding to enhancer RNAs is enriched when breast
cancer cells are stimulated with estrogen (71). Furthermore, cell
line specific CTCF binding events have been encountered in
breast cancer cell lines (72). This could alter the tridimensional
structure, affecting gene expression, and thus modifying the
co-expression landscape. The fact that CTCF binding sites could
be modified in different phenotypes or conditions, may be
behind the observed loss of trans- co-expression.

The latter acquire more relevance since apparently, network
hotspots in the cancer subtypes may be generated precisely due to
an altered chromatin modification. Further steps toward a proper
answer for thatmost include amapping of subtype-specific CTCF
binding sites and intra-cytoband hotspots boundaries.

Alterations are not isolated. In addition to the already
mentioned genomic modifications observed in cancer, it is
known that the three-dimensional chromatin organization
influences chromosomal alterations at the sequence level (73).
Hence, there is an interplay between the different regulatory
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FIGURE 7 | Strongest interactions are preferably Intra-cytoband in breast cancer Upper panel shows the number of cis- intra-cytoband, inter-cytoband, and trans-

interactions for the five phenotypes. The lower panel shows boxplots of MI co-expression values for the same groups. To notice the higher MI values in healthy

phenotype compared with the cancer ones.

elements altered during the oncogenic process. However, all of
these changes are reflected in the gene expression profile.

It is worth mentioning that mutual information values
in control network are, in general, higher than those of
breast cancer subtypes (Lower values of Figures 3, 4). This
may be due to a more stable gene expression signature
in healthy tissue. This could produce similar expression
values that traduce in higher MI co-expression between
gene couples.

Despite the lack of an accurate experimental setup to
assess these results, our methodology recovered different
instances of alterations that were already reported for specific
breast cancer subtypes. This is an example of how a co-
expression network approach might help to understand the
different layers of transcriptional regulation that promote a
tumorigenic phenotype.

5. CONCLUSIONS

The heterogenic nature of breast cancer makes it a
highly complex disease. The only way toward a profound
comprehension of its functioning must be addressed from all
possible perspectives. In this paper, we have used a co-expression
network approach to dissect with high accuracy, the dependency
of physical distance on gene co-expression in cancer. Several
chromosome regions displaying a subtype-specific co-expression
pattern coincide with genomic and epigenomic alterations
already observed in breast cancer using different experimental
protocols, as well as distinct -omic approaches

From this work we highlight the following: (i) gene co-
expression networks capture different instances of molecular
alterations in breast cancer, which can be translated to any other
tissue. (ii) This is a different approach to analyze alterations at
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the transcriptional level in cancer, and (iii) The loss of long-range
co-expression, concomitant with the strong gain of physically
close gene co-expression, may constitute a manifestation of a
non-previously observed phenomenon in cancer, and it can
be the starting point to conduct investigations on how the
transcriptional process shapes the oncogenic phenotype.
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Supplementary Figure 1 | Circos plots contain the most significant interactions

for each phenotype (P < 1e−8). Orange lines join genes from different

chromosomes; meanwhile purple and blue lines take account for

intra-chromosomal (cis-) interactions. External circles indicate the chromosome

band. Bottom right panel is a heatmap representing the number of cis- and trans-

interactions per chromosome for each subtype.

Supplementary Figure 2 | Scatter plots showing the strength of cis- interactions

with respect to physical distance in all chromosomes for the five phenotypes.

Supplementary Figure 3 | cis- interactions for healthy network. Blue edges are

intra cytoband, meanwhile inter cytoband interactions are colored in purple.

Supplementary Figure 4 | cis- interactions for Luminal A network.

Supplementary Figure 5 | cis- interactions for Luminal B network.

Supplementary Figure 6 | cis- interactions for HER2+ network.

Supplementary Figure 7 | cis- interactions for Basal network.

Supplementary Table 1 | Type-III ANOVA table results for the Intra-chromosomal

regulation decay model. The ANOVA table tested the dependence of Mutual

Information (MI) values using a linear model including a fourth-order polynomial for

the distance (D) between gene-pairs, accounting independent intercepts for each

chromosome (Chr), breast cancer subtype and also for their corresponding

polynomial terms. The model was fitted in the natural logarithm (Ln) scale for both

MI and D. Significance codes: 0; “∗∗∗”0.001; “∗∗”0.01; “∗”0.05; “.”0.1; “”1.
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