l\' frontiers
in Oncology

ORIGINAL RESEARCH
published: 13 August 2020
doi: 10.3389/fonc.2020.01410

OPEN ACCESS

Edited by:
Marco Invernizzi,
University of Eastern Piedmont, Italy

Reviewed by:

Cristian Scatena,

University of Pisa, ltaly
Min-Ying Su,

University of California, Irvine,
United States

*Correspondence:
Feng Shao
shaofeng@zjcc.org.cn
Guoliang Shao
shaogl@zjcc.org.cn

*These authors have contributed
equally to this work

Specialty section:

This article was submitted to
Women'’s Cancer,

a section of the journal
Frontiers in Oncology

Received: 30 November 2019
Accepted: 03 July 2020
Published: 13 August 2020

Citation:

Chen S, Shu Z, Li Y, Chen B, Tang L,
Mo W, Shao G and Shao F (2020)
Machine Learning-Based Radiomics
Nomogram Using Magnetic
Resonance Images for Prediction of
Neoadjuvant Chemotherapy Efficacy
in Breast Cancer Patients.

Front. Oncol. 10:1410.

doi: 10.3389/fonc.2020.01410

Check for
updates

Machine Learning-Based Radiomics
Nomogram Using Magnetic
Resonance Images for Prediction of
Neoadjuvant Chemotherapy Efficacy
in Breast Cancer Patients

Shujun Chen'?3t, Zhenyu Shu*', Yongfeng Li"?°, Bo Chen 2%, Lirong Tang 23,
Wenju Mo %%, Guoliang Shao "2%* and Feng Shao "™

" Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China, 2 Institute
of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, China, ° Department of Radiology, Zhejiang
Cancer Hospital, Hangzhou, China, * Department of Radliology, Zhejiang Provincial People’s Hospital, Affiliated People’s
Hospital of Hangzhou Medical College, Hangzhou, China, ° Department of Breast Surgery, Zhejiang Cancer Hospital,
Hangzhou, China, ® Department of Pathology, Zhejiang Cancer Hospital, Hangzhou, China, ” Department of Gynecological
Oncology, Zhejiang Cancer Hospital, Hangzhou, China

Purpose: The construction and validation of a radiomics nomogram based on machine
learning using magnetic resonance image (MRI) for predicting the efficacy of necadjuvant
chemotherapy (NACT) in patients with breast cancer (BCa).

Methods: This retrospective investigation consisted of 158 patients who were
diagnosed with BCa and underwent MRI before NACT, of which 33 patients experienced
pathological complete response (PCR) by the postoperative pathological examination.
The patients with BCa were divided into the training set (n = 110) and test set (1 = 48)
randomly. The features were selected by the maximum relevance minimum redundancy
(MRMR) and absolute shrinkage and selection operator (LASSO) algorithm in the training
set. In return, the radiomics signature was established using machine learning. The
predictive score of each patient was calculated using the radiomics signature formula.
Finally, the predictive scores and clinical factors were used to perform the multivariate
logistic regression and construct the nomogram. Receiver operating characteristics
(ROC) analyses were used to assess and validate the diagnostic accuracy of the
nomogram in the test set. Lastly, the usefulness of the nomogram was confirmed via
decision curve analysis (DCA).

Results: The radiomics signature was well-discriminated in the training set [AUC
0.835, specificity 71.32%, and sensitivity 82.61%], and test set (AUC 0.834, specificity
73.21%, and sensitivity 80%). Containing the radiomics signature and hormone status,
the radiomics nomogram showed good calibration and discrimination in the training
set [AUC 0.888, specificity 79.31%, and sensitivity 86.96%)] and test set (AUC 0.879,
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specificity 82.19%, and sensitivity 83.57%). The decision curve indicated the clinical

usefulness of our nomogram.

Conclusion: Our radiomics nomogram showed good discrimination in patients with
BCa who experience pCR after NACT. The model may aid physicians in predicting how
specific patients may respond to BCa treatments in the future.

Keywords: radiomics, nomogram, breast cancer, neoadjuvant chemotherapy, pathological complete response,

machine learning

INTRODUCTION

Currently, breast cancer (BCa) is the most commonly diagnosed
malignancy in females worldwide as of 2018, accounting for
~25% of all new diagnoses and nearly 15% of cancer-associated
deaths in females (1). This translates to 2.1 million new cases of
BCa in 2018, along with more than 600,000 BCa-related deaths.
Globally, women have a 5% cumulative risk of being diagnosed
with BCa by the age of 75, although the risk varies substantially
by country.

Neoadjuvant chemotherapy (NACT) is a central component
of BCa therapy (2). In previous studies, NACT has been
associated with lower disease stages, increased sensitivity of
chemotherapy drugs, improved resection and breast preservation
rates, and increased pathological complete response (pCR)
in some patients with BCa (3, 4). The disease-free survival
(DFS) and overall survival (OS) of BCa patients with pCR
are significantly longer than those of patients without pCR
(5), suggesting that pCR may be a potential prognostic factor
and target of NACT. However, even with the latest advances
in chemotherapy regimens, the number of patients with pCR
remains low at 12-28% worldwide (6). In non-pCR patients,
NACT may fail to produce a full therapeutic effect, which
can delay surgical intervention (7). Accordingly, the rapid and
effective screening of patients is critically important to identify
patients more likely to respond to NACT, which may lead to
improved patient outcomes.

In recent years, there has been extensive cross integration
of radiation medicine with bioengineering, which has produced
the field of radiomics (8, 9). Radiomics is a method for the
extraction of high-dimensional data from radiographic medical
images using data-characterization algorithms. Recent studies
have shown that radiomics features of magnetic resonance
imaging (MRI) may allow for the prediction of NACT and
radiotherapy response in patients with rectal cancer (10). In
addition, the radiomic features from MRI have been used to
predict how patients with BCa would respond to NACT before
the treatment was initiated (11). Recently, a new multicenter
study was conducted to assess a multiparameter prediction
model using MRI data that could accurately predict which
patients would have pCR before undergoing treatment (12).
While radiomics may be used to predict the efficacy and potential
benefits of NACT, no studies have evaluated the potential impact
of different machine learning techniques on radiomics.

Machine learning involves the building of data-derived
computational models and methods to improve the accuracy,

performance, or predictive abilities of the model, which is an
important part of radiomics (13, 14). Accordingly, machine
learning strategies have high prognostic and predictive power,
along with excellent stability, all of which are desired for
radiomics-based analyses. In this study, our aim was to use
a highly predictive and stable machine learning strategy for
constructing a radiomics nomogram that could be used to predict
PCR in patients with BCa. The radiomics nomogram provides a
noninvasive, convenient, and low-cost strategy that may improve
the treatment of BCa in the future.

MATERIALS AND METHODS

Patient Information

This study was approved by the Ethics Committee of Zhejiang
Cancer Hospital (Gongshu, P.R. China). The requirement for
informed consent was waived due to the retrospective nature
of this study. The patients were enrolled in our hospital from
June 2017 to December 2019. All the patients underwent MRI
within 1-2 weeks prior to NACT. The inclusion criteria for this
study were as follows: (a) invasive BCa confirmed by biopsy
without distant metastasis; (b) complete NACT was initiated with
no prior history of treatment; and (c) surgery was performed
after NACT, and pathological evaluation was performed after the
operation. The exclusion criteria for this study were as follows:
(a) NACT was not completed; (b) surgery was not performed,
or postoperative pathology was not evaluated; and (c) the MRI
data were unavailable. In addition, the study population was
group by 7:3 according to the diagnosis time. The patients from
June 2017 to January 2019 were part of the training set (n =
110). During the training period, the robustness of the radiomic
features was tested, and the model was constructed. The patients
from February 2019 to December 2019 were part of the test set
(n = 48) to verify the reliability of the constructed model. The
recruitment path of the subjects and research design of this study
are shown in Figure 1.

MRI Scanning Process and

Immunohistochemical Evaluation

All breast MRI scans were performed at a local hospital
using the 3.0 Tesla MRI scanner (MAGNETOM Verio
A Tim System; Siemens Healthcare, Erlangen, Germany).
During the scan, an axial fat-suppressed T2WI sequence and
axial diffusion weight imaging (DWI) images were obtained
using the two b-values of 0 and 1,000 s/mm? before the
contrast agent was administered. Initially, a fat-saturated
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FIGURE 1 | Flowchart showing the recruitment of patients and the overall design of this retrospective study.

TIWI scan was recorded before injection of the contrast
agent or dynamic contrast-enhanced (DCE) scanning were
performed. Next, DCE images were acquired as six post-
injection scans with intervals of 38 s following the intravenous
injection of Magnevist. Next, 0.2 mL/kg of body weight
of the gadolinium-based agent (Magnevist; Bayer Healthcare,
Berlin, Germany) was injected using an MRI compatible
power injector (rate 2 mL/s), which was flushed with

20-mL of saline using the high-pressure injector. Additional
details about the MRI parameters can be found in the
Supporting Information.

Immunohistochemistry (IHC) was used to assess the
expression of several receptors and antigens commonly
associated with BCa from biopsy in the pre NACT, including
estrogen receptor (ER), progesterone receptor (PR), human
epidermal growth factor receptor 2 (HER2), and antigen
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Ki67 (Ki-67). Tumors with <1% of nuclear staining were
denoted as ER/PR-negative, while >1% was denoted as ER/PR-
positive. Next, 20% was established as the cutoff value for
Ki-67 expression. In terms of HER2 expression, IHC scores
of 0 or 1+ were denoted as HER2-negative, and 3+ was
denoted as HER2-positive. An IHC score of 24 required
further investigation using in situ hybridization (ISH), with
non-amplified results being denoted as HER2-negative and
amplified results being HER2-positive.

NACT and the Pathological Response of

Treatment

The patients included in this study underwent four or six
cycles of NACT before undergoing breast surgery. The National
Comprehensive Cancer Network (NCCN) guidelines were used
to establish the therapy timeline and procedures (15). In this
study, 85% of patients (n = 121) were given the taxane-based
NACT regimen, while the remaining 15% of patients (n = 21)
were given the anthracycline and taxane-based NACT regimen.
Additionally, the patients found to be HER2-positive were
prescribed trastuzumab (loading dose = 8 mg/kg; maintenance
dose = 6 mg/kg). All of the patients underwent surgery after
NACT, and pathological specimens were evaluated using the
Miller-Payne system (16) for the pathological assessment of
NACT response. The histopathological examination and analysis
were performed by a dedicated breast pathologist, who was
blinded to the MRI data, with more than 12 years of experience
in the field of breast pathology. Next, the efficacy of NACT was
determined by examination and comparison of the specimens
from the initial biopsies with those obtained from the radical
resection specimens. The Miller-Payne system is divided into
five grades. In the current study, grade 5 and the absence of
lymph node invasion in the ipsilateral sentinel node or lymph
nodes removed during axillary dissection (yPT0/isNO), while
the remaining grades were denoted as the non-pCR group.
Additional details about the pathological grades can be found in
the Supporting Information.

Segmentation and Preprocessing of MR

Images
The DCE-MRI images were imported into the itk-snap software.
The third phase, which showed the most apparent enhancement,
was selected for sketching tumor boundaries. The largest layer
of the tumor was selected for sketching, and areas of necrosis,
calcification, and bleeding were avoided. The region of interest
(ROI) of the tumor was saved and imported into the DWI
images (b = 1,000 s/mm?) and T2WI images using the replication
function. Next, the ROIs of tumors from three different MRI
sequences were saved. In addition, manual corrections were
further performed to prevent small deviations in delineating the
ROI boundary. All tumor sketches were completed by two senior
radiologists independently without knowing the pathological
results. Radiologist A had ten years of experience, and radiologist
B had ~15 years of experience in the study of breast radiology.
The ROIs from the three MRI sequences were loaded into
the AK analysis software for feature extraction. The images were

initially processed before the feature extraction was performed.
The initial processing of images required the resampling of voxels
to 1 x 1 x 1 mm? and standardization of gray levels to the 1-
256 scale. This eliminated the potential influences of different
imaging sequences on the extracted features (17).

Extraction of Radiomic Features

AK software was used to extract the radiomic features, including
the histogram, FormFactor, gray level co-occurrence matrix
(GLCM), and run-length matrix (RLM). These features can
characterize the heterogeneity of cancer and reflect changes in
the tumor microstructure (17). The most robust features were
used for manual correction purposes to improve the usefulness
of the model (18). The Spearman’s rank test was used to assess
the correlation coeflicients between features of set-A (Radiologist
A) and set-B (Radiologist B). Any features that had correlation
coeflicients > 0.8 were denoted as having “robust” features (19).
Three sets of robust features corresponding to T2ZWI, DWI, and
DCE sequences were obtained. The feature values in this study
were the average values of feature set-A and feature set-B.

Establishment of an Optimal Radiomics

Signature Based on Machine Learning

The maximum-relevance minimum redundancy (mRMR)
algorithm was used to extract the robust features in the training
set. Maximum relevance allowed for the selection of features
most associated with pCRs (20), while minimum redundancy
allowed for the selection of features with minimal redundancy
among the others. Optimal features set with high correlation
and low redundancy were obtained using the mRMR algorithm.
Next, the typical absolute shrinkage and selection operator
(LASSO) algorithm allowed for the reduction of dimensions
and construction of the radiomics signature through machine
learning techniques (21).

The five machine learning classifiers utilized in this study
included Support Vector Machine (SVM), Bayes, k-Nearest
Neighbor (KNN), Random Forest, and Decision Tree. The
machine learning models were constructed using five-fold cross-
validation. In short, this required that 20% of data be used
to test the model, while the other 80% of data were used
to create the model. After a total of 10 repeats, the average
values were used to estimate the performance of the model. To
demonstrate the correlation between the radiomics signature and
PCR status, the signature model was used to score the training
set in terms of pCR probability. The score was defined as the
rad score, and was used to determine the effectiveness of the
signature models for differentiating between pCR and non-pCR
patients. The formula of the model used in the training set
was employed to calculate the scores for the test set. Lastly, the
accuracy of the radiomics signature from the training and test
sets was evaluated with area under curve (AUC) value of receiver
operating characteristic (ROC) curve. In addition, we selected the
machine learning method with the largest AUC and the smallest
difference between the training and the verification sets as the
model construction method of this study. Detailed information
about the dimensionality reduction and radiomics signature can
be found in the Supporting Information.
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Development and Evaluation of the

Radiomics Nomogram

For the training group, univariate logistic regression analyses
were performed to select independent predictors of pCR for
each potential predictive variable, including clinical factors (i.e.,
gender, age, and menstrual status), clinical stage of the tumor,
biomarker expression (i.e., ER, PR, HER2, and Ki-67), and the rad
score. Multivariable logistic regression analyses that combined
the independent predictors were applied to develop a pCR
prediction model. Next, multivariate logistic regression was used
to create the radiomics nomogram.

The variance inflation factor (VIF) was used to diagnose the
collinearity of each variable (22) with VIF values >10, indicating
severe multicollinearity (23). The calibration performance was
evaluated with the calibration curve, and fitness was analyzed
by the Hosmer-Lemeshow test. The ROC curve allowed for
the estimation of diagnostic accuracy using the nomogram.
The probability score for pCR was determined for the patients
included in the study using the nomogram, and all patients were
divided into high or low probability groups according to the
ROC curve cut-off value. The clinical effect of the nomogram
was determined using the actual patients with pCR from the
different probability groups. The net benefit of the nomogram
was determined using the DCA curve (24).

Statistical Analysis

SPSS 17.0 software (IBM, Chicago, IL, USA) was used to perform
the Kolmogorov-Smirnov test for evaluating the normality of the
distribution of the data, and the chi-square test for the categorical
data. The likelihood ratio test with backward step-down selection
was applied to the multivariate logistic regression model. VIFs
were calculated using the SPSS 17.0 software. The MedCalc15.8

software (MedCalc, Ostend, Belgium) was used to assess the ROC
curves, and differences between various AUCs were compared
with the DeLong test. The R statistical software Version 3.4.1 was
used for all other statistical analyses. The “mRMRe” and “glmnet”
packages were used for mRMR and LASSO analyses. Calibration
plots and the radiomics nomogram were established with the
“rms” package, and DCA with the “dca.R” package. Two-sided
p < 0.05 were considered as being statistically significant.

RESULTS

Characteristics of Patients in This Study

A flowchart of participant recruitment is presented in Figure 1.
No significant differences were detected in the age, menstrual
status, clinical stage of the tumor, or biomarker expression (i.e.,
ER, PR, HER2, and Ki-67) between patients in the training and
test sets, as shown in Table 1. However, significant differences in
ER expression, PR expression, and the radiomics signature were
detected between pCR and non-pCR (all p < 0.05). As shown in
Table 2, the other differences were insignificant.

Development of the Radiomics Signature

and Assessment of Its Accuracy

The radiomics workflow is shown in Figure 2. A total of 328
radiomics features were obtained from the T2WI, DWI, and
DCE sequence images. Accordingly, 984 radiomics features
were extracted from each patient. The optimal combination of
texture features from T2WI and DWI were chosen, and the
random forest method was used to construct the radiomics
signature. First, 396 features were obtained from the combination
of radiomic features through the detection of robustness and
reproducibility. Next, 35 features with the highest mRMR

TABLE 1 | Clinical characteristics of patients in the primary and internal validation cohorts.

Variables Training set (n = 110) Test set (n = 48) P-value
n % n %

Age (years, mean + SD) 49.85 + 8.78 52.96 + 8.97 0.442

Menstrual status Premenopausal 68 61.8 38 79.2 0.051
Postmenopausal 42 38.2 10 20.8

Histologic type NST invasive carcinoma 89 80.9 39 81.3 0.96
Other 21 19.1 9 18.7

Clinical stage | 16 14.5 7 14.6 0.954
Il 64 58.2 29 60.4
1l 30 27.3 12 25

ER status Negative 49 44.5 22 45.8 0.881
Positive 61 55.5 26 54.2

PR status Negative 43 39.1 18 37.5 0.85
Positive 67 60.9 30 62.5

HER2 status Negative 51 46.4 15 31.3 0.076
Positive 59 53.6 33 68.7

Ki-67 Low 19 17.3 8 16.7 0.926
High 91 82.7 40 83.3

ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor 2; Ki-67, antigen Ki67.
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TABLE 2 | Clinical characteristics of the training and validation sets of breast cancer (BCa) patients with and without pCR.

Variable Training set (n = 110) Test set (n = 48)
pCR Non-pCR pCR Non-pCR
(n=23) (n=287) (n=10) (n=38)
n (%) n (%) P-value n (%) n (%) P-value
Age (years, mean + SD) 48.9 + 10.6 50.1 +8.3 0.583 48.8 +8.7 54.1 +8.8 0.112
Menstrual status Premenopausal 15 (62.2) 53 (60.9) 0.706 9 (90) 28 (73.7) 0.275
Postmenopausal 8(34.8) 34 (39.1) 1(10) 10 (26.3)
Histologic type NST invasive carcinoma 16 (69.6) 73 (83.9) 0.12 8 (80) 31 (81.6) 0.909
Other 7 (30.4) 14 (16.1) 2 (20) 7 (18.4)
Clinical stage | 3(13) 13 (14.9) 0.812 2 (20) 5(13.2) 0.993
Il 13 (56.5) 51(58.6) 7 (70) 21 (565.3)
1] 7 (30.5) 23 (26.5) 1(10) 12 (31.5)
ER status Negative 16 (69.6) 33(37.9) 0.007* 8 (80) 14 (36.8) 0.015*
Positive 7 (30.4) 54 (62.1) 2 (20) 24 (63.2)
PR status Negative 16 (69.6) 27 (31) 0.001* 6(60) 9 (23.7) 0.027*
Positive 7 (30.4) 60 (69) 4 (40) 29 (76.3)
HER2 status Negative 14 (60.9) 37 (42.5) 0.117 6 (60) 12 (31.6) 0.099
Positive 9(39.1) 50 (57.5) 4 (40) 26 (68.4)
Ki-67 Low 5(21.7) 14 (16.1) 0.524 2 (20) 6 (15.8) 0.751
High 18 (78.3) 73 (83.9) 8 (80) 32 (84.2)
Radiomics model score 0.773 £ 1.934 —2.244 £2.43 0.001* 0.349 + 1.587 —2.629 + 1.912 0.001*

ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor 2; Ki-67, antigen Ki67. *p < 0.05, with significant differences for clinical characteristics

of pCR group and Non-pCR group.
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rankings were selected to establish the optimal subset, and
LASSO was used to reduce the dimensions of the optimal subset
to obtain a total of six features, among which three of the features
were from T2WI images, and three were from DWI images.
Finally, the six features were used to construct the radiomics
signature model. In this study, the diagnostic accuracy of the
radiomic signatures constructed by the random forest showed
good prediction performance in both the training set and the
test set, while the difference between the two was the smallest.
The radiomic signature showed favorable predictive efficacy in
the two sets with AUC values of 0.835 and 0.834, specificity of
71.32 and 73.21%, and sensitivity of 82.61 and 80%, respectively.
Rad-scores, which were calculated using the radiomics signature
formula, were significantly different between the pCR and non-
pCR in training and test sets, indicating that radiomics signature
has a good correlation with pCR clinical outcome, as shown
in Figure 3. The evaluation results of other sequence feature
combinations and different machine learning techniques used
to construct the radiomics signature are shown in Figure 4.
Information about the dimensionality reduction process and
LASSO are shown in the Supporting Information.

Development and Performance of the

Radiomics Nomogram

Univariate logistic regression analyses revealed that ER status, PR
status, and the radiomics signature were independent predictors
of pCR. Based on the independent predictors, multiple logistic
regression was utilized to construct prediction models and the
nomogram, as shown in Table 3 and Figure 5. The VIFs of ER
status, PR status, and the radiomics signature were 1.017, 1.011,
and 1.02, respectively.

The calibration curves showed excellent consistency between
the predicted and actual pCR probabilities in the radiomics
nomogram of both patient sets. The accuracy, specificity, and
sensitivity of the nomogram for predicting pCR were 0.888,
79.31, and 86.96% in the training set and 0.879, 82.19, and
83.57% in the test set. The DeLong test showed AUCs of ER
and PR were significantly different from that of nomogram in
the training and test sets, as shown in Table 4. Therefore, the
nomogram was found to perform well in both sets. Next, the
Hosmer-Lemeshow test found no statistical differences between
the training and test sets (p > 0.05), verifying the superior
diagnostic accuracy of the nomogram. The pCR probability
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TABLE 3 | Logistic regression analysis for predicting pCR in breast cancer (BCa) patients.

Variable Univariate logistic regression Multivariate logistic regression
OR (95% CI) P-value OR (95% CI) P-value
Age (per one increase) 0.955 (0.884-1.031) 0.238 NA NA
Menopausal (No vs. Yes) 0.621 (0.145-2.656) 0.52 NA NA
Histologic type (NST invasive carcinoma vs. Other) 2.345 (0.508-9.811) 0.118 NA NA
ER status (Negative vs. Positive) 0.255 (0.068-0.958) 0.043* 0.215 (0.062-0.745) 0.015*
PR status (Negative vs. Positive) 0.174 (0.045-0.675) 0.011* 0.214 (0.064-0.715) 0.012*
HER?2 status (Negative vs. Positive) 0.736 (0.195-2.783) 0.651 NA NA
Clinical stage (I vs. Il) 0.758 (0.167-3.446) 0.72 NA NA
Clinical stage (I vs. lll) 0.838 (0.295-2.375) 0.739 NA NA
Ki-67 (Low vs. High) 0.913 (0.149-5.577) 0.921 NA NA
Radiomics score (per 0.1 increase) 2.575 (1.591-4.168) 0.001* 2.408 (1.56-3.715) 0.001*

ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor 2; Ki-67, antigen Ki67. *p < 0.05.
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FIGURE 5 | Radiomics nomogram to predict the patient with pCR. The radiomics nomogram was developed in the training set, with the rad-score, ER status, and
PR status.

scores were estimated using the nomogram, and patients were  the nomogram constructed by the training set. The number of
classified into the high and low probability groups according  pCR cases was significantly different between the high and low
to the Yonden index (cut-off: 0.3371), which was based on  probability groups (p < 0.0001). In addition, DCA curves showed
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TABLE 4 | AUCs of Nomogram, radiomics Signature, ER status, and PR status for pCR prediction in Trarining and Test sets.

Nomogram(95% ClI)

Signature (95% CI)

ER status(95% CI) PR status(95% CI)

Training set 0.888 (0.814-0.94)
Nomogram vs. other metrics
Signature vs. other metrics
ER status vs. PR status

Test set 0.879 (0.752-0.955)
Nomogram vs. other metrics

Signature vs. other metrics

ER status vs. PR status

0.835 (0.753-0.899)

0.658 (0.562-0.746) 0.693 (0.598-0.777)

0.0956 <0.0001* 0.0015*
0.0133# 0.075
0.06392
0.834 (0.699-0.926) 0.716 (0.567-0.837) 0.642 (0.491-0.775)
0.1446 0.0384* 0.0066*
0.2239 0.0366"
0.5265

p-value refers to Delong test for the differences of AUCs between different metrics in different cohorts, *p < 0.05, with significant differences for AUCs of Signature, ER status, and PR
status compared with that of nomogram. *p < 0.05, with significant differences for AUCs of ER status and PR status compared with that of Signature.

excelled net benefits of patients in training and test sets, as shown
in Figure 6.

DISCUSSION

In this retrospective study, we have quantified the prognostic
abilities of different machine-learning techniques for predicting
the pCR status of patients with BCa. Considering the stability and
prognostic performance together, two feature selection sequences
(i.e., T2WI and DWI) and the random forest classification
method should be preferred for the prediction of NACT response,
as they display higher prognostic abilities and stability when
compared with the other models. In addition, the nomogram
constructed by the radiomics signature and pathological indexes
could effectively predict the patients with pCR. In total,
these findings indicate that imaging-based heterogeneity using
machine learning and “big data” can provide complementary
prognostic information about existing risk predictors.

In recent years, several research groups have searched for
clinical or molecular markers that can predict the effect of
NACT for the screening of patients who can benefit from
the treatment (25). However, up to now, no factor has been
found that can accurately predict the efficacy of NACT. The
main reason is that the accuracy of single factor prediction is
limited, yet a multifactor prognostic model may overcome this
limitation for BCa. Based on this principle, a multifactor pCR
prediction model was developed in this study. At the same
time, we also extracted radiomic features from multiparameter
images, including T2WI, DWI, and DCE. In the past, the
features were extracted from multiparameter images to predict
the prognosis of patients by merely distinguishing features of
a single and joint sequence (26, 27). However, in this study,
we created a pairwise sorting combination of three sequences
(T2WI, DWI, and DCE), which further expanded the scope of
this type of research. In addition, our result is consistent with
Yoon’s results that the features most associated with the clinical
outcome of pCR mainly include Inverse difference moment
and short-run emphasis features (28), which indicated these
two types of feature had significant difference between non-
pCR patients and pCR patients with breast cancer experiencing

NACT. Although the remaining features also represent the
degree of heterogeneity, the exact calculation method of each
feature value varies depending on the parameters. Therefore, it is
difficult to explain the subtle differences of various heterogeneous
parameters caused by the mathematical equations. Besides, the
unique biological mechanism that may cause heterogeneity
parameters still remains unclear, which may require further
research to figure out its mechanism.

The combination of features from T2WI and DWI sequences
showed excellent performance of diagnosis for structure
radiomics signature, suggesting that a conventional sequence can
be used to predict the status of pCR without requiring enhanced
imaging techniques in the future, such as DCE. Although recent
studies have shown that DCE-MRI is the best sequence to predict
NACT response so far (29, 30). Unfortunately, in this study, we
found that the prediction efficacy of the radiomics signature was
not optimal after combining the features extracted from DCE
sequences with those of T2WT or DWI. This is mainly due to the
instability of the model performance. Although the performance
of the DCE-T2WI combination or the DCE- DWI combination
model in the training group is higher than that of the T2ZWI-DWI
combination model, the performance of the model with DCE
features in the test set is significantly lower to that of the training
group, which indicates that the model stability is not favorable.
It may be possible that we only analyzed one 2D slice in a tumor
other than a whole 3D tumor in this study, which may cause the
instability of the model, we will conduct a further study using 3D
tumor to validate the model stability in future research.

This may be due to the different amounts of contrast agent,
which can affect the selection of features. Since patients receive
different amounts of contrast agent, the enhancement effects of
images can affect the permeability of tissue microvascular (31).
This reflects the distribution of pixels and further affects the
stability of the overall construction model. DWT was previously
found to be useful as a tool to measure the efficacy of NACT
in patients with BCa (32). However, the diffusion characteristics
of water in tissue reflect the heterogeneity of tumors, rather
than some external factors, such as contrast agents, which reflect
the heterogeneity of tumor by imaging features. Accordingly, it
should be demonstrated that T2WI and DWI sequences provide
a suitable combination for feature extraction.
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group (p < 0.0001).
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The development of statistical models that use the tumor
and treatment data from a single patient are better prognostic
indicators than human experts (33). Hence, the radiomics-
based machine-learning models may be a viable tool for clinical
decision support. In this study, we use different machine learning
methods to construct a radiomics signature for the extended
sequence combination and obtained the highest AUC of 0.835. In
another study, Braman et al. (34) also used radiomics to predict
pCR status based on different machine learning methods, yet
their accuracy was significantly lower than the results of this
study with an AUC of 0.74. This may be due to our radiomic
features having higher dimensions in our study, which can better
reflect the heterogeneity of tumors (35, 36). On the other hand,
this study uses a variety of potential factors combined with
the radiomics signature to build the prediction model, which
also improved the accuracy of this model. In this study, we
found that ER and PR expression were independent predictors
of patients with pCR, which is similar to other studies (37, 38).
The diagnostic efficacy of the nomogram was higher than the
signature after adding pathological indicators, which further
demonstrates the important role of hormone receptors in the
prediction of pCR status. The relationship between texture-based
heterogeneity indices and pathologic prognostic factors in breast
cancer was confirmed as well. Tumor heterogeneity measured on
FDG PET was higher in LABC with poor prognostic pathologic
features, such as hormone receptor negativity, nuclear grade 3,
and triple negativity (39).

Several features differentiate our work in this study from
other radiomic-based studies. First, only features with high
repeatability were used in this study, making this approach less
prone to the risk of overfitting. The traditional repeatability
test is to test the consistency of all the extracted features
among the observers, which may allow for some features
with poor repeatability to be included in the study. For this
reason, some of the features with low repeatability may not
accurately reflect the degree of tumor heterogeneity. On the
other hand, we also reduced the dimensions of the features from
the MRI sequences, including mRMR of the emerging method
and LASSO of the traditional dimension reduction method,
which may also explain why the diagnostic efficiency of our
model is better than other prediction models constructed from
LASSO alone. The superiority of this model is also related
to the optimal machine learning techniques used to build the
model. Therefore, the optimization of the classifier of this model
is another important aspect of the study, which differs from
traditional radiomics studies. Lastly, our nomogram was created
for clinical research. A nomogram is a statistical tool that
may be utilized to assess the probability or risk of a specific
clinical outcome. For clinical practice, nomograms can be used
to provide detailed risk assessments for the patient, aiding in
clinical decision-making for clinicians (40). In our study, we
built a radiomics nomogram that combines multi-dimensional
information, which dramatically improved the accuracy and
effectiveness of our model. These technical advances have
contributed to the improved reproducibility found in our
current study.

We acknowledge several shortcomings of the current study.
First, this is a study representing only one medical center, which
may not be applicable to populations in other centers. However,
this study utilized a contemporary cohort of patients with BCa,
allowing for the derivation of a hybrid nomogram that may be
used to assess more extensive and diverse populations in the
future. Secondly, a single slice of the tumor was sampled for
the radiomics analysis, and volumetric assessments were not
performed. In a previous study, data from a single slice was
found to be sufficient for this type of analysis (41). Finally,
our study population was relatively small. As this is a first
proof-of-principle study, future studies should employ larger
patient populations.

The potential prognostic abilities of radiomics models have
been highlighted in other studies. However, with the expanded
use of radiomics and feature dimensions, along with machine
learning techniques, higher prognostic performance could be
achieved in patients with BCa. This is also reflected in our
nomogram, which showed high accuracy in the prediction
of patients with pCR. As a non-invasive prediction tool, it
can broaden the scope in the application of genomics for
cancer treatment.
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