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The purpose of the present study was to investigate whether former childhood

cancer patients who developed a subsequent secondary primary neoplasm (SPN)

are characterized by elevated spontaneous chromosomal instability or cellular and

chromosomal radiation sensitivity as surrogate markers of compromised DNA repair

compared to childhood cancer patients with a first primary neoplasm (FPN) only or

tumor-free controls. Primary skin fibroblasts were obtained in a nested case-control study

including 23 patients with a pediatric FPN, 22 matched patients with a pediatric FPN and

an SPN, and 22 matched tumor-free donors. Clonogenic cell survival and cytogenetic

aberrations in Giemsa-stained first metaphases were assessed after X-irradiation in G1

or on prematurely condensed chromosomes of cells irradiated and analyzed in G2.

Fluorescence in situ hybridization was applied to investigate spontaneous transmissible

aberrations in selected donors. No significant difference in clonogenic survival or the

average yield of spontaneous or radiation-induced aberrations was found between the

study populations. However, two donors with an SPN showed striking spontaneous

chromosomal instability occurring as high rates of numerical and structural aberrations

or non-clonal and clonal translocations. No correlation was found between radiation

sensitivity and a susceptibility to a pediatric FPN or a treatment-associated SPN.

Together, the results of this unique case-control study show genomic stability and normal

radiation sensitivity in normal somatic cells of donors with an early and high intrinsic

or therapy-associated tumor risk. These findings provide valuable information for future

studies on the etiology of sporadic childhood cancer and therapy-related SPN as well as

for the establishment of predictive biomarkers based on altered DNA repair processes.
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INTRODUCTION

Over the past decades, the number of cancer survivors increased
constantly due to earlier diagnosis as well as optimized and
new oncologic therapies with increased effectiveness in local and
systemic tumor control (1). However, the benefit of prolonged
survival of cancer patients is compromised by an elevated risk
for therapy-related adverse late-effects, with second primary
neoplasms (SPN) representing the heaviest burden for the
patients (2). This is of particular concern for the treatment
of highly cancer-prone individuals with pediatric malignancies
who are at the utmost risk for SPN because of high innate
susceptibility, the clastogenic impact of anti-tumor treatments
and prolonged survival after effectual cancer therapy with an
average 5-year survival rate of about 80% (3). In childhood
cancer patients, the successful control of a first primary neoplasm
(FPN) by chemotherapy (CT) or radiation therapy (RT) increases
the relative risk to develop a therapy-related SPN up to about
6-fold compared to the healthy population, corresponding to
an incidence of more than 20% at 30 years after the diagnosis
of the FPN (4–6). RT in particular, which is applied to treat
more than 50% of all cancer patients during their clinical
management, represents a high and established risk factor for
therapy-related SPN (7). However, despite such correlations
there is still a large variation in the individual susceptibility
to treatment-induced SPN which has been attributed to
genetic variation.

Pediatric cancers reflect a very heterogeneous group of
disorders of mostly unidentified etiology. Only 5–10% of
early-onset malignancies can be ascribed to known inherited
or de novo familial mutations in high-penetrance predisposing
genes (8). It is commonly assumed that genetic alterations
in DNA repair and damage response pathways increase the
inherent cancer risk and the vulnerability to adverse side-effects
of oncologic therapies (9–11). However, the causalities for the
vast majority of sporadic childhood cancers or an inherent
susceptibility to iatrogenic SPN remain to be unraveled.

A clinical approach to identify individuals with an elevated
cancer-proneness or hypersensitivity toward genotoxic anti-
tumor therapies are functional bioassays which monitor the
efficiency and accuracy of DNA repair in somatic cells after
exposure to cytostatic drugs or ionizing radiation (IR). For
this purpose, test systems have been developed to measure
the efficiency and fidelity of DNA repair in lymphocytes or
fibroblasts after in vitro IR exposure based on the quantification
of chromosome aberrations or DNA double-strand break (DSB)
repair foci [γH2AX or tumor protein 53 binding protein 1
(53BP1)] (12).

Common cytogenetic assays that are used to test for
intrinsic chromosomal IR sensitivity investigate the rate of
IR-induced chromosome aberrations in first metaphases after

Abbreviations: SPN, second primary neoplasm; FPN, first primary neoplasm;

NN, no neoplasm; CT, chemotherapy; RT, radiation therapy; DSB, DNA

double-strand break; 53BP1, tumor protein 53 binding protein 1; IR, ionizing

radiation; G2-PCC, G2 premature chromosome condensation; FISH, fluorescence

in situ hybridization; mFISH, 24-multicolor fluorescence in situ hybridization;

t, translocation; ins, insertion; dic, dicentric chromosome; T, truncated; SF2,

surviving fraction at 2Gy; pATM, phosphorylated ataxia telangiectasia mutated.

G0/1 exposure (G1 assay) or the frequency of chromatid
aberrations in metaphases after irradiation of exponentially
growing cells in G2 (G2 assay). The G2 assay allows for
a prompter analysis of IR-induced cytogenetic damage since
cells progress from G2 to mitosis within a few hours after
irradiation. A variation of the G2 assay, which overcomes
the problems of the IR-induced G2/M arrest and low mitotic
indices, is drug-induced premature chromosome condensation
in G2 (G2-PCC) (13). In most studies, a predisposition to
RT-related severe normal tissue toxicities or cancer proneness
correlated with a compromised repair of IR-induced DSBs
and elevated rates of cytogenetic aberrations (14–31). Also,
the level of spontaneous chromosome aberrations in normal
somatic cells is considered a strong indicator of tumor
incidence (32, 33). However, to identify patients who are
at high risk for a pediatric FPN or a therapy-related SPN
based on such surrogate biomarkers of compromised DNA
repair and genome instability is still a major and unsolved
clinical challenge.

To this end, we examined spontaneous chromosome
aberrations as well as cellular and chromosomal IR sensitivity
in primary skin fibroblasts obtained from a carefully matched
case-control study nested in a cohort of childhood cancer
survivors who were successfully treated for a sporadic FPN
and either developed an SPN or not. Our findings will provide
relevant clinical information whether sporadic and IR-induced
chromosome aberrations and thus a limited DNA repair capacity
in normal somatic cells can be used as a measure of risk
assessment and stratification for the development of pediatric
FPN or subsequent SPN.

MATERIALS AND METHODS

Patients
FPN and SPN patients were registered at the German Childhood
Cancer Registry at the University Medical Centre in Mainz,
Germany (34) and were matched according to the entity of the
FPN, the age at diagnosis of the FPN, the year of diagnosis
of the FPN, the age at biopsy and sex. Participants with any
entity of FPN or SPN were included. An overview of the patient
characteristics is provided in Table 1. SPN donors had to survive
for at least 1 year after the diagnosis of the SPN. Skin biopsies
to obtain primary fibroblasts were collected from 23 patients
suffering from a variety of pediatric FPN and no SPN, 22 patients
with the same type of FPN, and an SPN after the successful
treatment of the FPN and from 22 donors with no neoplasm
(NN) after written informed consent. For each of the matched
doublets of an FPN and an SPN case, a NN donor was matched
according to sex and the age at biopsy within a 5-year age
range. Biopsies of NN donors were sampled at the Department
of Accident Surgery and Orthopedics at the University Medical
Centre in Mainz, Germany during a planned surgery within
the KiKme study (Marron et al., in review)1. Following this

1Marron M, Brackmann L, Grandt C, Zahnreich S, Galetzka D, Schmitt I, et al.

An innovative nested case-control study to identify genetic predispositions of

childhood and second primary cancers related to ionizing radiation - the KiKme

study. (in review).
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procedure, we obtained 18 matched triplets with a matched NN,
FPN, and SPN donor each, two quadruplets with an additional
FPN donor each, a quadruplet with an additional NN donor, and
a single SPN donor (also indicated in Tables 2–4 presenting the
raw data of our analyses). The study was approved by the Ethics
Committee of the Medical Association of Rhineland-Palatinate
[No. 837.440.03 (4102) and No. 837.262.12(8363-F)].

Cell Culture and Irradiation
To obtain primary human skin fibroblasts from cancer patients,
biopsies were taken on the inside of the cubital region and for
NN donors at the site of the planned surgery. Biopsies were
dissected and kept in rich cell culture medium (Amniogrow,
CytoGen GmbH, Wetzlar, Germany) in a humidified incubator
at 37◦C and 5% CO2 to allow for outgrowth and expansion of
primary fibroblasts. After the first passage, cells were cultured in
Dulbecco‘s Minimal Essential Medium (Sigma-Aldrich, St. Louis,
USA) containing 1% non-essential amino acids (Biochrom,
Berlin, Germany), 15% fetal bovine serum (Biochrom, Berlin,
Germany), and 1% penicillin/streptomycin (Biochrom, Berlin,
Germany). Passaging was done using 0.05% trypsin with 0.1%
ethylene-diamine-tetra-acetate (Biochrom, Berlin, Germany).
After further expansion, cells were cryopreserved in liquid
nitrogen. Only cells with <20 population doublings were used
for experiments.

To irradiate fibroblasts selectively in G1 for clonogenic
survival and the cytogenetic G1 assay, cells were synchronized by
contact inhibition. To obtain confluent cultures, fibroblasts were
seeded at a density of 9,000 cells/cm2 in cell culture dishes with
a diameter of 10 cm (Greiner Bio-One GmbH, Frickenhausen,
Germany) and were allowed to grow at least for 14 days with
a medium change every 4 days. Synchronization in G1 was
confirmed by flow cytometric cell cycle analysis revealing that
more than 90% of the population was in G1 when the cells were
exposed to X-rays. To irradiate and analyze cells selectively in G2
(G2 assay), 9,000 cells/cm2 were seeded in cell culture dishes with
a diameter of 10 cm (Greiner Bio-One GmbH, Frickenhausen,
Germany). Two days later exponentially growing cells were
exposed to X-rays.

Irradiation was performed with a D3150 X-Ray Therapy
System (Gulmay Ltd., Surrey, UK) at 140 kV and a dose rate
of 3.6 Gy/min at room temperature. Control cells were sham-
irradiated, i.e., kept at the same conditions in the radiation device
control room.

Clonogenic Survival
To determine the clonogenic survival of G1 fibroblasts, confluent
cultures were irradiated. Cells were harvested 24 h after
irradiation and seeded in culture dishes with a diameter of 10 cm
(Greiner Bio-One GmbH, Frickenhausen, Germany). 13, 26, 52,
and 65 cells/cm2 were plated after exposure to 0, 2, 4, and
6Gy X-rays, respectively, with three technical replicates per IR
dose. After incubation for 14 days to allow for the formation
of colonies, cells were fixed, stained, and scored according to
the protocol of Puck and Marcus (36), and survival curves were
established considering the plating efficiencies of sham-irradiated
controls. The average numbers of surviving cells per technical

TABLE 1 | Overview of patient characteristics.

First primary

neoplasms,

n (%)

Second primary

neoplasms,

n (%)

Total 45 22

Female 19 (42%) 10 (46%)

Male 26 (58%) 12 (54%)

Age (years) at diagnosis, median

(range)

5.0 (0–14) 15.5 (5–30)

<2 5 (11%)

2–5 19 (42%)

5–10 7 (16%) 2 (9%)

10–15 14 (31%) 7 (32%)

15–20 9 (41%)

20–25 2 (9%)

25–30 2 (9%)

Calendar year at diagnosis,

median (range)

1985 (1980–1998) 1997 (1985–2003)

1980–1985 19 (42%)

1985–1990 13 (29%) 2 (9%)

1990–1995 7 (16%) 6 (27%)

1995–2000 6 (13%) 8 (36%)

2000–2005 6 (27%)

Latency (years) between FPN and

SPN, median (range)

8 (1–21)

1–5 2 (9%)

5–10 12 (55%)

10–15 2 (9%)

15–20 4 (18%)

20–25 2 (9%)

Age (years) at skin biopsy,

median (range)

25 (21–36)a 26 (20–40)

20–25 8 (35%)a 8 (36%)

25–30 13 (57%)a 12 (55%)

30–35 1 (4%)a 1 (5%)

35–40 1 (4%)a 1 (5%)

Tumor entity according to ICC-3 code

Leukemia (I)

Lymphoid leukemias (Ia) 21 (47%) 1 (5%)

Acute myeloid leukemias (Ib) 2 (4%)

Myelodysplastic syndrome and other

myeloproliferative diseases (Id)

1 (2%) 1 (5%)

Lymphoma (II)

Hodgkin lymphomas (IIa) 8 (18%) 1 (5%)

Non-Hodgkin lymphomas (except Burkitt

lymphoma) (IIb)

5 (23%)

Burkitt lymphoma (IIc) 2 (4%)

CNS and miscellaneous intracranial

and intraspinal neoplasms (III)

Ependymomas and choroid plexus

tumor (IIIa)

1 (5%)

Astrocytomas (IIIb) 1 (5%)

Medulloblastoma (IIIc, 1.) 2 (4%)

Other specified intracranial and intraspinal

neoplasms (IIIe, 5.)

2 (9%)

(Continued)
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TABLE 1 | Continued

First primary

neoplasms,

n (%)

Second primary

neoplasms,

n (%)

Neuroblastoma and other peripheral

nervous cell tumors (IV)

Neuroblastoma and ganglioneuroblastoma

(IVa)

2 (4%)

Retinoblastoma (V) 2 (4%)

Renal tumors (VI)

Nephroblastoma and other non-epithelial

renal tumors (VIa)

2 (4%)

Soft tissue and other extraosseous

sarcomas (IX)

Rhabdomyosarcomas (IXa) 3 (7%)

Other specified soft tissue sarcomas (IXd) 1 (5%)

Other malignant epithelial neoplasms

and malignant melanomas (XI)

Thyroid carcinomas (XIb) 6 (27%)

Carcinomas of salivary glands (XIf, 1.) 3 (14%)

Oncologic therapies

CT– RT– 1 (2%) 8 (36%)

CT+ RT– 12 (27%) 5 (23%)

CT– RT+ 1 (2%) 5 (23%)

CT+ RT+ 31 (69%) 4 (18%)

First primary neoplasms comprise all cancer patients if not stated otherwise. Tumor entities

were classified according to (35).
aCancer patients with a first primary neoplasm and no subsequent second primary

neoplasm only.

CT, chemotherapy; RT, radiation therapy including radioiodine-therapy for papillary

thyroid cancer.

replicate counted as colonies with at least 50 cells after exposure
to 0, 2, 4, and 6Gy X-rays from all available samples were 59.3±
39.3, 65.6± 39.9, 58.0± 39.9, and 25.6± 20.7 (mean± standard
deviation), respectively.

Cytogenetic Assays
G1 Assay
Confluent fibroblasts were harvested 24 h after exposure
to 3Gy X-rays and seeded at a density of 9,000 cells/cm2

in 75 cm2 cell culture flasks (Greiner Bio-One GmbH,
Frickenhausen, Germany). After 24 h, 0.02µg/ml Colcemid
(Roche, Basel, Switzerland) was added to collect only first
metaphases after IR exposure as confirmed by BrdU labeling
and fluorescence plus Giemsa staining performed according
to Perry and Wolff (37). This approach was further validated
by measuring the cell cycle progression after delayed plating
by flow cytometry (Supplementary Figure S1). Forty-eight
hours after delayed plating cells were trypsinized, chromosome
spreads were prepared, and Giemsa-stained as described
previously (38). This technique allows the detection of unstable
chromosome aberrations which are categorized as being
not transmissible to daughter cells comprising dicentric
chromosomes, centric rings, and excess acentric fragments
as well as chromatid breaks and exchanges (radials). For

TABLE 2 | Clonogenic survival after X-ray exposure of fibroblasts in G1.

Donor Surviving fraction

2 Gy 4 Gy 6 Gy

NN1 0.621 ± 0.070 0.188 ± 0.032 0.065 ± 0.019

FPN1 0.583 ± 0.144 0.160 ± 0.032 0.044 ± 0.025

SPN1 0.589 ± 0.092 0.220 ± 0.028 0.046 ± 0.010

NN2 0.333 ± 0.110 0.201 ± 0.079 -

FPN2 0.490 ± 0.031 0.260 ± 0.031 0.051 ± 0.022

SPN2 0.473 ± 0.179 0.188 ± 0.060 0.033 ± 0.003

NN3 0.456 ± 0.046 0.358 ± 0.102 0.070 ± 0.038

FPN3 0.917 ± 0.011 0.446 ± 0.018 0.095 ± 0.008

SPN3 0.483 ± 0.059 0.312 ± 0.024 0.119 ± 0.001

NN4 0.581 ± 0.031 0.266 ± 0.016 0.080 ± 0.014

FPN4 0.559 ± 0.049 0.202 ± 0.036 0.072 ± 0.010

SPN4 0.512 ± 0.026 0.222 ± 0.021 0.059 ± 0.012

SPN5 0.375 ± 0.225 0.363 ± 0.115 0.090 ± 0.079

NN6 0.541 ± 0.016 0.247 ± 0.013 0.116 ± 0.006

FPN6 0.365 ± 0.113 0.223 ± 0.027 0.119 ± 0.031

SPN6 0.588 ± 0.017 0.307 ± 0.010 0.134 ± 0.010

NN7 0.489 ± 0.059 0.292 ± 0.009 0.137 ± 0.007

FPN7 0.523 ± 0.072 0.222 ± 0.024 0.100 ± 0.005

SPN7 0.493 ± 0.036 0.186 ± 0.020 0.092 ± 0.007

NN8 0.500 ± 0.164 0.329 ± 0.035 0.116 ± 0.018

FPN8 0.452 ± 0.128 0.149 ± 0.036 0.055 ± 0.027

FPN8a 0.448 ± 0.047 0.168 ± 0.022 0.038 ± 0.004

SPN8 0.722 ± 0.106 0.278 ± 0.042 0.010 ± 0.006

NN9 0.677 ± 0.162 0.399 ± 0.048 0.193 ± 0.034

FPN9 0.393 ± 0.110 0.157 ± 0.016 -

SPN9 0.344 ± 0.116 0.172 ± 0.033 0.059 ± 0.020

NN10 0.478 ± 0.049 0.168 ± 0.061 0.112 ± 0.019

FPN10 0.524 ± 0.078 0.263 ± 0.042 0.097 ± 0.010

SPN10 0.425 ± 0.064 0.331 ± 0.037 0.128 ± 0.030

NN11 0.357 ± 0.076 0.140 ± 0.017 0.056 ± 0.017

FPN11 0.604 ± 0.088 0.212 ± 0.066 0.115 ± 0.008

SPN11 0.548 ± 0.129 0.274 ± 0.035 0.097 ± 0.014

NN12 0.374 ± 0.011 0.179 ± 0.020 0.041 ± 0.009

FPN12 0.779 ± 0.104 0.209 ± 0.036 0.073 ± 0.054

FPN12a 0.385 ± 0.037 0.134 ± 0.006 0.044 ± 0.011

SPN12 0.407 ± 0.028 0.197 ± 0.024 0.041 ± 0.009

NN13 0.684 ± 0.052 0.234 ± 0.028 0.074 ± 0.004

FPN13 0.653 ± 0.128 0.215 ± 0.019 0.086 ± 0.010

SPN13 0.239 ± 0.042 0.120 ± 0.008 0.023 ± 0.040

NN14 0.613 ± 0.032 0.265 ± 0.033 0.090 ± 0.005

FPN14 0.489 ± 0.032 0.212 ± 0.029 0.106 ± 0.026

SPN14 0.407 ± 0.070 0.222 ± 0.031 0.061 ± 0.024

NN15 0.178 ± 0.031 0.081 ± 0.013 0.012 ± 0.011

FPN15 0.920 ± 0.466 0.349 ± 0.025 0.076 ± 0.036

SPN15 0.568 ± 0.070 0.197 ± 0.056 0.081 ± 0.043

NN16 0.887 ± 0.054 0.365 ± 0.042 0.136 ± 0.027

FPN16 0.386 ± 0.164 0.175 ± 0.092 0.022 ± 0.007

SPN16 0.587 ± 0.035 0.266 ± 0.035 0.064 ± 0.010

NN17 0.500 ± 0.107 0.362 ± 0.101 0.109 ± 0.025

(Continued)
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TABLE 2 | Continued

Donor Surviving fraction

2 Gy 4 Gy 6 Gy

FPN17 0.507 ± 0.013 0.212 ± 0.023 0.067 ± 0.009

SPN17 0.682 ± 0.074 0.324 ± 0.059 0.106 ± 0.013

NN18 0.658 ± 0.111 0.097 ± 0.023 0.017 ± 0.013

FPN18 0.647 ± 0.280 0.390 ± 0.046 0.018 ± 0.018

SPN18 0.631 ± 0.043 0.284 ± 0.022 0.093 ± 0.008

NN19 0.551 ± 0.033 0.299 ± 0.026 0.135 ± 0.012

FPN19 0.628 ± 0.064 0.286 ± 0.040 0.036 ± 0.006

SPN19 0.737 ± 0.178 0.204 ± 0.057 0.044 ± 0.020

NN20 0.804 ± 0.197 0.331 ± 0.076 0.127 ± 0.016

FPN20 0.743 ± 0.086 0.323 ± 0.058 0.136 ± 0.016

SPN20 0.950 ± 0.108 0.339 ± 0.015 0.074 ± 0.007

NN21 0.521 ± 0.007 0.293 ± 0.011 0.063 ± 0.010

FPN21 0.628 ± 0.096 0.236 ± 0.090 0.096 ± 0.036

SPN21 0.670 ± 0.075 0.292 ± 0.009 0.130 ± 0.025

NN22 0.417 ± 0.036 0.234 ± 0.095 0.055 ± 0.023

NN22a n.a. n.a. n.a.

FPN22 0.683 ± 0.136 0.233 ± 0.026 0.059 ± 0.013

SPN22 0.551 ± 0.092 0.203 ± 0.011 0.056 ± 0.015

Data are presented as the mean fraction of surviving cells and the standard deviation of

three technical replicates from one experiment for each donor.

NN, no neoplasm; FPN, first primary neoplasm; SPN, second primary neoplasm.

each sample 100 complete diploid metaphases were analyzed
according to the criteria defined by Savage (39). The fraction of
tetraploid cells was calculated as the ratio of metaphases with
92 chromosomes divided by the total number of all analyzed
diploid and tetraploid metaphases. To assess the proportion
of tetraploid cells on average 506 metaphases were scored for
each sample.

G2 Assay
For the analysis of chromatid aberrations in cells exposed to
1Gy X-rays in G2, 2.25 h after irradiation 50 nM calyculin A
(LC Laboratories, Woburn, US) was added for 45min to the
cultures to induce G2-PCC. Detached cells were collected and
chromosome preparation and Giemsa staining were performed
as described previously (38). Chromatid aberrations were scored
as breaks, gaps, and exchanges (radials) in G2-PCCs with at least
46 chromosome pieces. Gaps, which are usually considered to
be achromatic lesions rather than true chromatid discontinuities,
were included due to the obscure structure of chromosomes
after G2-PCC. Chromatid exchanges were rare and scored
as one aberration. Isochromatid breaks were scored as 2
chromatid breaks. Generally, 100 G2-PCCs were analyzed for
each control sample and 50 G2-PCCs were analyzed for each
irradiated sample.

Cytogenetic Data
The yield of spontaneous aberrations in sham-irradiated cells
was subtracted from that in irradiated samples. If the desired
number of metaphases or G2-PCCs was not achieved due to

poor proliferation even in repeated experiments, all available
metaphases or G2-PCCs were used for the analysis. The exact
numbers of analyzed cells are provided in Tables 3, 4.

Three- and Twenty-Four-Color
Fluorescence in situ Hybridization
To detect transmissible aberrations in metaphase spreads
obtained in the G1 assay, e.g., translocations or insertions
which are not detected by the monochromic Giemsa method,
fluorescence in situ hybridization (FISH) was performed
for selected donors. Three-color FISH with a commercial
cocktail of whole chromosome probes 1, 2, and 4 was
conducted following the manufacturer’s protocol (Metasystems,
Altlussheim, Germany). Images of metaphases were obtained
using an Axioimager1 microscope and the AxioVision software
(Carl Zeiss AG, Oberkochen, Germany). Structural aberrations
were scored only when painted chromosomes were involved.
Analysis by 24-multicolor FISH (mFISH) which is capable
of providing more detailed cytogenetic information (40)
was performed as described previously (41). Slides were
hybridized with a 24XCyte mFISH kit according to the
manufacturer’s protocol (Metasystems, Altlussheim, Germany).
Captured images of metaphases were obtained with a Zeiss Axio-
Imager Z2 microscope (Zeiss, Jena, Germany) and processed
and analyzed with the Isis software (In Situ Imaging Systems,
Metasystems, Germany). Structural aberrations were classified
according to the mPAINT system (42). In brief, basic aberration
forms such as translocations (t), insertions (ins), or dicentric
chromosomes (dic) are described. Chromosome fragments
containing a centromere are indicated by an apostrophe. An
uppercase “T” indicates a truncated centric element which has
become visibly shortened. For example, a reciprocal translocation
between chromosomes 1 and 2 is designated “t (1′-2) (2′-1).”
Identical chromosome aberrations were termed clonal if they
were present in at least two metaphases of one sample. For each
sample 100 diploid metaphases were analyzed.

Data and Statistical Analysis
The clonogenic survival after IR exposure was analyzed using a
linear mixed model with the fixed variables dose, dose2, group
(NN, FPN, or SPN) and intercept including the patient as a
random effect. The model was fitted using the lmer function in
lme4 R package (43). Aberrations scored in the G1 and G2 assay
were analyzed separately using the R package glmmTMB (44).
Mixed models were fitted to estimate the effect of dose, group
(NN, FPN, or SPN), a previous RT or CT, gender, and tumor
entity on the number of aberrations. The negative binomial
model with the patient as a random variable fitted best. Adding
the matching group as an additional random variable did not
improve the model. Age, sex, and tumor entity showed no
significant impact on aberrations and were therefore excluded
from the final model. The relationship between two variables was
analyzed using Pearson’s test and is provided as the correlation
coefficient (r). All levels of significance were set at p<0.05.
Average rates of chromosome aberrations or the fraction of
surviving cells of pooled donors of the different study populations
are provided as the mean± standard deviation.
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TABLE 3 | Spontaneous and radiation-induced chromosome aberrations per cell in first post-exposure metaphases collected 48 h after irradiation of fibroblasts in G1

with 3Gy X-rays (G1 assay).

Donor 0 Gy 3 Gy

Cells Aberrant

cells (%)

Aberrations dic r ace ctb cte 4N

(%)

Cells Aberrant

cells (%)

Aberrations dic r ace ctb cte

NN1 100 17.0 0.26 0.01 – 0.10 0.15 – 3.6 100 61.0 0.77 0.36 0.03 0.35 0.01 0.02

FPN1 100 7.0 0.08 0.02 – 0.05 0.01 – 1.5 100 54.0 0.59 0.36 0.02 0.21 – –

SPN1 100 15.0 0.21 0.07 – 0.10 0.03 0.01 0.8 71 60.6 0.59 0.18 0.03 0.37 0.01 –

NN2 100 4.0 0.04 – 0.02 – 0.02 – 0.6 100 49.0 0.70 0.39 – 0.28 0.03 –

FPN2 100 8.0 0.10 – – 0.06 0.04 – 1.2 100 52.0 0.66 0.36 0.02 0.28 – –

SPN2 100 4.0 0.05 0.01 – 0.03 0.01 – 1.2 100 48.0 0.66 0.34 0.02 0.29 – 0.01

NN3 100 9.0 0.12 – – 0.04 0.08 – 1.2 100 47.0 0.54 0.31 0.01 0.22 – –

FPN3 100 1.0 0.01 – – 0.01 – – 0.4 100 44.0 0.60 0.32 0.01 0.27 – –

SPN3 100 7.0 0.09 – – 0.07 0.02 – 2.0 100 49.0 0.55 0.35 0.02 0.17 0.01 –

NN4 100 1.0 0.01 – – – 0.01 – 2.3 57 63.2 0.74 0.23 0.04 0.47 – –

FPN4 100 3.0 0.03 – – 0.01 0.02 – 2.1 100 56.0 0.87 0.40 – 0.44 0.03 –

SPN4 100 10.0 0.10 0.01 0.01 0.04 0.04 – 1.0 100 57.0 0.73 0.38 – 0.35 – –

SPN5 100 2.0 0.02 – – 0.01 0.01 – 1.3 100 57.0 0.66 0.38 0.01 0.27 – –

NN6 100 3.0 0.04 – – 0.03 0.01 – 0.2 100 58.0 0.76 0.26 0.04 0.42 0.04 –

FPN6 n.a – n.a.

SPN6 100 13.0 0.18 – – 0.16 0.02 – 0.7 100 50.0 0.58 0.27 0.01 0.30 – –

NN7 100 2.0 0.02 – – 0.01 0.01 – 1.0 100 65.0 0.79 0.38 0.03 0.38 – –

FPN7 100 2.0 0.02 – – 0.02 – – 1.5 100 49.0 0.65 0.35 0.02 0.26 0.02 –

SPN7 58 12.1 0.14 0.02 0.02 0.07 0.03 – 1.6 76 60.5 0.80 0.35 – 0.44 0.01 –

NN8 100 6.0 0.06 – – 0.06 – – 0.8 100 40.0 0.47 0.26 – 0.21 – –

FPN8 100 7.0 0.07 0.04 – 0.03 – – 1.8 100 57.0 0.77 0.40 – 0.31 0.06 –

FPN8a 100 – – – – – – – 1.5 100 61.0 0.94 0.34 0.01 0.57 0.01 –

SPN8 100 1.0 0.01 – – 0.01 – – 2.3 100 52.0 0.64 0.35 0.02 0.27 – –

NN9 100 14.0 0.16 0.01 – 0.07 0.08 – 0.4 100 46.0 0.48 0.25 0.02 0.21 – –

FPN9 100 17.0 0.18 0.04 – 0.14 – – 1.7 100 56.0 0.48 0.29 0.02 0.17 – –

SPN9 100 2.0 0.02 – – 0.02 – – 4.0 47 48.9 0.58 0.28 0.02 0.28 – –

NN10 100 3.0 0.03 – – 0.01 0.02 – 2.8 100 50.0 0.64 0.30 0.01 0.31 0.02 –

FPN10 100 9.0 0.09 – – 0.06 0.03 – 2.0 n.a

SPN10 100 1.0 0.02 – – 0.02 – – 1.1 n.a

NN11 100 18.0 0.23 0.03 – 0.07 0.13 – 2.2 100 56.0 0.76 0.39 0.03 0.34 – –

FPN11 78 7.7 0.09 – – 0.09 – – – 100 56.0 0.61 0.26 0.06 0.28 0.01 –

SPN11 100 6.0 0.07 – – 0.05 0.02 – 1.0 100 57.0 0.68 0.46 0.01 0.21 – –

NN12 100 2.0 0.02 – – 0.02 – – 1.3 88 51.1 0.61 0.28 0.02 0.26 0.03 –

FPN12 100 3.0 0.03 0.01 – 0.02 – – 0.2 100 59.0 0.80 0.36 – 0.43 0.01 –

FPN12a 100 12.0 0.14 – – 0.03 0.09 0.02 2.5 29 65.5 0.90 0.45 – 0.45 – –

SPN12 100 18.0 0.25 – – 0.13 0.12 – 1.8 100 54.0 0.56 0.35 0.03 0.18 – –

NN13 100 8.0 0.09 0.01 – 0.06 0.02 – 1.8 100 48.0 0.59 0.28 0.01 0.30 – –

FPN13 100 9.0 0.01 – – 0.07 0.03 – 1.7 100 49.0 0.53 0.29 – 0.24 – –

SPN13 88 19.3 0.22 0.02 – 0.07 0.13 – 3.3 100 70.0 0.87 0.30 0.01 0.56 – –

NN14 100 5.0 0.06 0.02 – 0.03 0.01 – 0.3 100 59.0 0.74 0.35 0.01 0.33 0.05 –

FPN14 100 15.0 0.17 0.08 – 0.05 0.04 – 0.2 94 62.8 0.71 0.41 – 0.30 – –

SPN14 100 5.0 0.06 0.02 – 0.03 0.01 – 1.0 100 56.0 0.72 0.34 0.01 0.32 0.05 –

NN15 100 6.0 0.06 0.01 – 0.02 0.03 – 0.2 n.a

FPN15 74 10.8 0.12 0.01 – 0.10 0.01 – 0.2 n.a

SPN15 100 17.0 0.21 0.03 – 0.14 0.04 – 0.2 66 29.0 0.41 0.24 0.02 0.14 – –

NN16 100 6.0 0.06 0.02 – 0.04 – – 1.4 100 55.0 0.80 0.45 – 0.35 – –

FPN16 100 13.0 0.15 0.05 – 0.09 0.01 – 7.4 100 58.0 0.79 0.45 0.03 0.27 0.04 –

(Continued)
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TABLE 3 | Continued

Donor 0 Gy 3 Gy

Cells Aberrant

cells (%)

Aberrations dic r ace ctb cte 4N

(%)

Cells Aberrant

cells (%)

Aberrations dic r ace ctb cte

SPN16 100 3.0 0.03 – – 0.03 – – 1.6 96 51.0 0.77 0.35 – 0.42 – –

NN17 100 6.0 0.06 – – 0.06 – – 2.0 100 50.0 0.58 0.33 – 0.25 – –

FPN17 100 16.0 0.22 – – 0.17 0.05 – 1.2 100 47.0 0.45 0.25 – 0.20 – –

SPN17 100 10.0 0.11 0.02 – 0.08 0.01 – 1.0 59 50.9 0.64 0.29 0.03 0.29 0.02 –

NN18 100 9.0 0.09 – – 0.06 0.03 – 1.2 100 38.0 0.49 0.29 – 0.20 – –

FPN18 100 1.0 0.01 – – 0.01 – – 8.8 100 48.0 0.63 0.31 0.02 0.30 – –

SPN18 100 5.0 0.09 0.01 – 0.08 – – 1.2 45 46.7 0.53 0.28 0.07 0.16 0.02 –

NN19 100 3.0 0.03 0.01 – 0.01 0.01 – 0.8 100 51.0 0.70 0.40 0.01 0.29 – –

FPN19 100 7.0 0.07 – – 0.07 – – 0.6 100 59.0 0.87 0.45 0.01 0.41 – –

SPN19 100 1.0 0.01 0.01 – – – – 0.5 100 52.0 0.69 0.39 – 0.30 – –

NN20 100 11.0 0.11 – – 0.08 0.03 – 0.6 100 40.0 0.43 0.23 0.01 0.19 – –

FPN20 100 12.0 0.12 – – 0.09 0.03 – 0.8 100 45.0 0.52 0.31 0.03 0.18 – –

SPN20 100 3.0 0.05 0.01 – 0.03 0.01 – 1.8 87 50.6 0.72 0.40 – 0.32 – –

NN21 100 9.0 0.10 0.04 – 0.05 0.10 – 5.4 100 54.0 0.65 0.36 – 0.29 – –

FPN21 100 7.0 0.07 0.03 – 0.04 – – 4.0 100 57.0 0.61 0.26 0.01 0.34 – –

SPN21 100 21.0 0.30 0.01 – 0.11 0.16 0.02 5.1 100 44.0 0.43 0.29 0.01 0.13 – –

NN22 100 16.0 0.18 0.04 – 0.06 0.07 0.01 2.0 100 53.0 0.63 0.35 0.03 0.25 – –

NN22a 100 5.0 0.07 – – 0.07 – – 0.8 100 54.0 0.63 0.28 0.03 0.31 0.01 –

FPN22 100 5.0 0.06 0.01 – 0.05 – – 1.2 n.a.

SPN22 100 3.0 0.03 – – 0.03 – – 2.2 100 37.0 0.40 0.24 0.04 0.12 – –

For some donors the cytogenetic analysis was not available (n.a.) due to an insufficient mitotic index.

NN, no neoplasm; FPN, first primary neoplasm; SPN, second primary neoplasm; dic, dicentric chromosome; r, centric ring chromosome; ace, excess acentric fragment; ctb, chromatid

break; cte, chromatid exchange (radial); 4N, fraction of tetraploid mitoses.

RESULTS

Patient Characteristics
An overview of the summarized characteristics of cancer patients
is provided in Table 1. Total numbers of 23 cases with FPN only
and 22 cases with the same FPN and a subsequent SPN as well
as 22 NN donors were enclosed in the study. Hematopoietic and
lymphoid cancers represented the majority of FPN (76%) and
only a minor fraction of SPN (36%). Information on oncologic
therapies is provided to the best of our knowledge based on
the documentation of treating physicians voluntarily and on
patient-based self-reports during a medical interview. All FPNs
except for two retinoblastomas were treated by CT. However,
since no matching of oncologic therapies has been performed
between the corresponding FPN and SPN cases, differences
in the application of RT were noted as follows: Four SPN and
two FPN cases received radiochemotherapy compared to their
respective FPN and SPN counterparts treated with CT only.
In at least two other cases RT was administered to different or
unknown anatomic regions. One FPN donor was treated by
surgery only for unilateral retinoblastoma whereas the matched
SPN case received RT only for bilateral retinoblastoma. One
FPN and six SPN patients received a bone marrow or stem cell
transplant during therapy without preconditioning by total body
RT. For all patients, RT was administered locally to the site of a
solid tumor, as cranial or craniospinal irradiation for leukemia,
mainly at the thoracic and neck region for lymphoma or as

radioiodine-therapy for papillary thyroid cancer. According
to the common RT plans for the enclosed tumor entities, the
treatment fields of partial-body RT did not involve the site of skin
biopsy near the cubital region. Due to the retrospective nature
of the study with an inevitable long follow-up, skin biopsies
were collected from young adults on average 20 years after the
diagnosis of the pediatric FPN and on average 10 years after the
diagnosis of the adolescent SPN.

Clonogenic Survival
The cellular IR sensitivity of primary fibroblasts was measured
as clonogenic survival after X-ray exposure of cells in G1. The
summarized results for FPN, SPN, and NN donors are presented
in Figure 1 and raw data for each donor is provided in Table 2.
The average plating efficiencies of NN, FPN, and SPN donors
were similar with fractions of 6.4 ± 3.9%, 4.7 ± 3.4%, and 6.8 ±
3.9% of cells forming colonies, respectively. After irradiation, no
significant difference in the fraction of surviving cells was found
between NN and FPN or SPN donors. Mean surviving fractions
at 2Gy (SF2) of NN, FPN, and SPN donors were 0.54± 0.16, 0.58
± 0.16, and 0.53± 0.16, respectively.

Chromosome Aberrations
G1 Assay
For the G1 assay, a total of 65 donors were analyzed for
the rate of spontaneous chromosome aberrations, yielding a
mean of 0.091 ± 0.073 aberrations per cell. Concerning the
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TABLE 4 | Spontaneous and radiation-induced chromatid aberrations per G2-PCC 3h after irradiation of exponentially growing fibroblasts with 1Gy X-rays (G2 assay).

Donor 0 Gy 1 Gy

Cells Aberrant cells (%) Aberrations ctb/gaps cte Cells Aberrant cells (%) Aberrations ctb/gaps cte

NN1 100 45.0 1.09 1.09 – 50 96.0 6.03 6.03 –

FPN1 100 44.0 0.98 0.98 – 50 100 5.74 5.74 –

SPN1 100 44.0 1.10 1.10 – 50 100 5.64 5.64 –

NN2 100 20.0 0.33 0.33 – 50 100 6.85 6.79 0.06

FPN2 96 20.8 0.62 0.62 – 49 100 6.92 6.92 –

SPN2 100 28.0 0.46 0.46 – 54 100 6.50 6.50 –

NN3 100 27.0 0.50 0.50 – 50 92.0 5.96 5.92 0.04

FPN3 100 31.0 0.59 0.59 – 50 96.0 4.25 4.25 –

SPN3 100 40.0 0.65 0.65 – 50 100 6.05 6.05 –

NN4 100 30.0 0.65 0.64 0.01 50 98.0 6.70 6.64 0.03

FPN4 100 50.0 1.26 1.26 – 50 100 4.32 4.28 0.02

SPN4 100 38.0 0.56 – – 50 100 6.50 6.34 0.08

SPN5 100 14.0 0.17 0.17 – 38 100 5.47 5.44 0.03

NN6 100 44.0 0.98 0.98 – 50 100 6.18 6.14 0.04

FPN6 n.a. n.a.

SPN6 100 48.0 1.60 1.58 0.02 50 96.0 5.92 5.92 –

NN7 100 22.0 0.40 0.40 – 50 98.0 5.36 5.36 –

FPN7 83 33.7 0.69 0.69 – 46 100 5.16 5.16 –

SPN7 82 29.3 0.62 0.62 – 33 100 5.83 5.77 0.06

NN8 100 31.0 0.46 0.44 0.02 50 100 5.28 5.28 -

FPN8 100 31.0 0.61 0.58 0.03 50 100 7.83 7.68 0.15

FPN8a 100 26.0 0.33 0.32 0.01 50 100 6.50 6.50 -

SPN8 100 34.0 0.65 0.65 – 50 100 6.93 6.81 0.06

NN9 100 32.0 0.58 0.58 – n.a.

FPN9 100 18.0 0.43 0.43 – 23 100 5.57 5.57 –

SPN9 100 10.0 0.13 0.13 – 50 100 5.23 5.19 0.04

NN10 100 21.0 0.42 0.42 – 50 98.0 5.28 5.24 0.04

FPN10 100 40.0 0.78 0.78 – 50 100 5.70 5.68 0.02

SPN10 52 9.0 0.35 0.35 – n.a.

NN11 84 28.6 0.73 0.73 – 50 100 6.75 6.69 0.06

FPN11 74 48.7 0.96 0.96 – 49 98.0 5.60 5.60 –

SPN11 100 39.0 0.94 0.94 – 50 100 5.02 5.02 –

NN12 100 16.0 0.31 0.31 – 50 100 4.83 4.83 –

FPN12 100 36.0 0.62 0.62 – 50 100 5.18 5.18 –

FPN12a 100 47.0 0.85 0.78 0.07 50 100 5.69 5.64 0.05

SPN12 100 46.0 1.20 1.16 0.03 38 100 5.55 5.55 -

NN13 100 51.0 1.06 1.04 0.02 50 98.0 4.78 4.74 0.04

FPN13 100 41.0 1.05 1.02 0.03 50 100 6.06 6.06 –

SPN13 100 20.0 0.30 0.30 – 50 100 5.84 5.72 0.12

NN14 100 38.0 0.54 0.53 0.01 50 100 6.44 6.37 0.07

FPN14 100 31.0 0.77 0.74 0.03 50 100 5.73 5.68 0.05

SPN14 100 30.0 0.68 0.68 – 32 100 5.45 5.38 0.06

NN15 100 31.0 0.74 0.69 0.05 50 100 6.11 6.11 –

FPN15 100 8.0 0.11 – – 50 100 5.35 5.35 –

SPN15 98 24.5 0.39 0.39 – 48 100 5.57 5.47 0.10

NN16 100 46.0 1.22 1.22 – 49 98.0 7.64 7.62 0.02

FPN16 n.a. – n.a.

SPN16 100 53.0 1.18 1.18 – 50 98.0 5.32 5.32 –

NN17 100 19.0 0.49 0.48 0.01 50 100 5.67 5.60 0.07

(Continued)

Frontiers in Oncology | www.frontiersin.org 8 August 2020 | Volume 10 | Article 1338

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Zahnreich et al. Radiosensitivity and Second Cancer Risk

TABLE 4 | Continued

Donor 0 Gy 1 Gy

Cells Aberrant cells (%) Aberrations ctb/gaps cte Cells Aberrant cells (%) Aberrations ctb/gaps cte

FPN17 100 42.0 1.37 1.31 0.06 50 100 8.59 8.47 0.12

SPN17 100 52.0 1.23 1.14 0.09 50 100 9.39 9.22 0.17

NN18 87 13.8 0.17 0.17 – 50 98.0 6.15 6.05 0.10

FPN18 100 40.0 1.13 1.01 0.03 50 100 6.32 6.25 0.07

SPN18 100 41.0 0.65 0.65 – 50 100 5.37 5.35 0.02

NN19 100 27.0 0.43 0.43 – 50 100 5.47 5.43 0.04

FPN19 100 27.0 0.39 0.39 – 50 100 4.83 4.77 0.06

SPN19 67 25.4 0.37 0.37 – 49 100 4.99 4.95 0.04

NN20 100 18.0 0.39 0.39 – 50 100 4.51 4.49 0.02

FPN20 100 36.0 1.04 0.96 0.08 50 100 6.58 6.48 0.10

SPN20 100 24.0 0.55 0.53 0.02 50 98.0 6.03 5.95 0.08

NN21 100 54.0 2.16 2.02 0.07 50 100 4.89 4.86 0.03

FPN21 100 41.0 0.82 0.79 0.03 37 100 6.48 6.32 0.16

SPN21 100 28.0 0.66 0.64 0.02 50 100 4.90 4.82 0.08

NN22 100 36.0 0.76 0.75 0.01 50 100 5.93 5.93 –

NN22a 100 22.0 0.48 0.48 – 50 98.0 5.47 5.47 –

FPN22 100 42.0 0.91 0.87 0.04 50 100 5.89 5.85 0.04

SPN22 73 34.3 0.55 0.55 – 56 100 6.29 6.29 –

For some donors the cytogenetic analysis was not available (n.a.) due to poor proliferation and an insufficient G2-index.

NN, no neoplasm; FPN, first primary neoplasm; SPN, second primary neoplasm; ctb, chromatid break; cte, chromatid exchange (radial).

FIGURE 1 | Clonogenic survival of primary skin fibroblasts from donors with

no neoplasm (NN, n = 22), only a first primary neoplasm (FPN, n = 23) or an

FPN and a subsequent second primary neoplasm (SPN, n = 21) after

exposure to X-rays. Error bars represent the standard deviation. All lines were

fitted by a linear-quadratic function.

different study populations, the highest, although insignificantly
elevated average rate of 0.103 ± 0.083 aberrations per cell
was found in SPN donors compared to 0.083 ± 0.064 in
FPN donors and 0.086 ± 0.068 in NN donors as shown
in Figure 2A. For the different types of aberrations, the
only divergence was a very mild increase of chromatid

exchanges in SPN donors. Detailed information on the rate of
chromosome aberrations scored in the G1 assay is provided in
Table 3.

Remarkably, metaphase analysis of sham-irradiated cells
revealed a striking chromosomal instability in two SPN donors.
One SPN donor, who suffered from lymphoma as the FPN
and SPN, showed exceptionally high numbers of numerical
and unstable structural aberrations in 4 out of 100 analyzed
metaphases. Representative pictures of such highly aberrant
metaphases of this donor are shown in Figure 2C. Otherwise
stable ploidy levels were observed for all other donors. The mean
proportion of tetraploid cells in sham-irradiated samples of all
donors was 1.68 ± 1.60% (range 0–8.8%) with no significant
differences between the study populations (p = 0.703). Detailed
information on tetraploidy is provided in Table 3. For a second
SPN donor, Giemsa-analysis already indicated the presence of
two clonal translocations as shown in Figure 3. Since this patient
suffered from a pediatric rhabdomyosarcoma as the FPN which
has been associated with the translocations (2;13)(q35;q14) or
(1;13)(p36;q14) in tumor specimen (45), we screened all four
donors of the respective quadruplet with two FPN cases for
the involvement of chromosomes 1, 2, and 4 in cytogenetic
alterations by three-color FISH. The NN donor and the two
FPN donors showed no or a very low frequency of aberrations
involving chromosome 1 in ≤3% of metaphases, whereas it was
involved in aberrations in 84% of the metaphases of the SPN
donor. Chromosomes 2 and 4 were not involved in aberrations
in any donor analyzed. Subsequent mFISH analysis of the SPN
donor revealed the following translocations: t (15′-1) (1′T) clonal
in 53% of metaphases, t (1′-5) (5′T) clonal in 28% of metaphases,
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FIGURE 2 | Box and whisker plots of (A) spontaneous and (B) radiation-induced chromosome aberrations in primary skin fibroblasts from donors with no neoplasm

(NN), only a first primary neoplasm (FPN), or an FPN and a subsequent second primary neoplasm (SPN). Aberrations were scored in metaphases of the first cell cycle

after exposure in G1 to 3Gy X-rays. Boxes include 50% of the data. The inner line represents the median value, whiskers represent the minimum and maximum

values, and circles mark outliers. (C) Two representative Giemsa-stained complete metaphases from an SPN donor showing an abnormally high rate of spontaneous

numerical and structural aberrations. Differences in the morphology of chromosomes between metaphases result from the different degrees of condensation.

Structural aberrations are exemplarily indicated (arrow: dicentric chromosome, asterisk: acentric fragment).

t (15′-21) (21′-15) clonal in 5% of metaphases, t (15‘-6) (6‘-15),
t (11‘-8) (8‘T) clonal in 2% of metaphases as well as non-clonal
translocations t (15′-1) (1′T) t (2′-12) (12′-2), and t (16′-17) (17′-
16) in one metaphase each. In total 90% aberrant metaphases
were detected by mFISH. The aberrations were found in different
cell cultures and passages of cells from this donor which were
performed for the extensive cytogenetic analyses. Representative
pictures of aberrant metaphases and karyotypes of this SPN
donor after Giemsa-staining, three-color FISH, and mFISH are
shown in Figure 3 and Supplementary Figure S2.

After irradiation of fibroblasts with 3Gy X-rays in G1 the
mean yield of IR-induced chromosome aberrations in first post-
exposure mitoses of a total of 61 donors was 0.650 ± 0.129 per
cell. Shown in Figure 2B, the different sub-groups of donors
had comparable average rates of IR-induced aberrations per
cell of 0.642 ± 0.114 in NN donors, 0.683 ± 0.148 in FPN
donors and 0.628 ± 0.124 in SPN donors. For a qualitative
examination of the accuracy of DSB repair the average rates of RI
interchromosomal exchanges scored as dicentric chromosomes
were compared between the different donor groups. RI dicentrics
occurred at similar frequencies per cell of 0.321 ± 0.062 in NN
donors, 0.348 ± 0.065 in FPN donors, and 0.324 ± 0.065 in
SPN donors.

G2 Assay
The analysis of chromatid aberrations in G2-PCCs from a total
number of 64 donors showed a mean yield of spontaneous
aberrations of 0.706 ± 0.377 per cell, primarily attributed to
the occurrence of chromatid breaks and gaps. The rates for
the different sub-groups of donors were comparable with 0.615
± 0.274 aberrations per cell in NN donors, 0.767 ± 0.321 in
FPN donors, and 0.742 ± 0.495 in SPN donors (Figure 4A).
Three hours after exposure to 1Gy X-rays the average yield of
IR-induced chromatid aberrations in 63 donors was 5.88± 0.921
per G2-PCC. The different study populations showed similar
mean rates of IR-induced chromatid aberrations per G2-PCC
amounting to 5.83 ± 0.791 in NN donors, 5.90 ± 1.08 in FPN
donors, and 5.91 ± 0.982 in SPN donors (Figure 4B). Detailed
information on the rate of chromatid aberrations scored in G2-
PCCs is provided in Table 4.

Correlations Between Assays and Patient
Characteristics
Concerning a relationship between the results of the G1 and the
G2 assay, only the level of spontaneous aberrations correlated
weakly (r = 0.41, p < 0.001). No correlation was observed
between the SF2 obtained in the clonogenic survival assay and
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FIGURE 3 | Representative metaphases of an SPN donor carrying the spontaneous clonal translocations (A) t (15′-1) (1′T) and (B) t (1′-5) (5′T) after Giemsa staining

(left panel), three-color FISH (central panel, red: chr. 1, green: chr. 2, yellow: chr. 4) and mFISH (right panel). Translocations are indicated by red arrows in metaphase

spreads after Giemsa staining and three-color FISH.

FIGURE 4 | Box and whisker plots of (A) spontaneous and (B) radiation-induced chromatid aberrations in primary skin fibroblasts from donors with no neoplasm

(NN), only a first primary neoplasm (FPN), or an FPN and a subsequent second primary neoplasm (SPN). Aberrations were scored in prematurely condensed

chromosomes of G2 cells (G2-PCCs) 3 h after the exposure of exponentially growing cells to 1Gy X-rays. Boxes include 50% of the data. The inner line represents the

median value, whiskers represent the minimum and maximum values, and circles mark outliers.
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the results of any cytogenetic evaluation. Statistical analysis did
not reveal a significant impact of a previous RT, CT, gender, or
tumor entity (solid vs. hematopoietic or lymphoid) as well as
FPN or SPN on the average level of spontaneous or IR-induced
chromosome aberrations in both assays. Only in vitro exposure to
IR increased the probability for the formation of a chromosome
aberration per cell significantly by 8.1- and 10.4-fold for the G1
and G2 assay, respectively. Details on statistical evaluations are
provided in Supplementary Tables S1, S2.

DISCUSSION

With increasing success in tumor control due to the constant
progress of diagnostics and therapeutic strategies in oncology,
treatment-related adverse late-effects inevitably gain high clinical
relevance. Iatrogenic high-grade toxicities and second primary
malignancies are a major threat and cause of long-term
morbidity for the continuously increasing number of cancer
survivors, in particular for childhood cancer patients (1, 2,
6). The present study examined if a relation between the
susceptibility to pediatric FPNs or therapy-related SPNs and
impaired genome maintenance exists. Therefore, measurements
of sporadic chromosomal instability and cellular or chromosomal
IR sensitivity in normal somatic cells were performed in matched
SPN, FPN, andNNdonors.We observed no significant difference
for clonogenic cell survival after IR or the average yield of
spontaneous and IR-induced chromosome aberrations between
the study populations. Striking spontaneous chromosomal
abnormities were found in two donors with SPN only. The results
obtained in this study population indicate that the etiology of
sporadic childhood cancer or the risk for SPN might underlie
limited DNA repair capacities and provide useful information for
future studies including the need for other biomarkers.

Since intrinsic proneness to cancer has been closely related
to alterations in the DNA damage response a variety of
studies have been conducted to identify high-risk patients
by using biomarkers of DNA damage and repair. Over the
past two decades evidence accumulated that chromosomal IR
sensitivity of lymphocytes assessed by the conventional analysis
of metaphases after irradiation of cells in G2 may serve as
an indicator for proneness to an FPN. Such correlations of
an increased innate chromosomal IR sensitivity and cancer
susceptibility have been discussed regarding the presence of
unknown, low-penetrance predisposing genes, in particular for
patients with early-onset malignancies (27, 46). Many studies
used classification criteria based on the average yield or arbitrary
thresholds for the dispersion of IR-induced chromosome
aberrations in G2 lymphocytes obtained at diagnosis to stratify
for normal and sensitive IR responders and showed higher
fractions of IR sensitive patients with sporadic and familial
histories of breast cancer (14–21, 24, 47), with brain tumors
(22, 23), head and neck squamous cell carcinomas (26), colorectal
cancer (24), or suffering from different tumor entities (25).
Moreover, these results point toward higher fractions of IR
sensitive individuals among young adults with early-onset
cancers (14, 26). For pediatric FPNs, Baria et al. (27) and Curwen

et al. (28) confirmed an increased chromosomal IR sensitivity of
G2 lymphocytes from childhood cancer patients. Using bioassays
to quantify DSBs visualized as foci of γH2AX, 53BP1, or pATM
(phosphorylated ataxia telangiectasia mutated), Rube et al. (30)
and Schuler et al. (31) reported a compromised repair of IR-
induced DSBs in G0 lymphocytes of childhood cancer patients
suffering from different tumor entities, most pronounced in
patients developing life-threatening or even lethal normal-tissue
toxicities. Their findings also emphasize the strong selection
criterion and potential bias of our study by examining only long-
term survivors of pediatric FPNs compared to the vast majority
of studies conducted on lymphocytes drawn at the time of tumor
diagnosis. Hitherto, a sole nested case-control study performed
by Haddy et al. (29) investigated differences in the repair of
IR-induced DSBs between childhood cancer patients with an
FPN and patients with a subsequent SPN. Applying γH2AX
fluorescence intensity measurements by flow cytometry as a
surrogate marker for DSBs in patient-derived lymphoblastoid
cell lines established on average 24 years after the diagnosis of
the FPN, an association between higher rates of basal as well
as IR-induced DSBs and the risk of SPN in childhood cancer
survivors was demonstrated. However, no tumor-free controls
were included in the study.

To the best of our knowledge, the nested case-control study
presented here is the first comparing the intrinsic genome
integrity as well as the cellular and cytogenetic response to
IR in primary fibroblasts obtained from patients with an
FPN who developed an SPN or not and matched tumor-free
controls. The above-cited studies have been performed with
primary peripheral blood lymphocytes or lymphoblastoid cell
lines which might affect the comparability with the results
obtained in fibroblasts in the present study. Even though systemic
lymphocytes are by far more easily accessible byminimal invasive
venepuncture, we have chosen to conduct our investigations on
primary skin fibroblasts since the use of lymphocytes is fraught
with some major drawbacks: (1) they are unsuitable for long-
term conservation and propagation unless immortalization with
the Epstein-Barr virus transformation is performed which has
profound impacts on cell cycle regulation via the expression
of viral oncogenes, (2) they are largely exposed to genotoxic
anticancer drugs including irradiation of bone marrow during
radiotherapy, (3) they are prone to hematopoietic mosaicisms,
and (4) they are unsuitable after a bone marrow or stem cell
transplantation. The latter applies in particular to the present
study since seven former childhood cancer patients received
a bone marrow or stem cell transplant during their course
of cancer therapy. As known from various studies of donors
with chromosomal instability syndromes like Fanconi anemia,
Bloom or Nijmegen breakage syndrome, sporadic as well as
clastogen-induced chromosome aberrations in lymphocytes can
be very well recapitulated in different cell types of the same
donor such as skin fibroblasts (48, 49) or buccal epithelial cells
(50). In this field, the use of skin fibroblasts is even preferred
for diagnostic purposes since the occurrence of hematopoietic
mosaicisms can obscure germline mutations and generate false-
negative results (48, 49). Furthermore, a study by Lobrich
et al. (51) demonstrated that the intrinsic defect in DSB
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repair of a patient showing radiation hypersensitivity during
radiotherapy could be detected qualitatively and quantitatively
to a comparable extent in his lymphocytes and fibroblasts by
γH2AX foci quantification after IR exposure. We are aware that
the quantity and quality of IR-induced chromosome aberrations
are dependent on various factors including nuclear geometry
and architecture (52, 53) which differs between adherent
and flat fibroblasts or spherical lymphocytes in suspension.
However, this study did not aim to draw a direct quantitative
comparison on the yield of IR-induced aberrations between
previous studies using lymphocytes and our fibroblast data but
to compare sporadic and IR-induced aberrations in the same
cell type between the different donor groups. Using primary
skin fibroblasts as a model of the normal somatic tissue we did
not observe any difference in the average rate of spontaneous
chromosome aberrations or clonogenic survival and aberrations
after IR exposure between the study populations. Thus, our
results show a comparable efficiency of genome maintenance
between former pediatric patients with a high proneness to
cancer per se or an SPN and tumor-free donors. Only a
slight trend toward elevated spontaneous aberrations in SPN
donors was observed with two SPN-cases displaying exceptional
chromosomal instability. SPN donors showed a larger degree of
variation in the clonogenic survival as well as for the level of
spontaneous unstable aberrations in both assays when compared
to FPN cases and tumor-free donors. Improving statistics by
a larger cohort size or by increasing the number of evaluated
cells through automated scoring of cytogenetic damage might
corroborate these results in the future. Studies based on large
epidemiological cohorts already showed an association between
high levels of spontaneous unstable chromosome aberrations
in peripheral blood lymphocytes of healthy individuals and
cancer risk independent of previous exposures to carcinogens
(32, 33, 54). Also, cytogenetic evaluations in somatic cells of
pediatric cancer patients suggest that constitutional or treatment-
related karyotype instability might promote the development of
an SPN (54–56).

In this present study, the occurrence of aneuploid (near
tetraploid) metaphases with a very high burden of structural
aberrations in fibroblasts of an SPN donor who suffered from
two independent lymphomas reflects a tumor-like karyotype
and is a very clear indicator of exceptional chromosomal
instability. Tetraploidization and a mild accumulation of
aberrant metaphases can be a feature of in vitro aged primary
fibroblasts approaching replicative senescence but are usually not
found in recently established cultures at low passages as used
here (57). Apart from the case described above, ploidy levels
were normal with comparable fractions of tetraploid cells for
all participants. Another SPN donor with a rhabdomyosarcoma
as the FPN and a subsequent lymphoma as the SPN displayed
high rates of clonal and non-clonal translocations in 90% of
metaphases detected by high-resolution mFISH. Non-clonal
translocations as well as their clonal expansion have been
documented in skin fibroblasts from patients with hematopoietic
malignancies after high-dose CT plus total-body RT before
bone marrow transplantation (58). However, such aberrations
can also occur as an artifact during the in-vitro cultivation of

fibroblasts from normal donors (41). Here, RT was administered
as partial-body irradiation and skin biopsies were taken outside
the treatment field according to common RT plans of the
enclosed tumor entities. Therefore, the observed translocations
were generated most probably spontaneous in vivo or in vitro.
Although the translocations detected in the SPN donor showed
frequent participation of chromosomes 1 and 15, the involvement
of at least 9 different chromosomes in multiple translocations
shows a genome-wide chromosomal instability in his normal
somatic cells. Sporadic structural and numerical chromosomal
instability are hallmarks and drivers of carcinogenesis and have
been attributed to dysfunctions in the mitotic checkpoint, DNA
repair, and replication (59). However, for example, DNA damage
generated by replicative stress differs substantially in signal
transduction and repair pathways compared to DSBs caused by
IR, the inductor of DNA-damage used in our study (60). Thus,
approaches using a predictive functional assay with a singular
end-point as a surrogate marker for cancer sensitivity bear a high
risk of missing the actual affected gene-products and pathways
which define innate cancer proneness (12).

In conclusion, our results do not support previous findings
of overall elevated spontaneous or IR-induced chromosome
aberrations in normal somatic cells of individuals with early
and high cancer incidence. Striking cytogenetic abnormalities,
suggesting an elevated tumor risk, were detected in two SPN
donors, only. High-resolution cytogenetic analysis by FISH
for all donors which allows much more sensitive detection
of cytogenetic damage including transmissible aberrations that
are missed by conventional solid-staining may sustain such
findings in the future. Besides, testing the study population of
this work for their proficiency to deal with replication stress-
associated DNA damage induced by physical obstacles to the
replication machinery is a future task to mimic and investigate
the vulnerability to such pathophysiological processes related to
cancer risk.

A drawback of this study is no intendedmatching of oncologic
therapies between the corresponding FPN and SPN cases, in
particular for RT, as it represents the highest risk factor for
SPNs. Information on clinical management andmedical histories
of cancer patients has been provided only by the treating
physicians voluntarily as well as on patient-based self-reports
during a medical interview and is therefore very sparse and not
standardized. Currently the cohort of the KiKme study is largely
extended in a epidemiological nested case-control study design
to obtain primary skin fibroblasts from 101 SPN and 340 FPN
cases as well as from 150 tumor-free donors (Marron et al.,
in review)1. Detailed questionnaires will provide information on
lifestyle, socio-economical and anthropometric factors as well
as on health, family history of diseases, and medical radiation
history including phantom based dosimetry to obtain distinct
organ doses. Detailed analysis of genetic predispositions and
other molecular-biological factors is already underway. Next-
generation sequencing approaches and functional assays onDNA
repair in a high-throughput design will be performed to unravel
risk factors and potential predictive biomarkers for childhood
cancers and treatment-related second malignancies for the most
benefit of future cancer patients.
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