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Introduction: For patients with localized node-negative (Stage I and II) clear cell renal cell

carcinomas (ccRCC), current clinicopathological staging has limited predictive capability

because of their low risk. Analyzing molecular signatures at the time of nephrectomy can

aid in understanding future metastatic potential.

Objective: Develop a molecular signature that can stratify patients who have

clinically low risk ccRCC, but have high risk genetic changes driving an aggressive

metastatic phenotype.

Patients, Materials, and Methods: Presented is the differential expression of mRNA

and miRNA in 44 Stage I and Stage II patients, 21 who developed metastasis within

5 years of nephrectomy, compared to 23 patients who remained disease free for more

than 5 years. Extracted RNA from nephrectomy specimens preserved in FFPE blocks

was sequenced using RNAseq. MiRNA expression was performed using the TaqMan

OpenArray qPCR protocol.

Results: One hundred thirty one genes and 2 miRNA were differentially expressed

between the two groups. Canonical correlation (CC) analysis was applied and four

CCs (CC32, CC20, CC9, and CC7) have an AUC > 0.65 in our dataset with similar

predictive power in the TCGA-KIRC dataset. Gene set enrichment showed CC9 as

kidney development/adhesion, CC20 as oxidative phosphorylation pathway, CC32 as

RNA binding/spindle and CC7 as immune response. In a multivariate Cox model, the

four CCs were able to identify high/low risk groups for metastases in the TCGA-KIRC (p

< 0.05) with odds ratios of CC32 = 5.7, CC20 = 4.4, CC9 = 3.6, and CC7 = 2.7.

Conclusion: These results identify molecular signatures for more aggressive tumors in

clinically low risk ccRCC patients who have a higher potential of metastasis than would

be expected.
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INTRODUCTION

In 2020, the American Cancer Society estimates 74,000 new cases
of renal cell carcinomawill be diagnosed and account for∼15,000
deaths, putting renal cell carcinoma in the top ten leading cause
of cancer deaths in the United States (1). Of the three major
subtypes (clear cell, papillary, and chromophobe) clear cell renal
cell carcinoma (ccRCC) is the most prevalent comprising 75% of
diagnosed cases and resulting in more deaths per year than other
subtypes (1).

For most ccRCC patients with early stage localized tumor,
stage I or II, surgical resection offers achievable survival rates over
95% (1). However, for a small percentage of clinically low risk
patients disease recurrence ensues in 5–10% stage I and 15–20%
stage II patients. Several models exist to assess risk for disease
recurrence after nephrectomy including: MSKCC postoperative
prognostic nomogram (2), UCLA UISS score (3) and Mayo
clinic SSIGN score (4). These scoring systems rely on clinical
parameters such as tumor grade, size, presence of necrosis, and
patient functional status that often do not accurately differentiate
early stage clinically low risk disease. Only tumor size has the
highest prognostic accuracy for future development of metastatic
disease (5).

While new treatments have increased survival, <20% of
patients diagnosed withmetastatic disease have amedian survival
of >27 months (6). Kuijpers et al. estimated that 71% of stage
I and 52% of stage II RCC patients who developed metastatic
disease following surgery were potentially curable, reasoning
that early detection of metastatic disease would lead to more
successful treatment (7). However, Dabestani et al. reported that
intensive follow-up after nephrectomy does not improve overall
survival after recurrence (8).

Therefore, patients with clinicopathologically defined low risk
ccRCC (stage I and II) who develop a distant recurrence within 5
years represent a unique cohort of patients, where understanding
the biology of the key molecular factors driving progression
to metastatic disease can help supplement clinical parameters.
Given that there are a relatively small number of people who
develop metastasis in early stage ccRCC, we chose to match a
similar number to have a balanced dataset that can capture as
many molecular signals as possible. Here we present an analysis
of a similar number of tumor samples from stage I and II
ccRCC patients who developed metastatic disease within 5 years
of surgery and from patients who did not develop metastatic
disease in more than 5 years to capture the molecular signatures
that associate with metastatic potential at an early time point
as possible. Furthermore, we validated these signatures in The
Cancer Genome Atlas ccRCC (TCGA-KIRC) cohort.

PATIENTS, MATERIALS, AND METHODS

Patient Selection
Patients from 2008-2012 who had metachronous metastases
within 5 years with a primary diagnosis of stage I or II ccRCC
in the Northwell Health tumor bank were selected. A similar
number of patients were selected who did not have recurrence
as a comparison group to maximize the molecular signatures

captured. The ccRCC tissue samples in the discovery set were
obtained from the Northwell Health pathology department as
formalin-fixed, paraffin-embedded (FFPE) tissue blocks. Samples
were initially matched on size, gender and age with two samples
removed for QC issues following RNA extraction.

TNM classification and the Fuhrman grading system were
used to stage and grade tumor samples (9, 10). The Northwell
Health System Regional Ethics Committee granted research
approval for the study with waivers of HIPAA Authorization and
informed consent. The validation set consisted of 218 Stage I and
45 Stage II patients from the TCGA-KIRC Data Resource (11).

RNA Extraction
A genitourinary pathologist (O. Yaskiv) reviewed FFPE tissue
blocks and their corresponding H&E slides. Slides were matched
up with tissue blocks and ∼35mg of the pre-identified tumor
were excised. RNA was extracted using the RecoverAllTM

Total Nucleic Acid Isolation Kit according to manufacturer’s
instructions. RNA was evaluated using an AB Bioanalyzer.

mRNA Sequencing and Expression
Analysis
Libraries were prepared using the Illumina TruSeq RNA Access
Library kit and sequenced on a NextSeq 500 following the
manufacturer’s instructions. Sequenced segments were aligned
with STAR2 (12) to the Human GENCODE reference (13).
Gene counts were assessed using ht-seq counts (14). Differential
expression was calculated using DESeq2 which is designed to
analyze digital count data generated by sequencing (15). Log fold
changes were shrunk using apeglm (16). Pathway enrichment
analysis was done using GAGE (17).

Cell Subset Deconvolution
Composition of cell subsets of our bulk RNA-seq ccRCC was
determined with CIBERSORT (18) using a previously published
ccRCC single cell RNA-seq dataset (19) as a reference. Only cell
populations present in >1% of ccRCC samples were considered.
Correlations of cell populations to metastatic phenotype was
done using MASC (20).

miRNA RT-qPCR and Expression Analysis
Quantification of miRNA was done using the TaqMan
OpenArray, which profiles 754 known miRNAs using qPCR. A
Ct threshold of 30 was used for detectable level of expression.
MiRNAs were further filtered by removing those with no
expression in any samples and samples were filtered that had
< 10% of miRNAs detected. Housekeeping miRNAs were the
top 10 most stable miRNAs from the NormqPCR package
(21), which were used to normalize raw Ct values using 1Ct
normalization (22). Differential expression was calculated using
limma which is designed to analyze log2 based expression assays
like qPCR (23).

Canonical Correlation Analysis and
Validation
De novomRNA and miRNA modules or Canonical Components
(CCs) were identified in the discovery set using sparse canonical
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TABLE 1 | Demographics of patients in this study.

Stage I Stage II

Metastatic

(11)

Non-

metastatic

(13)

Metastatic

(10)

Non-

metastatic

(10)

Women 1 (9.1%) 3 (23.1%) 2 (20%) 2 (20%)

Size (cm) 4.7 ± 1.2 4.9 ± 1.1 10.7 ± 3 11 ± 3.2

Low grade (I–II) 9 (81.8%) 11 (84.6%) 4 (40%) 5 (50%)

Age at surgery 63.9 ± 6.9 61.8 ± 9.7 58.8 ± 11.1 64 ± 13.7

MSKCC score 91.5 ± 1.4 91.3 ± 1.4 69.7 ± 10.7 68.5 ± 11.9

UISS score 89.2 ± 4.3 89.5 ± 4 80.4 ± 0 80.4 ± 0

Recurrence time 29.7 ± 20.3 N/A 17.1 ± 19.8 N/A

Radical

Nephrectomy* 2/9 (22.2%) 3/13 (23.1%) 6/6 (100%) 4/4 (100%)

Margins* Neg (9/9) Neg (13/13) Neg (6/6) Neg (4/4)

*Nephrectomy and margin status were not available for all patients.

correlation analysis (24) with AUC to metastatic status calculated
using pROC (25). Data analysis was done using R (26) and
tidyverse (27). RNA-seq and microRNA-seq count data for
validation were done in the TCGA-KIRC dataset which was
downloaded, then normalized using DESeq2. Phenotypes were
defined using the TCGAPan-Cancer Clinical Data Resource (28).
The specific gene and microRNA weights calculated for CCs in
the discovery set were applied to the validation set. Thresholds
for risk stratification in the discovery set on the discovered CCs
were done using rpart (29) and then applied to the validation set
to create high and low risk groups. Cox regression of the high and
low risk groups in the validation set to their disease free survival
time was done using survminer (30).

RESULTS

Demographics
The discovery set consisted of 24 patients with Stage I and 20
patients with Stage II ccRCC who underwent either partial or
radical nephrectomy. In Stage I, 13 patients had more than
5.5 years of follow-up with no evidence of metastasis while 11
developed metastatic relapse within 5 years; for Stage II, 10
patients did not develop metastases, while 10 patients developed
metastatic disease (see Table 1). Two samples did not meet QC
metrics for microRNA. The population was 16% female (16.7%
in stage I and 15% in stage II). The average age at surgery for the
entire group was 61.3± 10.3 years with no significant differences
between stage I (62.2± 8.4 years) and stage II (60.3± 12.5 years).

For stage I patients, metastases were evident at 29.7 ± 20.3
months, and the average tumor size of Stage I was 4.78± 1.14 cm
with 83.3% low grade (I–II) and 16.7% high grade (III–IV).While
patients with stage II disease recurred in 17.1± 19.8months, with
an average tumor size of 10.82± 2.98 cm with 45% low grade and
55% high grade.

There was no significant difference in age, tumor size,
grade, radical vs. partial nephrectomy, margin status, UISS and
MSKCC recurrence score in patients who developed metastases

compared to those who did not: age at surgery (p-value stage
I=0.54 and stage II=0.36), tumor size (p-value stage I=0.71
and stage II=0.82), tumor grade (p-value stage I=0.57 and stage
II=0.75), radical vs. partial nephrectomy (p-value stage I=1
and stage II=1), margin status (p-value stage I=1 and stage
II=1), UISS recurrence score (p-value stage I=0.86 and stage
II=1), or MSKCC recurrence score (p-value stage I=0.81 and
stage II=0.82).

RNAseq Gene Expression Analysis of
Stage I and II ccRCC Tumors
Group comparison of patients who developed metastatic
disease vs. those who did not showed 131 genes that were
significant after multiple testing correction (see Figure 1 and
Supplementary Table 1). Of those genes, the majority of them
were seen in patients that had developed metastases (125 genes)
as opposed to patients cured by surgery (6 genes). Seventy two
of the 125 genes upregulated in tumors from patients who
developed metastatic disease were immunoglobulin genes (IGH,
IGK, and IGL).

The model used to develop the molecular signature of
metastasis in ccRCC used variables that took into account the
contribution of stage and gender to remove those covariates from
contributing to the signal for metastases. There were 267 stage
specific genes with adjusted p < 0.05 with absolute value log 2
fold change > 1; 253 of these were seen up-regulated in stage
II while 14 genes were seen to be up-regulated in stage I, see
Supplementary Table 2. In gender, 166 genes were found to pass
similar thresholds, with 150 genes higher in males with 16 genes
higher in females (see Supplementary Table 3). Notably, many of
the genes found are gender specific like Y chromosome specific
genes (i.e., UTY, DDX3Y, USP9Y, and RPS4Y1) being higher in
males or XIST, the X-inactive specific transcript, being higher
in females.

Sub-group analysis focused on male-specific or female-
specific signals found a high correlation between test statistics
of the male subgroup vs. the full data (y ∼ 0.94x, R2 = 0.86)
compared to those of the female sub-group (y∼0.18x, R2 =

0.039), see Figure 2. In the male-specific subgroup analysis 8
genes had an adjusted p-value threshold of 0.05 that was higher
than 0.1 in the full group analysis: CNDB2, COL8A2, EPHB2,
KRT16, PRSS21, SOGA3, SPINK5, and TMEM63C. In female-
specific subgroup analysis, only three genes matched the same
criteria, CTHRC1, BCL2L14, and AGBL4.

Deconvolution of the RNA-seq data into cell subsets resulted
in 28 distinct cell types (see Supplementary Table 4. None of the
cell subpopulations were associated with patients who developed
metastases with p < 0.05.

miRNA Expression Analysis of Stage I and
II ccRCC Tumors
Since miRNA is much sparser (only 214 miRNA passed QC
thresholds, see Supplementary Table 5) the adjusted p-value
threshold for miRNA significance was lowered to 0.25. Only two
miRNAs were found to be significant at this threshold. MiR-
18a and miR-301 were found to be upregulated in patients who
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FIGURE 1 | Volcano plot of patients who developed metastases within 5 years vs. those that did not. The x-axis is log 2 fold change between groups while the y-axis

is -log 10 raw p-value. The top 20 genes by p-value are labeled.

FIGURE 2 | Comparison and correlation of the metastatic test statistic in the full dataset in a sub-group analysis for gender: (left) males and (right) females.
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developed metastatic disease. Gender and stage were also taken
into account in differential expression analysis of miRNA, see
Supplementary Tables 6, 7. For gender, there were no miRNA
that passed adjusted p < 0.25. For stage, 157 total miRNA had
adjusted p < 0.25 with 121 associated with stage II and 29
associated with stage I.

Canonical Correlation Analysis With mRNA
and miRNA Expression Datasets
Sparse canonical correlation analysis (CCA) is able to identify
similar correlation structures between two orthogonal datasets
and redefine them as canonical components (CCs). It is
analogous to Principal Component Analysis (PCA) with
two orthogonal multi-dimensional datasets; making linear
combinations of variables that have the highest correlation across
datasets. CCs can be thought of as de novomodules of genes and
miRNAs that have correlated expression patterns with 42 total
CCs identified where expression of both can be combined into
a single score (see Supplementary Table 8). Univariate logistic
regression was performed on canonical components to classify
patients who developed metastatic disease. The top performing
canonical component (CC32) had an AUC of 0.77 (see Table 2).
To assign potential function to CCs, a gene enrichment analysis,
GAGE, was used on Gene Ontology (GO) terms with an adjusted
p-value threshold of 0.2. CC32 was enriched in GO terms related
to RNA binding and spindle function, CC20 was enriched in
oxidative-phosphorylation genes, CC9 was enriched in kidney
development while CC7 was enriched in immune terms.

Validation in TCGA-KIRC
A subset of the publically available RNA-seq and microRNA-
seq TCGA-KIRC datasets (stage I and II only) was used as
validation to evaluate the accuracy of the canonical components
identified. After matching RNA-seq and microRNA-seq samples
and removing multiple samples from the same patient, the
validation set had 263 patients total. Of those, 218 were stage
I with 16 of those having recurrences, while of the 45 stage
II samples 7 recurred. Gene and microRNA weights for the
CC score calculated in the discovery set were applied to the
validation set. Both datasets were mean normalized to 0 and
standard deviation normalized to 1. The four identified CCs
with AUC≥0.65 in the discovery set also had an AUC≥0.65
in TCGA-KIRC.

To determine accuracy of the CCs, the discovery dataset
was used to set thresholds in order to stratify TCGA-KIRC
into high risk and low risk groups. Thresholds were set using
decision trees in the discovery dataset to maximize separation
between groups. These thresholds were applied to TCGA-KIRC
to separate them; thresholds for high risk were CC9<0.02,
CC20>0.52, CC32>0.23 and CC7<-0.04. A cox regression was
performed with these high and low risk groups in TCGA-
KIRC based on their progression free survival for each CC. The
recurrence rate in the validation set was∼9%; assuming an equal
split between high and low risk groups (13% recurrence and 5%,
respectively), an odds ratio of 2.5 has a power of 0.81. All cox
regression analyses were found to be significant (p-values CC9=
6.8E-3, CC20 = 9.4E-4, CC32 = 1.5E-4, and CC7 = 0.021, see

TABLE 2 | Canonical components (CCs) with AUC > 0.65 in both the discovery

and validation datasets.

Canonical

Component

Discovery

AUC

TCGA

AUC

GO terms Adjusted

P-Value

CC32 0.78 0.74 RNA BINDING 1.36E-01

CC32 0.78 0.74 SPINDLE 1.36E-01

CC20 0.69 0.76 MITOCHONDRION 3.64E-19

CC20 0.69 0.76 MITOCHONDRIAL PART 1.29E-16

CC20 0.69 0.76 CELLULAR RESPIRATION 8.69E-15

CC20 0.69 0.76 SMALL MOLECULE

METABOLIC PROCESS

1.44E-14

CC20 0.69 0.76 OXIDATION REDUCTION

PROCESS

1.61E-13

CC9 0.68 0.74 MESONEPHROS

DEVELOPMENT

1.68E-01

CC9 0.68 0.74 BIOLOGICAL ADHESION 1.68E-01

CC9 0.68 0.74 HOMOPHILIC CELL

ADHESION VIA PLASMA

MEMBRANE ADHESION

MOLECULES

1.68E-01

CC9 0.68 0.74 KIDNEY EPITHELIUM

DEVELOPMENT

1.68E-01

CC7 0.65 0.68 REGULATION OF IMMUNE

RESPONSE

8.15E-05

CC7 0.65 0.68 EXTERNAL SIDE OF

PLASMA MEMBRANE

2.42E-04

CC7 0.65 0.68 REGULATION OF IMMUNE

SYSTEM PROCESS

2.42E-04

CC7 0.65 0.68 ADAPTIVE IMMUNE

RESPONSE

3.02E-04

CC7 0.65 0.68 IMMUNOGLOBULIN

COMPLEX

7.04E-04

Figure 3) with an odds ratio >2.5 (OR CC32 = 5.7, CC20 = 4.4,
CC9= 3.6, and CC7= 2.7).

DISCUSSION

Here we examined tumors from clinically low risk ccRCC
for molecular signatures to understand metastatic potential.
Risk stratification using clinicopathological parameters in these
patients has limited predictive power. In our dataset, we see
no statistical significance between MSKCC and UISS scores
in patients who do or do not develop metastatic disease
in our cohort. Our low risk ccRCC patient cohort who
develop metastasis offers an early time point where molecular
signatures can supplement clinical information for better risk
stratification. To increase molecular signatures found we chose
to use similar numbers of patients who did and did not
develop future metastatic disease to have a balanced dataset. We
report several multigene and miRNA signatures generated by
CCA that show clinical utility in stratifying clinically low risk
ccRCC tumors.

To the best of our knowledge, this is the first report analyzing
the combined differential mRNA and miRNA expression
between clinically low risk stage I and II ccRCC with vastly
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FIGURE 3 | Kaplan-Meier Curves of the high and low risk groups determined by top four CCs. The 95% confidence interval plotted with each group as the lightly

shaded area.

different outcomes. Several recent studies have used gene
expression analysis to create stratification scoring systems in
RCC: Rini et al. found a 16 gene assay to predict recurrence
in stage I-III ccRCC using gene expression across almost
1000 samples (31), Brooks et al. developed ClearCode34 from
72 ccRCC samples (stage I-III) to identify low risk (ccA)
and high risk (ccB) groups (32), Morgan et al. examined
31 cell cycle related genes across 565 patients of clear cell,
papillary, or chromophobe RCC to create the R-CCP panel
(33). However, they included stage III ccRCC patients and did
not use miRNA in conjunction with gene expression. In stage
III ccRCC, the tumor is no longer completely isolated to the
kidney and has already spread either to the most proximal
lymph node, to a major vein or to the tissue surrounding
the kidney, which indicates a more aggressive phenotype and
increased risk. Therefore, the results found in our discovery
population and validation in TCGA-KIRC are a novel and

a promising step toward identifying molecular signatures of
clinicopathologically defined low risk ccRCC that develop
future metastasis.

In our analysis, several immunoglobulin genes were
upregulated in tumors that became metastatic. IgG is
overexpressed in ccRCCs in comparison to adjacent normal
tissue affecting cell proliferation, migration and invasion
(34). Immunoglobulin genes have been shown to be active
and expressed in many non-B epithelial cancer cells (35).
MZB1, which is overexpressed in our metastatic group, has
been shown to be necessary for immunoglobulin synthesis
(36). It also has an immune regulatory effect that has a
survival benefit in other cancers (37, 38), though in RCC
high expression of MZB1 is unfavorable (11, 39). Similarly
IL1R2, which has higher expression in our metastatic samples,
is a mock receptor of IL1R that regulates immune response
through competitive inhibition, and has an important role
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in cancer progression (40). Furthermore, our CC7 module is
enriched in immune response GO terms. While expression
of immune genes is normally associated with immune
infiltrating cells, we did not see the future development
of metastasis correlate with any specific immune cell
type or any cell at all when our bulk RNA-seq data was
deconvoluted into cell types via CIBERSORT. These data
show that the immune system may play a role in promoting
a pro-tumor environment early in patients who develop
metastatic disease.

In addition to the immune module (CC7), other de novo
mRNA-miRNAmodules have functions related to cancer growth.
CC9 was enriched in GO terms for kidney development and
cell adhesion. Enrichment of kidney epithelium terms directly
links this module to ccRCC cells, which predominantly are
kidney epithelial cells. One of the two miRNAs passed our
adjusted p-value threshold, miR-18a, promotes proliferation and
inhibits apoptosis in kidney cancer cell lines and is associated
with worse overall survival in RCC (41). Furthermore, this
particular GO term is related to development from embryos,
which implies a more stem-like state compared to a mature
kidney, similar to an epithelial-mesenchymal transition. The
other microRNA that passed our adjusted p-value threshold,
miR-301 which had higher expression in those that developed
metastasis, has been shown to be increased in microvesicles
released by human renal cancer stem cells to stimulate
angiogenesis to prepare the metastatic niche (42). TGFBI is
also overexpressed in our metastatic discovery set and has been
shown to induce epithelial to mesenchymal transition (43) as
well as being associated with ccRCC tumor progression and poor
prognosis (44).

One of the hallmarks of ccRCC is the metabolic
reprogramming of oxidative-phosphorylation pathways leading
to accumulation of lipids and glycogen in the cytoplasm
supporting a shift in metabolism known as the Warburg
effect (45). Analysis of TCGA-KIRC showed worse survival
is associated with upregulation of fatty acid synthesis genes
and pentose phosphate pathway genes while better survival
was associated with Krebs cycle genes (11). CC20 in our
dataset is enriched in cellular respiration and oxidative-
phosphorylation terms, and we have shown has predictive
value for metastatic potential. One gene related to solute
transport that we also see upregulated in the metastatic group
is SLC38A5, which alkalinizes tumor cells and promotes
growth; it is also a transcriptional target for the oncogene
c-Myc (46).

Interestingly, there is a gender disparity in the prevalence
of RCC, about 2:1 male to female, that is consistent across
age, year, and region (47). Men are more likely to have a
higher grade tumor and are more likely to develop metastases,
while women showed a benefit in overall survival (48).
Some studies have examined mutational differences between
men and women in ccRCC, showing that stratification by
gender showed BAP1 mutations have a female-specific poorer
outcome (49). Similarly, Tan and colleagues also showed
expression levels of FABP7 and BRN2 had prognostic value
in women (50). Many of the treatment and stratification

options bias toward male because of the increased prevalence,
which is also present in our dataset (∼84% male). We
did have three genes that were differentially expressed in
women that were not seen in our overall dataset: CTHRC1,
BCL2L14 (overexpressed in metastatic patients) and AGBL4
(underexpressed in metastatic patients). CTHRC1 knockdown
has been shown to reduce proliferation and epithelial-to-
mesenchymal transition (51) and increased expression is
associated with a poorer prognosis (11, 39). BCL2L14 is a
member of the BCL2 family and AGBL4 is an ATP/GTP binding
protein, both without relevance to RCC to the best of our
knowledge, but given our results further study may be warranted,
particularly in women.

While our study focuses on early stage ccRCC, we have
applied previous molecular panels to our dataset with mixed
results, likely because of the equal number of patients who would
develop metastases vs. those that did not in a low risk cohort
(data not shown). We also applied our CCs to stage III patients
in TCGA with two of the CCs (CC32: RNA Binding/Spindle
and CC20: Oxphos) having the lowest p-value of ∼0.08,
implying these are worth further study for metastatic progression
across all risk groups. One common limitation regarding
genomic-based predictive markers is intratumor heterogeneity.
However, CCA takes into account similarly correlated genes
and miRNA across samples to make de novo modules or
pathways that are less susceptible to cellular heterogeneity.
Furthermore, bulk deconvolution using cell subset techniques
did not show any cell type associated with metastases. Using
TCGA-KIRC for validation may have been limited due to the
fact that the TCGA-KIRC has local and distant recurrence
of disease in their dataset when our cohort consisted only
of distant metastases. However, 7% of stage I and 15% of
stage II in TCGA-KIRC recurred which is similar to the
reported distant metastatic rate, making local recurrences
less likely.

CONCLUSIONS

Our results highlight molecular signatures that can risk stratify
patients for metastatic potential in clinically low risk ccRCC
patients. Our modules provide a potential mechanistic pathway
for development of metastases, of which the immunemodule and
immunoglobulin genes are of particular interest. With further
validation, the combined mRNA and miRNA modules could be
used to improve treatment and survival outcomes for this group
of patients.
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