
ORIGINAL RESEARCH
published: 11 August 2020

doi: 10.3389/fonc.2020.01398

Frontiers in Oncology | www.frontiersin.org 1 August 2020 | Volume 10 | Article 1398

Edited by:

Abhishek Ashok Solanki,

Loyola University Chicago,

United States

Reviewed by:

Alexander F. I. Osman,

Al-Neelain University, Sudan

Zhenyu Liu,

Institute of Automation (CAS), China

*Correspondence:

Yong Yin

yinyongsd@126.com

Specialty section:

This article was submitted to

Radiation Oncology,

a section of the journal

Frontiers in Oncology

Received: 13 March 2020

Accepted: 02 July 2020

Published: 11 August 2020

Citation:

Qiu Q, Duan J, Deng H, Han Z, Gu J,

Yue NJ and Yin Y (2020) Development

and Validation of a Radiomics

Nomogram Model for Predicting

Postoperative Recurrence in Patients

With Esophageal Squamous Cell

Cancer Who Achieved pCR After

Neoadjuvant Chemoradiotherapy

Followed by Surgery.

Front. Oncol. 10:1398.

doi: 10.3389/fonc.2020.01398

Development and Validation of a
Radiomics Nomogram Model for
Predicting Postoperative Recurrence
in Patients With Esophageal
Squamous Cell Cancer Who
Achieved pCR After Neoadjuvant
Chemoradiotherapy Followed by
Surgery

Qingtao Qiu 1, Jinghao Duan 1, Hongbin Deng 2, Zhujun Han 3, Jiabing Gu 1, Ning J. Yue 4

and Yong Yin 1*

1Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and

Shandong Academy of Medical Sciences, Jinan, China, 2Department of Medical Imaging Ultrasonography, Second Affiliated

Hospital of Nanjing Medical University, Nanjing, China, 3Department of Radiation Oncology, Yantai Yuhuangding Hospital,

Yantai, China, 4Department of Radiation Oncology, The Cancer Institute of New Jersey, New Brunswick, NJ, United States

Background and purpose: Although patients with esophageal squamous cell

carcinoma (ESCC) can achieve a pathological complete response (pCR) after

neoadjuvant chemoradiotherapy (nCRT) followed by surgery, one-third of these patients

with a pCR may still experience recurrence. The aim of this study is to develop and

validate a predictive model to estimate recurrence-free survival (RFS) in those patients

who achieved pCR.

Materials and methods: Two hundred six patients with ESCC were enrolled and

divided into a training cohort (n = 146) and a validation cohort (n = 60). Radiomic

features were extracted from contrast-enhanced computed tomography (CT) images

of each patient. Feature reduction was then implemented in two steps, including a

multiple segmentation test and least absolute shrinkage and selection operator (LASSO)

Cox proportional hazards regression method. A radiomics signature was subsequently

constructed and evaluated. For better prediction performance, a clinical nomogram

based on clinical risk factors and a nomogram incorporating the radiomics signature

and clinical risk factors was built. Finally, the prediction models were further validated by

calibration and the clinical usefulness was examined in the validation cohort to determine

the optimal prediction model.

Results: The radiomics signature was constructed using eight radiomic features and

displayed a significant correlation with RFS. The nomogram incorporating the radiomics

signature with clinical risk factors achieved optimal performance compared with the

radiomics signature (P < 0.001) and clinical nomogram (P < 0.001) in both the training
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cohort [C-index (95% confidence interval [CI]), 0.746 (0.680–0.812) vs. 0.685

(0.620–0.750) vs. 0.614 (0.538–0.690), respectively] and validation cohort [C-index (95%

CI), 0.724 (0.696–0.752) vs. 0.671 (0.624–0.718) vs. 0.629 (0.597–0.661), respectively].

The calibration curve and decision curve analysis revealed that the radiomics nomogram

outperformed the other two models.

Conclusions: A radiomics nomogram model incorporating radiomics features and

clinical factors has been developed and has the improved ability to predict the

postoperative recurrence risk in patients with ESCC who achieved pCR after nCRT

followed by surgery.

Keywords: esophageal squamous cell carcinoma, neoadjuvant chemoradiotherapy, radiomics, pathological

complete response, recurrence

INTRODUCTION

Esophageal cancer (EC) is the fourth most prevalent cancer in
China, has a poor prognosis and is the sixth leading cause of
death worldwide (1, 2). Esophageal squamous cell carcinoma
(ESCC) is the most common subtype of esophageal malignancy
and the cause of the highest morbidity in China compared to
other developing countries (3, 4).

Despite multidisciplinary advances in EC treatment, surgery
is still the curative strategy of choice. However, neoadjuvant
chemotherapy (nCT) or neoadjuvant chemoradiotherapy
(nCRT) followed by surgery has been shown to achieve a better
outcome for patients with EC compared with surgery alone
(5, 6), and is related to improvements in overall survival and
disease-free survival. Notably, 15–30% of all patients with EC
treated with nCRT followed by surgery achieve a pathological
complete response (pCR) (7–9) and∼45% of patients with ESCC
achieve pCR (7, 10, 11), where pCR is defined as no histological
evidence of the tumor in the surgical specimen. However,
approximately one-third of those patients achieving pCR still
experience recurrence within 2 years after treatment (11). Once
recurrence occurs, the patient’s prognosis is usually poor, with
a reported survival time of 3–10 months (12). Therefore, the
ability to predict the likelihood of recurrence in patients with
EC who have achieved pCR is important. It is a very essential
way to ensure that an appropriately tailored treatment strategy
is implemented early in the cohort of patient with a high risk
of recurrence.

Many studies have been focused on predicting the pCR
(13–16), but few studies have investigated the prediction of
recurrence in patients achieving pCR. Barbetta et al. developed
a multivariate competing risk regression model based on
clinical and pathological factors and determined that poor
tumor differentiation is an independent risk factor predicting
recurrence in patients with EC who achieved pCR after
undergoing neoadjuvant therapy plus surgical resection (11). On
the other hand, as a fundamental component of clinical oncology,
medical imaging, including computed tomography (CT), plays
a vital role in monitoring treatment outcomes (17) and can
provide a good description of EC tumors (18). Moreover, an
image processing technology called radiomics converts medical

images into mineable high-throughput data and may potentially
improve the diagnostic, prognostic, and predictive accuracy
(19). Radiomics models have been shown to exhibit higher
performance than conventional clinical models in predicting
treatment outcomes (20–24). However, to the best of our
knowledge, no previous radiomic studies have been focused on
and conducted to predict recurrence in patients with ESCC who
achieved pCR. Thus, a reasonable hypothesis is that radiomics
may play an important role in predicting the recurrence risk in
patients who achieved pCR. In the present study, we aimed to
develop and validate a radiomics signature-based model using
the pretreatment CT images to estimate recurrence-free survival
(RFS) in patients with ESCC who achieved pCR after receiving
nCRT followed by surgery.

MATERIALS AND METHODS

Study Design
The overall research workflow is depicted in Figure 1, and a
detailed description is provided in the Supplementary Methods.

Patients
Based on the pathological data derived from surgical specimens,
303 consecutive patients who achieved pCR at the Shandong
Cancer Hospital and Institute between April 2015 and October
2017 were selected for this study. Ethical approval of this study
was obtained from the Institutional Review Board at Shandong
Cancer Hospital and Institute, and the need for informed consent
was waived because this study employed a retrospective design.
The inclusion and exclusion criteria are described in Figure S1.
The enrolled patients were divided into a training cohort and a
validation cohort with the cutoff date of November 1, 2016.

Clinical factors, including gender, age, T and N stages, tumor
location, pathological differentiation derived from medical
records before nCRT, and the length of resected esophagus
measured after surgery, were recorded.

CT Image Acquisition
CT images captured before nCRT were collected for all patients.
All patients underwent standard chest contrast-enhanced CT
scanning with a Philips CT scanner (Brilliance iCT 128, Philips
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FIGURE 1 | Workflow of this study.

Medical System, the Netherlands). The scanning protocol was a
120 kV tube voltage, 406mA tube current, 5mm slice thickness,
0.8984 × 0.8984 mm/pixel in-plane resolution, and helical
scanning mode. In this study, enhanced CT images were used
for tumor delineation and feature extraction because of the
well-differentiated tumor borders.

Tumor Segmentation
Several radiation oncologists with over 5 years of professional
experience manually delineated the gross tumor volumes
(GTVs). The contoured GTVs were cross-checked slice-by-slice
by different experienced radiation oncologists. Since manual
delineation is prone to interobserver variability, an independent
radiation oncologist delineated the GTVs for 50 randomly
selected patients with ESCC to evaluate and confirm the
reproducibility of the radiomic features and to reduce the
effect of the uncertainty in the manual tumor delineation on
feature extraction. All delineation tasks were performed in on
a MIM Maestro Workstation (version 6.8.2, MIM Software
Inc., USA).

Radiomic Feature Extraction and Selection
Radiomic features were automatically extracted using the
SlicerRadomics extension in 3D Slicer (version 4.8.1, http://www.
slicer.org, USA), an open source, easy-to-use medical image
analysis software, from each contoured GTV (25). Seven hundred
eleven radiomic features were extracted, and the detailed
descriptions are reported in the Supplementary Methods.

Two steps were included in feature selection. First, the
intraclass correlation coefficient (ICC) (17, 26) was calculated
to quantify the reproducibility of features extracted from 50
randomly selected patients by two oncologists and to acquire
robust radiomic features that were not affected by the variability
in tumor segmentation. Second, the most useful predictive
features based on the reproducible features identified in the
previous step were selected using the least absolute shrinkage
and selection operator (LASSO) Cox regression model (27,
28), which is used to reduce high-dimensional data. Ten-fold
cross-validation was used in the parameter tuning phase of
the LASSO algorithm to extract the effective and predictive
features (29).

Radiomics Signature and Nomogram
Construction
After feature selection, a radiomics signature, also known as
radiomics score or rad-score, was established from a linear
combination of features and corresponding weights.

For visualization, a multivariate Cox proportional hazards
model was utilized to build a clinical and a radiomics nomogram.
The factors included in the clinical nomogram were gender,
age, T stage, N stage, length of resection, tumor location,
and pathological differentiation. A radiomics nomogram was
constructed with the addition of the radiomics signature to the
afore mentioned conventional clinical factors to ascertain the
model with the optimal predictive performance.
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Validation of the Radiomics Signature and
Nomograms
The correlation between the radiomics signature and RFS was
first evaluated using the Kaplan-Meier survival analysis in the
training cohort and then validated in the validation cohort. A
threshold or cutoff point was generated using X-tile software
(version 3.6.1) (30). Subsequently, the patients with radiomics
signature values greater than the threshold were allocated into a
high-risk group and patients with values less than the threshold
were allocated into the low-risk group. The log-rank test was
used to measure the difference in survival curves of the low-
risk and high-risk groups. The discrimination power, which is
defined as the agreement between the predicted and actual RFS
probability, and the clinical usefulness that quantifies the net
benefits at different threshold probabilities were used to evaluate
the performance of radiomics signature and nomograms. In this
study, the discrimination power was evaluated with Harrell’s
concordance index (C-index) in both the training and validation
cohorts (18). In addition, we used a calibration curve to
intuitively assess the predictive accuracy and the agreement
between the actual RFS and the RFS predicted by the nomograms
(27). The calibration curve shows the actual RFS (ordinate) and
the predicted RFS (abscissa) in a two-dimensional coordinate
system. Then, we used the Akaike information criterion (AIC)
to assess the risk of overfitting. A smaller AIC value indicates a
better fit of the model. Finally, a decision curve, which quantified
the net benefits at a threshold ranging from 0 to 1 in the validation
cohort, was plotted to determine the clinical usefulness of the
nomogram (28). Higher clinical utility is observed the farther
away the decision curve is from the two extreme curves (treat-all
and treat-none).

Statistical Analysis
Statistical analyses were performed in R (version 3.6.1, http://
www.r-project.org), an open source programming language and
software environment for statistical computing and graphics.
The packages in R used in this study are listed in Table S1.
Comparisons of patient characteristics were performed using
the Mann–Whitney U-test or two-sample t-test, as appropriate.
An ICC value > 0.95 indicated strong reproducibility (31). The
reported statistical significance levels were all two-sided. The
statistical significance level was set to 0.05.

RESULTS

Patients’ Clinical Characteristics
The clinical characteristics of the patients in the two cohorts
are summarized in Table 1 and showed consistent demographic
distributions. In the present study, 146 and 60 patients with ESCC
were enrolled in the training and validation cohorts, respectively.
No significant differences were observed in the two cohorts,
with P-values ranging from 0.386 to 0.709. The RFS times and
recurrence status of the enrolled patients were determined based
on the follow-up information.

Results of the Radiomic Feature Selection
In the first step of the reproducible feature selection, 478
of the 711 extracted radiomic features had an ICC value

TABLE 1 | Demographic and clinical characteristics of patients with ESCC in the

training cohort and validation cohort.

Characteristic Training cohort Validation cohort

Gender

Male 111 (76.0) 45 (75.0)

Female 35 (24.0) 15 (25.0)

Age (years)

Mean 60.83 59.98

Range 43–78 38–76

T stage

T1 30 (20.5) 12 (20.0)

T2 23 (15.8) 8 (13.3)

T3 86 (58.9) 37 (61.7)

T4 7 (4.8) 3 (5.0)

N stage

N0 96 (65.8) 36 (60.0)

N1 36 (24.7) 21 (35.0)

N2 9 (6.2) 2 (3.3)

N3 5 (3.4) 1 (1.7)

Length of Resection

≤5 cm 102 (69.9) 40 (66.7)

5–10 cm 42 (28.8) 19 (31.7)

≥10 cm 2 (1.4) 1 (1.7)

Location

Lower 35 (24.0) 9 (15.0)

Middle 103 (70.5) 47 (78.3)

Upper 8 (5.5) 4 (6.7)

Pathological Differentiation

Low 41 (28.1) 12 (20)

Middle 68 (46.6) 31 (51.7)

High 37 (25.3) 17 (28.3)

Follow-Up Time (Months)

Median 19 13.5

Range 1–38 2–35

All the data except Age in above table are numbers of patients, with percentages in

parentheses. No difference was found between training cohort and validation cohort

in either the clinical characteristics or recurrence status (p = 0.386–0.709). ESCC,

esophageal squamous cell carcinoma.

> 0.95, indicating the high reproducibility among multiple
segmentations. The excluded and selected radiomic features are
presented in Table S2.

In the second step of the predictive feature selection, eight
radiomic features with non-zero coefficients were selected
from the 478 reproducible features based on the LASSO Cox
regression model for the survival analysis. The parameter
tuning phase of the regression model and the feature space
reduction are depicted in Figure S2. The selected features
with corresponding coefficients and ICC values are listed
in Table S3.

Radiomics Signature Construction and
Validation Results
The radiomics signature was constructed using the
following formula:
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Radiomics Signature = −Original_GLSZM_SZNUN× 1.2200

+Wavelet_LHL_FirOrd_Skewness× 0.0358

+Wavelet_LHH_GLSZM_SAE× 0.9097

+Wavelet_HHH_GLSZM_LGLZE× 0.6696

+Wavelet_HHL_GLCM_MCC× 0.7100

−Wavelet_HHL_GLRLM_SRLGLE× 0.0288

−Wavelet_HHL_GLSZM_LALGLE× 0.5297

+Wavelet_LLL_GLSZM_ZoneVar× 0.2152

The optimal cutoff point of 0.52 was generated from the X-tile
plot shown in Figure S3 to identify the low-risk and high-risk
subgroups. Therefore, patients with were divided into a low-
risk group (radiomics signature ≤ 0.52) and high-risk group
(radiomics signature > 0.52). The distributions of radiomics
signature values calculated from the training and validation
cohorts are presented in Figure 2. The Kaplan-Meier plots of the
low-risk and high-risk groups in both the training and validation
cohorts are illustrated in Figure 3. In the training cohort, the
radiomics signature was significantly associated with RFS (P <

0.0001; hazard ratio [HR], 2.479; 95% confidence interval [CI],
1.458–4.251). Then, this finding was confirmed in the validation
cohort (P < 0.0001; HR, 3.606; 95% CI, 1.742–7.464). The mean
RFS times of the low-risk and high-risk groups were 21.24 and
13.74 months in the training cohort, and 21.13 and 12.27 months
in the validation cohort, respectively.

Nomogram Construction and Validation
Results
Combined with the conventional clinical factors, radiomics
signature and Cox proportional hazards model, a clinical
nomogram and radiomics nomogram were built, as presented
in Figures 4A,B. The corresponding calibration curve of these
two nomograms for the probability of recurrence-free survival
at 1 and 2 years after surgery are depicted in Figures 4C,D,
respectively. The calibration curve showed better agreement and
goodness-of-fit between the RFS predicted by the radiomics
nomogram and actual RFS probability for both 1 and 2-
years RFS.

The C-index with 95% CI and AIC estimates for the different
models, including radiomics signature, clinical nomogram, and
radiomics nomogram, were calculated and listed in Table 2.
The radiomics nomogram yielded an optimal C-index value
of 0.746 (95% CI, 0.680–0.812) in the training cohort and
0.724 (95% CI, 0.696–0.752) in the validation cohort. The
discrimination performance of the radiomics signature increased
significantly when the radiomics signature was integrated with
clinical risk factors compared with each feature set alone (P
< 0.0001 for each comparison). Additionally, among all the
three prediction models, the radiomics nomogram yielded the
lowest AIC value in both the training (582.843) and validation
(603.927) cohorts. A decision curve was further plotted in
Figure 5, and it showed that the radiomics nomogram produced
a greater net benefit than the clinical nomograms and the
radiomics signature.

FIGURE 2 | Bar plot of the radiomics signature value for each patient in the

training cohort (A) and the validation cohort (B). Patients with radiomics

signature values >0.52 were allocated into the high-risk group, while patients

with values ≤0.52 were allocated into the low-risk group. Recurrent and

censored patients were marked with a different color.

DISCUSSION

We developed three models for predicting the recurrence risk
in patients with ESCC who had achieved pCR after treatment
with nCRT followed by surgery. Among the three models, the
radiomics nomogram had the best discrimination power and
was further confirmed to exhibit superior calibration and clinical
utility. Although the radiomics signature displayed a significant
correlation with the RFS times, we assumed that it will achieve
better performance when combined with other predictors;
this hypothesis was verified. The radiomics nomogram model
incorporating the radiomics signature and clinical risk factors
exhibited a higher predictive power for predicting RFS at the 1
and 2-years time points. The radiomics nomogram was useful to
clinical physicians for an early evaluation of long-term outcomes.

The constructed radiomics signature consisted of eight
features, and nearly all of the selected predictive features
were wavelet-based features, similar to the results of several
other studies (32–34). The potential explanation is that the
multifrequency decomposition of the original CT image provided
useful information about tumor heterogeneity for evaluating
treatment outcomes. In addition, the eight features and 146
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FIGURE 3 | Kaplan-Meier survival analyses of high-risk and low-risk groups divided by radiomics signature in training cohort (A) and validation cohort (B). Significant

differences were observed in both training cohort (log-rank test P < 0.0001) and validation cohort (log-rank test P < 0.0001). It indicates that radiomics signature

significantly associated with RFS. Dashed line in the two-sided CI of survival curves.
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FIGURE 4 | Nomograms developed using the training cohort. (A) The nomogram incorporates clinical risk factors. (B) The nomogram incorporates the radiomics

signature and clinical risk factors. Calibration curves of the clinical nomogram (C) and radiomics nomogram (D) were plotted to assess the agreement between RFS

probability predicted by the nomogram and the observed RFS.

TABLE 2 | Comparison of the discriminating performance of the radiomics signature, clinical nomogram, and radiomics nomogram.

Model Training cohort Validation cohort

C-index 95% CI p-value AIC C-index 95% CI p-value AIC

Radiomics signature 0.685 0.620–0.750 <0.001Ψ 596.615 0.671 0.624–0.718 <0.001Ψ 609.273

Clinical nomogram 0.614 0.538–0.690 <0.001ζ 614.049 0.629 0.597–0.661 <0.001ζ 635.411

Radiomics nomogram 0.746 0.680–0.812 <0.001§ 582.043 0.724 0.696–0.752 <0.001§ 603.927

Ψ The comparison of CI between radiomics signature and clinical nomogram.
ζThe comparison of CI between clinical nomogram and Radiomics nomogram.
§The comparison of CI between radiomics nomogram and radiomics signature.

patients are in the proper proportion and number for the
construction of the radiomics signature, according to the
description of overfitting of the prediction model in a previous
study (35). Therefore, the constructed signature efficiently
stratified those patients into low-risk and high-risk groups.

The radiomics signature model incorporated some individual
radiomic features as predictors to explore the clinical utility
of features that have been explored and investigated in many

studies (18, 28, 32–34); notably, radiomics signatures constructed
from 24 to 14 features were used to preoperatively predict the
lymph node metastasis in patients with rectal cancer (28) and
EC (18), respectively. Similarly, in the current study, a high
discrimination of the radiomics signature model was observed in
both the training cohort (C-index, 0.685; 95% CI, 0.620–0.750)
and validation cohort (C-index, 0.671; 95% CI, 0.624–0.718).
Moreover, the distribution of radiomics signature in both the

Frontiers in Oncology | www.frontiersin.org 7 August 2020 | Volume 10 | Article 1398

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Qiu et al. Radiomics Predict Recurrence of ESCC

FIGURE 5 | Decision curves of the three models and two extreme curves were

plotted based on the validation cohort. When considering the decision curve

drawn for different thresholds of probability, patients will add more net benefits

when the threshold probability is >0.10. Therefore, the use of the radiomics

nomogram to predict recurrence in patients who achieved pCR has a greater

benefit than the use of the radiomics signature and clinical nomogram.

training and validation cohorts confirmed its stability. In a recent
study, poor tumor differentiation (HR, 2.28; P = 0.022) and an
advanced clinical stage (HR, 1.89; P = 0.042) were predictors
of recurrence in the esophageal adenocarcinoma subgroup, and
poor tumor differentiation was the only risk factor predicting
recurrence (HR, 2.28, P = 0.009) in the total cohort of patients
with EC achieving pCR after nCRT and surgery (11). In our
study, the HR of the high radiomics signature value (training
cohort: HR = 2.479, P < 0.0001; validation cohort: HR = 3.606,
P < 0.0001) was sufficient to confirm that it is an independent
predictor of RFS. Because tumor differentiation and clinical
stages are potential predictors of recurrence, we must consider
whether clinical factors achieve more accurate predictions of
recurrence than the radiomics signature. Thus, we developed a
clinical nomogram that incorporates clinical factors, including
gender, age, T stage, N stage, tumor location, length of resection,
and tumor differentiation. These clinical factors are generally
readily available during treatment and the collection of this
information does not increase the burden on patients as a result
of the additional examinations. Compared with the radiomics
signature model, tumor differentiation is not a dominant variable
in the clinical nomogram, as shown in Figures 4A,B. It may be
caused by the nuances in the dataset or confounding by other
factors in the process of model development (28). Although
the clinical prediction model we established achieved acceptable
discrimination in both the training cohort (C-index, 0.614, 95%
CI, 0.538–0.690) and validation cohort (C-index, 0.629, 95%
CI, 0.597–0.661), the C-index values of the model were still
lower than the radiomics signature model, and the statistically
significant differences were observed in both the training cohort
(P < 0.001) and the validation cohort (P < 0.001). The possible

interpretation is that the information dimension from the limited
clinical factors was lower than the high-dimensional feature
space mined from medical images for reflecting the spatial
heterogeneity of tumors. If insufficient information is used to
develop a predictionmodel, a low-discriminationmodel will very
likely be the result.

Many studies have reported improvements in the predictive
accuracy in models combining radiomic features or signatures
with clinical risk factors (22, 36–38). For example, the nomogram
models developed by combining radiomic signatures and clinical
factors have shown outstanding performance in the prediction
of cognitive impairment (37) and in the differentiation of
renal angiomyolipoma (38). This strategy was adopted in
the present study and a radiomics nomogram was developed
by incorporating the radiomics signature into the clinical
nomogram. The developed radiomics nomogram achieved
remarkable discrimination power in both the training cohort
(C-index, 0.746, 95% CI, 0.680–0.812) and validation cohort (C-
index, 0.724, 95% CI, 0.696–0.752). The discrimination power
of the radiomics nomogram outperformed both the radiomics
signature and clinical nomogram as individual predictors (P
< 0.001). Our finding supports the hypothesis that a more
holistic model is obtained when non-radiomic features (such as
clinical factors) are incorporated, which is described in criterion
six of the radiomics quality score (RQS) proposed by Lambin
(39), the founder of the concept of radiomics (40). Our results
also confirmed that this hypothesis is feasible with the optimal
discrimination model obtained from the nomogram combining
the radiomics signature and clinical factors. The radiomics
nomogram is an easy-to-use scoring model with the ability to
assess the recurrence risk of individual patients. The generated
calibration curves and AICs were used to address the important
and final arguments for the utilization of the nomogram. The
developed radiomics nomogram model is useful to predict the
probability of recurrence for an individual patient and can be
used in postoperative assessments of the individual recurrence
risk in patients achieving pCR. Furthermore, a decision curve
analysis was conducted to reduce the bias caused by the
clinical consequences of a particular level of discrimination or
degree of miscalibration in the discrimination and calibration
curve (28). The decision curves generated from the validation
cohort revealed that the radiomics nomogram is potentially
advantageous in predicting the recurrence risk in patients
achieving pCR compared with the other two models presented
in this study.

Our study has a few limitations. First, other imaging
modalities that are commonly available in clinical practice, such
as positron emission tomography (PET) and magnetic resonance
imaging (MRI), were not included in this study, and further
studies are needed to determine whether the developed model
is suitable for those imaging modalities. Second, a subgroup
analysis based on disease stage was not conducted in this
study due to the limited cohort size. In addition, the use of
nCRT as new treatment strategy has achieved encouraging long-
term outcomes. The survival analysis of patients treated with
nCRT was not included in this study because it has only been
adopted and implemented in our hospital for a few years and an
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inadequate number of patients was available for this type of study.
Our future studies will focus on subgroup analyses of survival and
the risk of recurrence, as well as the utilization of radiomics to
predict clinical outcomes of nCRT in those subgroups.

CONCLUSION

We have developed and validated a radiomics nomogram model
that incorporates both radiomics signatures and clinical factors
to predict the postoperative ESCC recurrence risk of patients
who achieved pCR after nCRT followed by surgery. As a holistic
predictive model, the radiomics nomogram may serve as a
powerful tool in the evaluation of clinical outcomes in those
patients with ESCC.
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