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Background: To investigate the impact of alpha-2-macroglobulin (A2M), a suspected

intrinsic radioprotectant, on radiation pneumonitis and esophagitis using multifactorial

predictive models.

Materials and Methods: Baseline A2M levels were obtained for 258 patients

prior to thoracic radiotherapy (RT). Dose-volume characteristics were extracted from

treatment plans. Spearman’s correlation (Rs) test was used to correlate clinical and

dosimetric variables with toxicities. Toxicity prediction models were built using least

absolute shrinkage and selection operator (LASSO) logistic regression on 1,000

bootstrapped datasets.

Results: Grade ≥2 esophagitis and pneumonitis developed in 61 (23.6%) and 36

(14.0%) patients, respectively. The median A2M level was 191 mg/dL (range: 94–511).

Never/former/current smoker status was 47 (18.2%)/179 (69.4%)/32 (12.4%). We found

a significant negative univariate correlation between baseline A2M levels and esophagitis

(Rs = −0.18/p = 0.003) and between A2M and smoking status (Rs = 0.13/p = 0.04).

Further significant parameters for grade ≥2 esophagitis included age (Rs = −0.32/p <

0.0001), chemotherapy use (Rs = 0.56/p < 0.0001), dose per fraction (Rs = −0.57/p

< 0.0001), total dose (Rs = 0.35/p < 0.0001), and several other dosimetric variables

with Rs > 0.5 (p < 0.0001). The only significant non-dosimetric parameter for grade

≥2 pneumonitis was sex (Rs = −0.32/p = 0.037) with higher risk for women. For

pneumonitis D15 (lung) (Rs= 0.19/p= 0.006) and D45 (heart) (Rs= 0.16/p= 0.016) had

the highest correlation. LASSO models applied on the validation data were statistically

significant and resulted in areas under the receiver operating characteristic curve of 0.84

(esophagitis) and 0.78 (pneumonitis). Multivariate predictive models did not require A2M

to reach maximum predictive power.

Conclusion: This is the first study showing a likely association of higher baseline A2M

values with lower risk of radiation esophagitis and with smoking status. However, the

baseline A2M level was not a significant risk factor for radiation pneumonitis.
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INTRODUCTION

Advances in radiation technology like intensity modulated
radiation therapy (IMRT) and image guided RT (IGRT) have
facilitated improved sparing of healthy surrounding tissues
and organs. Nonetheless, radiation pneumonitis and esophagitis
remain the most common dose-limiting toxicities in thoracic RT
(1–6). Concurrent chemoradiation significantly increases the risk
of developing pneumonitis or esophagitis compared to radiation
alone (7, 8).

The reported incidence of pneumonitis after definitive
thoracic RT ranges from 10 to 20%, although figures can
vary greatly (3, 9–13). This is partly because pneumonitis
remains a clinical diagnosis; there are no biomarkers or
radiological findings that unequivocally confirm its presence.
Medical intervention is required for patients with grade two
or higher radiation pneumonitis, and severe cases can lead
to fatal outcomes [Common Terminology Criteria for Adverse
Events (CTCAE) v4.03, Supplementary Material 1]. Significant
esophageal toxicity (grade 3–5) occurs in around 4% of patients
with sequential chemotherapy and RT and in 18–22% of
patients with concurrent chemoradiation (5, 14). Most patients
experience mild symptoms like dysphagia and odynophagia
while still undergoing radiation. Commonly opioids are used to
control symptoms, but in severe cases, tube feeding or surgical
intervention can be necessary (Supplementary Material 1).

To reduce dose-limiting toxicity in thoracic radiation, efforts
have been made to adhere to normal tissue constraints derived
from dose volume correlations with clinical toxicities (15).
However, dose volume histograms do not fully predict clinical
toxicities, as great interindividual variation remains. Intrinsic
predictors of normal tissue radiation response may explain the
variation and should be further analyzed.

Radioprotective agents, both natural and synthetic, can
present an alternative method to prevent radiation-induced
toxicity. Although this has been an active field of research for
decades, only two compounds, amifostine and palifermine, are
FDA-approved for the use in radiation therapy and neither
is commonly used in routine thoracic RT (16–19). Another
compound under investigation is alpha-2-Macroglobulin
(A2M), a postulated intrinsic radioprotector. Human A2M
is a glycoprotein and the largest non-immunoglobulin serum
protein. In animal studies, A2M has exhibited radioprotective
effects in healthy irradiated tissue. In studies with rats that
underwent full body irradiation to 6.7Gy, rats with endo-
or exogenously increased levels of A2M had a higher rate of
survival, regained their baseline body weight and lymphocyte
count faster, and displayed normal proliferative ability of the liver
tissue compared to the control groups with normal A2M levels
(20–22). Suggested key mechanisms supporting the potential
of A2M as a radioprotector include promoting expression
of antioxidant enzymes, inhibiting fibroblast activation thus
preventing fibrosis, deactivating pro-inflammatory cytokines,
and enhancing DNA and cell repair mechanisms (23). Our
previous study in a small cohort showed a correlation of A2M
with radiation pneumonitis (9). Smoking can potentially increase
A2M levels. However, literature specifically on A2M in smokers

remains rare. Some studies confirmed higher A2M levels in
smokers compared to non-smokers (24–26).

We investigated whether pre-treatment serum A2M levels are
an independent predictive variable for the development of post-
radiation toxicity in the lung and esophagus in a large cohort of
patients receiving thoracic RT.

MATERIALS AND METHODS

Patients
Clinical, laboratory, treatment and toxicity data were
systematically collected in a series of thoracic RT patients
between 2012 and 2016 during standard treatment and follow-up
procedures. Patients were treated with either conventionally
fractionated RT using 3D conformal RT (3DCRT) or intensity-
modulated RT (IMRT), or with stereotactic body RT (SBRT).
Patients with any prior thoracic RT were excluded. Serum
samples for A2M analysis were collected at baseline prior to
fraction #1 of RT. We obtained a retrospective institutional
review board waiver to analyze the data. Toxicity data consist of
radiation pneumonitis and esophagitis rates graded per CTCAE
v4.03. Data were obtained at baseline and at routine follow-up
visits every 3 months for the first 2 years.

Alpha-2-Macroglobulin
Serum samples were taken ≤30 days prior to RT start, typically
at the time of simulation. The mean and standard deviation
between A2M measurement date and RT start date were 14 and
6 days, respectively. CLIA (Clinical Laboratory Improvement
Amendments) approved A2M testing was performed at Quest
Diagnostics Nichols Institute (San Juan Capistrano, CA). A2M
levels were given in mg/dL; the normal range was defined as
100–280 mg/dL.

Treatment Plans
For patients treated before 2014, treatment plans were retrieved
from our in-house planning system (27). From 2014 onwards,
treatments were planned in the Eclipse treatment planning
system (Varian Medical Systems, Palo Alto, CA). To analyze
dosimetric data, treatment plans were imported to the research
platform CERR (Computational Environment for Radiological
Research) for computing dosimetric variables (28). Dosimetric
variables were extracted from target structures: complete
esophagus for esophagitis and “lung minus gross tumor volume
(GTV)” and heart for pneumonitis. Before that, plan doses were
converted to equivalent dose in 2Gy fractions (EQD2) with
α/β ratio of 10 for esophagus and 3 for lung minus GTV and
heart (29). As radiation esophagitis tends to develop acutely
during radiotherapy, one more set of dosimetric variables for
esophagus was extracted in addition to the planned doses. For
these fractional variables (denoted by the prefix “f,” e.g., fmax
dose) we divided the dose volume histogram (DVH) bins by the
number of treatment days between the start of RT and the end of
RT including weekends.
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Statistical Methods
Univariate and multivariate analyses were performed to
investigate associations between toxicity (esophagitis and
pneumonitis) and A2M levels, clinical, and dosimetric
variables. Patients were categorized into two groups for
each endpoint: non-toxicity (grade <2) and clinically significant
toxicity (grade ≥2).

A Wilcoxon rank-sum test was used to find a difference in
A2M expression between the two groups. Spearman’s correlation
(Rs) test was used to assess associations between endpoints, Dx
values (minimum dose to the volume with the x% hottest dose
in the organ of interest), computed from x = 5% to x = 100%
in intervals of 5%, mean dose, max dose, clinical variables, and
A2M. For this test CTCAE grades 0–5 were used instead of
dichotomized values (grade <2 and grade ≥2).

Multivariate analysis using the least absolute shrinkage and
selection operator (LASSO) logistic regression was performed
using features with p < 0.1 that resulted from the univariate
Spearman’s correlation test. To avoid variable instability due
to high collinearity, Pearson’s correlation test was conducted
among all dosimetric variables before the multivariate analysis.
A cutoff of Pearson’s correlation coefficient >0.75 was used
to determine a relatively small group of variables for further
LASSO modeling, by selecting a single variable that has the best
correlation with the endpoint among a set of correlated variables
after hierarchical clustering.

To rigorously verify model validity, the data were split
into two groups (training data with 2/3 and validation data
with 1/3 of samples). The training and validation data were
balanced with cancer subtypes and outcomes. This split was
performed separately for pneumonitis and esophagitis. The
model building process was carried out using only the training
data. Furthermore, to examine the stability of LASSO variable
selection, the model building process was conducted using a
bootstrapped dataset generated from the training data. Finally,
the validation data were tested on the resulting model, quantified
by the area under the receiver operating characteristic curve
(AUC) as a function of true positive rate (sensitivity) and false
positive rate (1-specificity). The final reported results represent
the average performance on the validation data for predictive
models built using 1,000 bootstrapped datasets.

For statistical analyses, R language (version 3.2.4), MATLAB
(version 8.6.0; MathWorks. Natick, MA) and SPSS (version 24;
IBM. Armonk, NY) were used.

RESULTS

Patient Characteristics
In total, 258 patients were eligible for analysis. Most patients
were former (n = 179, 69.4%) or current smokers (n = 32,
12.4%). One hundred and thirty-four patients (51.9%) underwent
chemotherapy in addition to RT and the median total RT dose
was 54Gy (range: 27–74Gy) for conventional fractionation and
50Gy (range: 30–70Gy) for SBRT. The median A2M level was
191mg/dL (range: 94–511mg/dL). Themedian follow-up was 8.9
months (range: 0.2–40.2; calculated from the start of RT). More
details are available in Table 1.

TABLE 1 | Patient characteristics.

Factor N %

Age [median, range] 69 (25–93) years

Sex

Male 122 47.3

Female 136 52.7

KPS [median, range] 90 (50–100) %

Subgroups

NSCLC 202 78.3

SCLC 17 6.6

Thymoma 8 3.1

Mesothelioma 25 9.7

Lung metastases (other primary) 6 2.3

Smoking history

Never 47 18.2

Former 179 69.4

Current 32 12.4

Pack-years (former/current smokers)

[median, range]

37 (1–204) years

Alpha-2-macroglobulin [median, range] 191 (94–511) mg/dL

Chemotherapy timing

Concurrent 60 23.2

Sequential 74 28.7

No chemotherapy 124 48.1

RT total dose [median, range]

Conventional RT 54 (27–74) Gy

SBRT 50 (30–70) Gy

Follow-up time (from start of RT) [median,

range]

8.9 (0.2–40.2) months

Time to toxicity [median] 1.0 months (esophagitis), 3.6 months

(pneumonitis)

Toxicities
Fifty-third patients (20.5%) experienced grade two and eight
(3.1%) grade three radiation esophagitis. No grade four or
five esophagitis was observed. Median time to development of
esophagitis was 0.85 months after the start of RT (range: 0.2–
6.47 months). Grade two radiation pneumonitis developed in 26
patients (10.1%), grade three in nine (3.5%) and grade four in one
patient (0.4%). No grade five pneumonitis was observed. Median
time to development of pneumonitis was 4.7 months after the
start of RT (range: 1.3–8.1 months).

Of the patients who developed grade≥2 esophagitis, 8 (13.1%)
were never, 43 (70.5%) former and 10 (16.4%) current smokers
whereas in pneumonitis 9 (25%) were never, 24 (66.7%) former
and 3 (8.3%) current smokers.

Univariate Analysis
Alpha-2-Macroglobulin
A significant correlation between baseline A2M values and
esophagitis was found (Rs=−0.18/p= 0.003). Using aWilcoxon
rank-sum test, we found that patients with grade <2 had
significantly higher baseline serum A2M levels than patients
with grade ≥2 esophagitis (p = 0.015) as shown in Table 2.
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No statistically significant difference was found between baseline
A2M levels and grade ≥2 pneumonitis (p= 0.84).

A trend between smoking status andA2M levels was observed.
Current smokers had higher levels (217.3 mg/dl) compared to
former (207.3 mg/dl) and never smokers (185.4 mg/dl), and
former smokers had higher levels compared to never smokers.
The A2M level had a significant correlation with a status of
former/current smoker when compared to never smokers (Rs =
0.13/p= 0.04).

Clinical Factors
Among standard clinical variables, the following variables
showed significant correlations with grade ≥2 esophagitis: age
(Rs = −0.32/p < 0.0001), fraction number (Rs = 0.64/p <

0.0001), treatment days (Rs = 0.60/p < 0.0001), chemotherapy
use (Rs = 0.56/p < 0.0001), dose per fraction (Rs = −0.57/p <

0.0001), and total dose (Rs= 0.35/p < 0.0001), whereas for grade
≥2 pneumonitis, the only significant clinical variable was sex (Rs
=−0.32/p= 0.037) with a higher risk for women.

Dosimetric Factors
Spearman’s correlation test between dosimetric variables in
esophagus and esophagitis showed that all variables had Rs >

0.60 (p < 0.0001) as shown in Figure 1A. For the fractional dose,
fD40 was the highest correlated variable (Rs = 0.58/p < 0.0001)
as shown in Figure 1B.

D15 (Rs = 0.19/p = 0.006) in lung and D45 (Rs = 0.16/p =

0.016) in heart were assessed as the highest correlated variables

TABLE 2 | Comparison of mean A2M serum levels [mg/dL] between grade <2

and ≥2 esophagitis and pneumonitis.

Toxicity Grade 0 or 1 Grade 2+ p-value

Esophagitis N 197 61 0.015

Mean A2M 208.9 190.4

Pneumonitis N 222 36 0.837

Mean A2M 204.1 207.0

P-value was calculated using Wilcoxon rank-sum test.

with pneumonitis for each organ (Figure 1C). Maximum dose in
heart was also significantly correlated with Rs= 0.14 (p= 0.043).

Multivariate Analysis and Validation Testing
Hierarchical clustering coupled with Pearson’s correlation test
using training data was performed on dosimetric variables of
each organ to measure variable similarity. Many dosimetric
variables were highly correlated (Supplementary Material 2).
Using a threshold of 0.75 in Pearson’s correlation the variable
with the highest Rs value for the endpoint among the variables
in each cluster was selected. Clinical variables with p < 0.1 in
the univariate analysis and dosimetric variables left after the
clustering test were used in the LASSO logistic regression: D25,
D40, D50, D65, D85, fD10, fD25, fD35 in esophagus, age, total
dose, and A2M for esophagitis; D10, D15, D65, D95 in lung,
D20, D45, max dose in heart and sex for pneumonitis. For both
endpoints, treatment days, SBRT (yes/no) and chemotherapy
(yes/no) were used. Two variables including dose per fraction and
number of fractions were excluded due to their high correlation
with the number of treatment days.

LASSO logistic regression models were trained using
bootstrapped datasets generated from training data and were
tested on the validation data, resulting in an average AUC
of 0.84 (standard deviation [SD] = 0.03) and 0.78 (SD =

0.06) for esophagitis and pneumonitis, respectively. Additional
modeling was performed for esophagitis without A2M resulting
in the same average AUC (0.84). This appears to be due to
more significant dosimetric and clinical variables used in the
modeling. To assess the importance of features, the frequency of
occurrence of each feature during themodel building process was
counted (Figure 2). For the esophagitis model, chemotherapy
and treatment days were most frequently selected with 770 and
758 times from 1,000 different models, respectively. It is worth
noting that A2M was selected 610 times, implying its likely
association with esophagitis. For the pneumonitis model, D65 in
lung and max dose in heart were most frequently selected with
865 and 798 times, respectively. Patients were sorted based on
predicted outcomes on the validation data and grouped into six
equal bins with one being the lowest risk group and six being
the highest risk group. When comparing observed and predicted

FIGURE 1 | Spearman’s correlation coefficients. Spearman’s correlation coefficients between radiation-induced injuries (≥ grade 2) and Dx in esophagus for (A)

esophagitis, fDx in esophagus for (B) esophagitis, and Dx in lung and heart for (C) pneumonitis.
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FIGURE 2 | Features in predictive models. Frequency of occurrence of each feature used in 1,000 predictive models for (A) esophagitis and (B) pneumonitis.

FIGURE 3 | Observed and predicted incidence. Comparison of observed and predicted incidence on validation data (1/3 of samples) for (A) esophagitis and (B)

pneumonitis. Numerator, number of events in each bin; Denominator, number of samples in each bin.

incidence, we found a high conformity of both endpoints,
meaning that the predictive models are highly robust (Figure 3).
Final predictive models built using all training data are shown in
Table 3. Interestingly, a variable of treatment days (between the
start of RT and the end of RT including weekends) was selected
in both models.

In addition, the frequency of occurrence of each pair of
features used in the LASSO logistic regression model was
investigated (Figure 4), which provides the information of
interaction effects of features in the predictive model.

DISCUSSION

Taking into account the multifactorial etiology of radiation
toxicity (30), it is essential to look at different predictive

factors in the development of lung and esophageal injury
after RT. Dosimetric parameters are most commonly included
in predictive models but biological and genetic determinants
are also under investigation (9, 11, 30–37). In our analysis,
we focused on dose-volume metrics, age, chemotherapy,
and other clinical variables in addition to the intrinsic
radioprotectant A2M.

As we identified in our correlative analysis, baseline serum
A2M levels appear to be influenced by patients’ smoking status.
Former and current smokers displayed higher A2M values than
patients that had never smoked. Active and former smoking
has been associated with lower rates of grade ≥3 radiation
pneumonitis compared to never smokers in patients with NSCLC
after 3DCRT or IMRT (38). The effect of smoking on the
immune system has been studied extensively. Paradoxically,
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smoking results in immunosuppression as well as aggravated
autoimmunity. Altered levels of inflammatory cytokines like
TNF-α, IFN-γ, IL-1β, IL-6, IL-8, IL-10, and others have been
reported in healthy smokers (39–42). A possible explanation
for the connection between active smoking and a lower risk
for esophagitis or pneumonitis is that long-term cigarette
smoking leads to an increased immune response in the lung
and surrounding tissues due to the damage it inflicts on the
lung parenchyma. Although the mechanisms resulting in normal
tissue injury after RT are still under investigation, the release
of reactive oxygen species (ROS) as well as proinflammatory
and profibrotic cytokines is thought to have a central role
in the process (30). Higher baseline levels of acute-phase
proteins like A2M may have a protective effect on the irradiated
tissue by binding proinflammatory and profibrotic cytokines,

TABLE 3 | Final predictive models for esophagitis and pneumonitis.

Variable Coefficient STD Odds ratio 95% CI

Esophagitis model

D25 0.012 0.026 1.012 0.962 1.064

D40 0.036 0.022 1.037 0.993 1.083

Treatment days 0.048 0.026 1.049 0.997 1.105

Constant −3.880 0.725 0.021 0.005 0.086

Pneumonitis model

D65 in lung 0.252 0.146 1.286 0.967 1.711

Max dose in heart 0.015 0.008 1.015 0.999 1.032

Treatment days 0.024 0.020 1.024 0.986 1.064

Constant −3.824 0.793 0.022 0.005 0.103

CI, confidence interval; STD, standard deviation.

thus reducing the acute cytokine toxicity, and inducing an
upregulation of antioxidant enzymes like manganese superoxide
dismutase (MnSOD) (23, 30).

Our study suggests that there may be an association
between natural pre-treatment baseline levels of the intrinsic
radioprotectant serum A2M in patients with thoracic
malignancies and an increased risk of developing radiation
esophagitis. This association reached univariate statistical
significance for esophagitis, but not for the pneumonitis
endpoint. This finding indicates that higher levels of A2M may
have a protective effect in patients undergoing thoracic RT. The
high selection frequency of A2M in the model building process
confirms our primary univariate analyses implying a likely
correlation of A2M levels with esophagitis rates. Factors that
have repeatedly shown significant correlation with esophagitis
include V40–V60 (6, 43–46) (Vx: percentage volume receiving at
least x Gy), mean esophageal dose (47–49), as well as sequential
and especially concurrent chemoradiation in comparison to RT
alone (5, 6, 50–53).

For pneumonitis, we validated the correlation with radiation
dose received by the heart. Different lung dose volumes (V5–
V40 and mean dose in lung) have been found to predict the
development of pneumonitis (7, 10, 54). In addition, the dose
received by the heart during thoracic radiation seems to be an
accurate predictor (55, 56). The best fitting predictive model
reported by Huang et al. included D10 (heart), D35 (lung) and
max dose (lung), and had an AUC of 0.72 (55). Although the
ideal dosimetric variable(s) for predicting pneumonitis across
all patient subgroups may not yet be known, it is evident that
heart doses are an essential part of any model built for this
cause. Though we could not confirm the impact of A2M on
pneumonitis with our data, a correlation between them has been
previously described (9, 56). We may have been limited by the

FIGURE 4 | Pairs of features in predictive models. Frequency of occurrence of a pair of features (divided by 1,000) used in 1,000 predictive models for (A) esophagitis

and (B) pneumonitis.

Frontiers in Oncology | www.frontiersin.org 6 August 2020 | Volume 10 | Article 1395

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


von Reibnitz et al. A2M as a Predictor of Thoracic Radiotherapy Toxicity

lower incidence of grade ≥2 pneumonitis (14.0%) and the low
rate of current smokers in our patient cohort. In the previously
published study on A2M and pneumonitis, pneumonitis rates
were between 19 and 35%. The variable of sex was found to
be correlated with pneumonitis in univariate analysis and had
the third-highest frequency in 1,000 model runs (Figure 2B),
consistent with another study (57). However, its role as a risk
factor for pneumonitis is controversial (58).

While all patients had A2M collected within 30 days prior to
the start of RT and toxicity data were systematically prospectively
graded per our clinical standard, caution is warranted regarding
the interpretation of these results. In particular, including a factor
like chemotherapy in predictive models should be considered
carefully as different regimens, doses and timings, depending on
the patient population, make it a very heterogeneous variable.
Similarly, the patient cohort we studied was diverse regarding
diagnosis and treatment. Although requirements for eligibility
included no prior RT, patients underwent different modes of
RT (3DCRT/SBRT/IMRT) which may have an impact on the
toxicity profile. Furthermore, smoking status as a variable was not
evenly distributed. Given its proposed link to serum A2M levels,
this could be a cause for certain discrepancies in our results.
A2M levels in humans reported in previous studies range on
average between 100 and 450 mg/dL with a mean of around 215
mg/dL. Age and gender are known to influence this value with
females generally showing around 20% higher levels than same-
aged males (59, 60). Given the lack of data thus far concerning
other factors that may influence intrinsic A2M levels, further
analyses with serum levels recorded immediately prior to and
while receiving RT are necessary.

In summary, the analysis of our institutional dataset
has produced predictive models for both esophagitis and
pneumonitis. Although the addition of A2M did not increase
the predictive power of multivariate predictive models,
this is the first report on the possible association of higher

levels of A2M with a lower risk of radiation esophagitis
and with smoking, warranting further investigation and
independent validation.
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