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New therapeutic strategies and paradigms are direly needed for the treatment of cancer.

While the surgical removal of tumors is favored in most cancer treatment plans, resection

options are often limited based on tumor localization. Over the last two decades, multiple

tumor ablation strategies have emerged as promising stand-alone or combination

therapeutic options for patients. These strategies are often employed to treat tumors

in areas where surgical resection is not possible or where chemotherapeutics have

proven ineffective. The type of cell death induced by the ablation modality is a critical

aspect of therapeutic success that can impact the efficacy of the treatment and systemic

anti-tumor immune system responses. Electroporation-based ablation technologies

include electrochemotherapy, irreversible electroporation, and other modalities that rely

on pulsed electric fields to create pores in cell membranes. These pores can either

be reversible or irreversible depending on the electric field parameters and can induce

cell death either alone or in combination with a therapeutic agent. However, there

have been many controversial findings among these technologies as to the cell death

type initiated, from apoptosis to pyroptosis. As cell death mechanisms can impact

treatment side effects and efficacy, we review the main types of cell death induced by

electroporation-based treatments and summarize the impact of these mechanisms on

treatment response. We also discuss potential reasons behind the variability of findings

such as the similarities between cell death pathways, differences between cell-types, and

the variation in electric field strength across the treatment area.
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INTRODUCTION

Despite improvements in survival and quality of life provided by current therapeutic practices,
cancer death rates remain unacceptably high (1). New treatment paradigms are direly needed.
Minimally invasive tumor ablation treatments such as cryotherapy, laser irradiation, microwave
irradiation, radiofrequency ablation, high-intensity focused ultrasound ablation, and irreversible

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2020.01235
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2020.01235&domain=pdf&date_stamp=2020-07-28
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:icallen@vt.edu
https://doi.org/10.3389/fonc.2020.01235
https://www.frontiersin.org/articles/10.3389/fonc.2020.01235/full
http://loop.frontiersin.org/people/965417/overview
http://loop.frontiersin.org/people/931186/overview
http://loop.frontiersin.org/people/771740/overview
http://loop.frontiersin.org/people/132847/overview


Brock et al. Cell Death Electroporation Mini Review

electroporation (IRE), have shown significant promise (2, 3).
Ablation modalities function through the direct or indirect
induction of cell death, resulting in the destruction of
tissue by thermal, mechanical, or electrical means. Thermal
ablation modalities, such as microwave or radiofrequency, use
intense temperatures to lyse cells and induce apoptosis in
treatment margins (4). Unfortunately, tumor location near
critical structures can lead to hemorrhaging, heat sink effects,
and healthy tissue damages during treatment (5, 6). Non-
thermal modalities such as those that utilize electroporation
can overcome these treatment barriers to induce cell death
through different mechanisms andmay initiate systemic immune
responses to target both the local tumor microenvironment and
metastatic sites (7–10).

Extensive investigations have explored the mechanisms
underlying cell death induced by pore formation and homeostasis
loss following electroporation-based tumor ablation treatments
(11, 12). However, it should be noted that thresholds for
electroporation, both reversible and irreversible, and cell death
induction can differ based on cell-type (13–16). This may be
why studies utilizing electroporation-based treatments report
different cell death mechanisms ranging from apoptosis to
pyroptosis (8, 17). Cell death is a complex and nuanced
process, especially in the context of cancer. The type of cell
death induced can have significant biological and physiological
consequences in terms of local and systemic treatment efficacy.
Here, we review these four major types of cell death, offer
insight into the biological impacts of each on tumor ablation,
and summarize cell death findings from electroporation-based
treatment strategies.

CELL DEATH MECHANISMS IN
ELECTROPORATION-BASED
TREATMENTS

Cell death can diverge into many pathways, eliciting a large range
of responses (Figure 1). Each pathway can be further modified
by genetic, epigenetic, and regulatory factors for different cell
types and tissues. These pathways are not singular; many similar
proteins and biochemical pathways have been shown to be
involved with multiple cell death subroutines, making it difficult
to ascertain a definitive type of cell death (18, 19). Inducing
the optimum type of cell death is critical for effective tumor
treatment as it can influence both local and systemic effects
that significantly impact cancer recurrence, inflammation, and
autoimmunity (20–24).

Apoptosis
Apoptosis is one of the most commonly mentioned forms of
cell death in electroporation-based ablations (25–28). Generally
considered non-inflammatory, apoptosis is a programmed form
of cell death required for normal maintenance of tissues such
as intestinal epithelium or epidermis where cells are regularly
replaced to avoid the accumulation of cellular damage or
mutations (29–31). This pathway is commonly dysregulated
in cancers as the cells lose the ability to respond to internal

signals due to mutations in apoptosis regulatory pathways
or key genes such as Bcl2 or p53 (32, 33). The induction
of apoptosis implies a “quiet cell death” with little immune
involvement beyond dead tissue clearance. Hallmark features
include the cleaving and activation of Caspase 3 and 7 along
with the expression of phosphatidylserine on the cellular surface
that binds Annexin V (34–36). In tumor ablation, apoptosis
can be considered beneficial due to the reduced potential for
inflammation-driven damage to nearby healthy tissues as it
leads to the suppression of inflammatory signaling (37). While
apoptosis can be highly effective in ablating primary tumors, the
lack of innate and adaptive immune system activation is sub-
optimal for inducing systemic anti-tumor immune responses.
This can negatively impact the potential to induce an abscopal
effect to target metastatic lesions and may create a permissive
niche for tumor reoccurrence once the apoptotic pressure is
removed (38, 39).

Necrosis
Necrosis lies opposite of apoptosis and involves rapid cell death.
Necrosis is typically induced by sudden loss in cell homeostasis,
such as rapid osmolarity or temperature changes, influx of
calcium into the cell or mitochondrial spaces, or mechanical
tissue damages that can lead to autolysis (40). It should be noted
that this section refers to cellular necrosis, which differs from
“tissue necrosis,” or irreversible tissue injury, the presence of dead
tissue often based on acellularity or tissue morphology and does
not specify specific cell death mechanisms.

Necrosis is often referred to as accidental or lytic cell death
and is characterized by the breakdown of the cell membrane
and the release of large amounts of damage-associated molecular
patterns (DAMPs) (38, 41). Further investigation into necrosis’s
mechanisms show that contrary to the chaotic description, its
mechanism may also be regulated by specific programs similar
to apoptosis (41). For example, the serine/threonine kinase RIP1
appears to play a pivotal role as a central initiator of necrosis
(41). Activation of RIP1 results in NF-κB and transient MAPK
signaling, directly inducing the production of pro-inflammatory
mediators (42–44). RIP1may also play a role in the TNF signaling
and the generation of ceramide during necrosis (45). Likewise,
calcium and reactive oxygen species (ROS) signaling cascades
lead to the propagation and execution phases of cell death.
Ultimately, these result in damaged proteins, lipids, and DNA
that drive necrosis and are released upon cell death (41, 46).
The production of DAMPs stimulate neighboring cells to activate
the innate immune system, resulting in inflammation (47).
Unfortunately, inflammatory signaling recruits immune cells to
the lesion that may be polarized to facilitate regeneration growth
and repair which the tumor can reprogram to assist the tumor in
grow, repair, and create a more favorable niche for progression
(48, 49). Necrosis may also induce tumor lysis syndrome (TLS)
as large numbers of DAMPs acutely released into the blood
stream can lead to systemic inflammation (50–52). Any tumor
ablation modality that induces high DAMP production should
focus on optimizing targeting and minimizing the treatment
area. It should be noted that TLS has not been reported in
electroporation-based treatment clinical trials.
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FIGURE 1 | Cell death types initiated by electroporation-based ablation.

Pyroptosis
Pyroptosis is one of twelve identified subclasses of regulated cell
death and displays high local inflammatory responses distinct
from necrosis (36). Traditionally, pyroptosis is associated with

the host innate immune response to viral and bacterial pathogens
(53–56). Pyroptosis is an extremely specific form of inflammatory
programmed cell death and is characterized by the cleavage
and activation of Caspase-1 and Caspase-11 (55, 57). Caspase-1
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activation results in the cleavage and processing of IL-1β and IL-
18, potent proinflammatory cytokines. These caspases also cleave
gasdermin D, generating an N-terminal cleavage product that
drives pyroptosis (58). In addition to IL-1β and IL-18, pyroptosis
produces a significant amount of DAMPs, including HMGB1,
ATP, and ROS to further stimulate the innate immune system (56,
59, 60). This high signaling state leads to rapid responses from the
body with recruitment of immune cells to the local area as well as
increased systemic signaling to enhance immunosurveillance and
heighten antigen presentation potential that could be beneficial
for cancer treatment (61). While this can be ideal for allowing the
immune system to recognize tumor cells in the body and create
immune memory, the heightened inflammatory state can lead to
severe side effects such as fever and autoimmunity (21, 51).

Necroptosis
In addition to pyroptosis, a fourth major regulated cell
death routine termed necroptosis has also been described
following irreversible electroporation. Necroptosis is also termed
programmed necrosis or alternative necrosis and has features
characteristic to both apoptosis and necrosis. Necroptosis
is triggered by perturbations of extracellular or intracellular
homeostasis and does not induce a quick, automatic lysis of
the cell (62). Rather, the cell produces low levels of DAMPs
and proinflammatory cytokines that drive moderate levels
of inflammation compared to much more inflammatory
mechanisms associated with pyroptosis (19). Necroptosis
critically depends on the pseudo-kinase mixed lineage kinase
domain-like (MLKL) protein, which is phosphorylated by the
kinase RIPK3 (63). While mechanistically less clear, RIPK1
has also been suggested to mediate necroptosis under some
conditions and the activation of an inflammasome has been
suggested to underlie inflammatory cytokine production
(36, 64). This can make it somewhat challenging to discern from
necrosis. However, due to the temporal nature of necroptosis
and the attenuated production of local cytokines, necroptosis
is less likely to induce TLS but still retains the potential
of inducing inflammation that can promote an anti-tumor
microenvironment and improve antigen presentation.

ELECTROPORATION-BASED ABLATION
MODALITIES

Electrochemotherapy (ECT) and
Calcium-Based Electroporation
ECT was one of the first electroporation-based modalities to
progress to clinical trials and is routinely used in Europe for
cutaneous malignancies at over 150 centers (65–67). ECT utilizes
pulsed electric fields (PEFs) of micro- to nanosecond pulse
durations for short periods that lead to reversible electroporation
and allow for the internal delivery of chemotherapeutic reagents
to the site of treatment (68, 69). Many chemotherapeutic agents
such as bleomycin or cisplatin can have off-target effects,
difficulty penetrating beyond the surface of the tumor, and the
potential for chemoresistance (70, 71). Thus, ECT facilitates
using local or acute systemic application of smaller doses of the

chemotherapeutic, which can reduce side effects, and increases
cellular uptake of the chemotherapeutics in the treatment zone
(72–74). Cell death via ECT varies based on the chemotherapy’s
mechanism of action, but reversible electroporation alone does
not lead to significant cell death or tumor ablation (75). ECT has
been shown to induce apoptosis-like cell death with bleomycin
in head and neck carcinoma, necroptosis with bleomycin,
cisplatin, and oxaliplatin in pancreatic cancer, and evidence
of pyroptosis-like immunogenic cell death when applied with
bleomycin in colon cancer (76–78). This is an interesting
observation in the variability of cell death mechanisms
in different cell types utilizing the same chemotherapeutic.
Adjusting chemotherapeutic choice or even dosage for specific
malignancies may alter cell death mechanisms and enhance
patient outcomes.

Expanding on ECT strategies, the use of calcium
represents another option to this treatment strategy. Calcium
electroporation enhances necrosis in the treatment zone and its
application can forgo or reduce the use of chemotherapeutics and
avoid some chemotherapy side effects (79, 80). The induction of
necrosis by calcium influx may overcome the chemoresistance
mechanisms involving DNA repair and altered survival-linked
proteins such as Bcl-2 in some cancers (79, 81–83). Furthermore,
there is potential selectivity in calcium electroporation as
malignant cells are more likely to die than healthy or benign
cells (84, 85). This may be due to the modification many cancers
develop to avoid cell death that make them susceptible to calcium
imbalances (86, 87).

Irreversible Electroporation (IRE)
IRE utilizes microsecond pulse electric fields, similar to ECT, but
for a higher pulse count. This higher pulse count results in pores
and tears forming in the cell membrane that stabilize, leading
to loss of cell homeostasis and initiating cell death processes
(12, 88). The use of IRE in difficult-to-treat malignancies, such
as pancreatic and hepatocellular tumors, is currently becoming
more widespread and has led to numerous clinical trials showing
inspiringly high success rates (89–95).

IRE-induced cell death was originally considered to be
apoptotic (25, 27, 28, 96). However, a majority of these studies
did not fully consider alternative cell death types.While apoptosis
is certainly occurring in some cells within the treatment zone,
our data suggest that treatment could initiate multiple types of
cell death mechanisms, though the size and shape of the regions
in which each type is experienced may vary between clinical
treatments due to differences in pulsing parameters, tissue type,
and treatment time [Figure 2; (97, 98)]. This is mediated, in part,
by the proximity of the cells to the electrodes, which impacts
the voltage each cell experiences during treatment (28, 99–
101). While directly near the electrodes may be temperature
dependent, cell death becomes temperature independent in
other regions based on minimum heating effects seen in vitro
at comparable electric field magnitudes (7). Multiple studies
argued that there may be more than one type of cell death
mechanism at play, from necrotic cell death to apoptotic-like
non-apoptotic cell death (17, 102–104). These responses could
come from differing tissues being predisposed to specific types
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FIGURE 2 | Regions of cell death within a typical IRE treatment zone vary spatially. Necrosis is thought to occur in close proximity to the electrodes during pulse

delivery, while necroptosis, apoptosis, and reversible electroporation are thought to occur with increasing distances from the electrodes. It should be noted that this

diagram is intended for illustrative purposes only. Specific volumes and thresholds will vary with many parameters, including electrode spacing and exposure, voltage

applied, tissue type, number of pulses applied, and time after treatment. The electric field distribution for a single IRE pulse was simulated using COMSOL

Multiphysics software (version 5.5, Burlington, MA). Two stainless steel electrodes with insulating holders were inserted into a spherical tissue domain, which was

assigned a dynamic electrical conductivity corresponding with normal human pancreatic tissue (97). Electrodes were placed 1.5 cm apart with 1.5 cm exposure, and a

voltage of 3,000V was applied.

of cell death depending on the electric field strength applied
(105). Likewise, for cells at the margins of the treatment areas,
the response may actually be survival signaling to reversible
electroporation. In theory, this could be taken advantage of
and combined with chemotherapy treatments to increase drug
delivery, tumor penetration, and treatment of remnant cancer
cells (106–108).

High-Frequency Irreversible
Electroporation (H-FIRE)
Building upon the advantages of IRE, a novel technology termed
high-frequency irreversible electroporation (H-FIRE) utilizes 1–
10 µs bipolar bursts applied in a pattern with interpulse delay
when switching poles. These parameters are highly effective
in non-thermally ablating tissues without causing the muscle
contractions and heart dysrhythmia associated with the long-
duration monophasic pulses of IRE (8, 109–112). Its use in
pre-clinical models has progressed without the need for cardiac
synchronization as well (112). Cell death following H-FIRE is
considered to be highly similar to IRE. However, pre-clinical
studies show that H-FIRE may be eliciting immunologic cell
death and pyroptosis in addition to apoptosis and necrosis
(8, 104). Intriguingly, the use of H-FIRE may allow tuning of
cell death with calcium similar to calcium ECT. In in vitro
hydrogel studies, H-FIRE applied in calcium-rich media showed
a significant shift toward necrotic cell death with higher lesion

areas and fewer survival signals (113). These data suggest that H-
FIRE effects could be modified by injecting calcium or sucrose
near the treatment site to allow for controlled applications in
difficult-to-treat malignancies or tissue locations.

Nanosecond Pulsed Electric Fields
(nsPEFs)
Nanosecond pulse electric fields (nsPEFs) are characterized by
PEFs with short nanosecond pulse durations and high electric
fields. Originally, nsPEFs were thought not to permeabilize
the cell membrane but rather induce cell death by interfering
with molecular patterns inside the cell, disrupting processes
in the mitochondria, and other intracellular membrane-bound
organelles (114). However, later studies have found that cell
membranes and the membranes of internal cellular structures
are permeabilized, albeit with smaller tears than those of
microsecond PEFs (26, 115–117). nsPEFs have been noted
to induce both apoptotic and potentially caspase-independent
apoptotic-like cell death similar to necroptosis (116, 117). Recent
in vivo findings provide greater mechanistic insight into the
types of cell death induced by nsPEFs (118–120). Based on
the inflammatory and immunomodulatory conditions, these
studies reveal that nsPEFs may induce programmed necrosis
or necroptotic cell death in breast, melanoma, and pancreatic
cancers (118–120).
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DISCUSSION

As electroporation ablation modalities becomemore mainstream
and progress from preclinical studies to clinical applications,
characterization of specific cell death mechanisms associated
with treatment will become more relevant. The type of
cell death has significant consequences for the patient’s
treatment outcomes, immune system activation, regeneration
and repair processes, and co-therapy applications. Seemingly
conflicting reports on cell death mechanisms ranging from
apoptosis to necrosis and pyroptosis has led to confusion
in the field. However, these data suggest that cell death
following electroporation may be dependent on electric field
and cell type, and that multiple cell death mechanisms could
occur within the treatment zone. While studies investigating
the effects of related cell lines with varying morphology
suggest that cells with larger nuclei are more likely to be
affected by H-FIRE, whether these findings are consistent
among different electroporation modalities remains to be
seen (14, 15). It would be reasonable to hypothesize that
different tissues and cell types, both healthy and malignant,
have different responses to electroporation-based technologies
and may require altering dosing, treatment parameters, or
co-therapies to obtain optimal effects. In fact, a recent
study on pancreatic cancer shows differences in cell death
mechanisms initiated by IRE and HFIRE with similar parameters
(104). Further investigation into these cell death mechanisms

among electroporation-based technologies may help tailor these
treatments for personalized medicine.
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