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Objective: Meningiomas presented preferred intracranial distribution, which may reflect

potential biological natures. This study aimed to analyze the preferred locations of

meningioma according to different biological characteristics.

Method: A total of 1,107 patients pathologically diagnosed with meningiomas between

January 2012 and December 2016 were retrospectively analyzed. Preoperative MRI

were normalized, and lesions were semiautomatically segmented. The stereospecific

frequency and p value heatmaps were constructed to compare two biological

phenotypes using two-tailed Fisher’s exact test. Age, sex, WHO grades, extent

of resection (EOR), recurrence, and immunohistochemical markers including

p53, Ki67, epithelial membrane antigen (EMA), progesterone receptor (PR), and

CD34 were statistically analyzed. Recurrence-free survival (RFS) were analyzed by

Kaplan–Meier method.

Result: Of 1,107 cases, convexity (20.8%), parasagittal (16.1%), and falx (11.4%)

were the most predominant loci of meningiomas. The p-value heatmap suggested

lesion predominance in the left frontal and occipital convexity among older patients

while in the left sphenoid wing, and right falx, parasellar/cavernous sinus, and middle

fossa among younger patients. Lesions located at anterior fossa and frontal structures

were more frequently seen in the male while left parietal falx and tentorial regions,

and right cerebellopontine angle in the female. Grades II and III lesions presented

predominance in the frontal structures compared with grade I ones. Meningiomas

at the left parasagittal sinus and falx, tentorium, intraventricular regions, and skull-

base structures were significantly to receive subtotal resection. Lesions with p53

positivity were statistically located at the left frontal regions and parasellar/cavernous

sinus, higher Ki67 index at the left frontal and bilateral parietal convexity and right

parasellar/cavernous sinus, EMA negativity at the right olfactory groove and left middle

fossa, and CD34 positivity at the sellar regions and right sphenoid wing. Tumor recurrence

rates for grades I, II, and III were 2.8, 7.9, and 53.8%, respectively. Inferior RFS, higher
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FIGURE 3 | p-value heatmaps of meningioma comparing age and sex. (A) p-value heatmap showed statistically significant clusters after comparing older

(age ≥ 56 years) with younger (age < 56 years) patients. (B) p-value heatmap showed statistically significant clusters after comparing male with female patients. The

color ranging from green to dark blue, and bright yellow to red, both indicated the p-value from 0.05 to 0.0001.

protecting the central sulcus vein, and treating affected sagittal
sinus (22). The distinct distribution in these areas could be
explained by regionally thick arachnoid membranes with high
risk of developing neoplasms. This theory was also verified by
the large tumor size in the parasagittal sinus, tentorium, sphenoid
wing, and olfactory groove by our results.

The Fisher’s exact test was used for further exploration of
the correlation between locations and biological characteristics

of meningioma, for the significance calculation of voxels, and
for the comparison of the two phenotypes. The method was
proposed by Ellingson et al. (13, 14) for the laterality study
of glioblastoma in terms of particular molecular and genetic
profiles. In our study, age, sex, WHO grade, and extent of
resection and recurrence were considered for comparison.
Several interesting clusters were highlighted. The frontal and
occipital structures were frequently associated with older and
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FIGURE 4 | p-value heatmaps of meningioma comparing WHO grade and extent of resection. (A) p-value heatmap showed statistically significant clusters after

comparing grade I lesions with grades II and III ones. (B) p-value heatmap showed statistically significant clusters after comparing patients received gross total

resection with ones received subtotal resection. The color ranging from green to dark blue, and bright yellow to red, both indicated the p-value from 0.05 to 0.0001.

male patients and high-grade meningiomas, as previously
described (23). A predominance in the right CPA was observed
in the female sex, and lesions in this region were statistically
prone to be WHO grade I. Although skull-base clusters also
significantly indicated grade I lesions, they were identified as
the most frequent occurrence in subtotal resection. It has
been well-documented that skull-base meningioma was a risk
factor for incomplete resection (24). Moreover, the p value

heatmap suggested the skull-base lesions presented a significant
inclination to recur. Therefore, more appropriate surgical
approaches should be taken in skull-base lesions resection to
decrease recurrence.

The meningiomas were histologically categorized into 15
subtypes, according to the 2016 WHO classification (2). The
subtype is an important biological characteristic of meningiomas.
However, over classification into 15 categories will decrease the
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FIGURE 5 | p-value heatmaps of meningioma comparing immunohistochemical p53 and Ki67. (A) p-value heatmap showed statistically significant clusters after

comparing p53 positivity with negativity. (B) p-value heatmap showed statistically significant clusters after comparing Ki67 > 5% lesions with Ki67 ≤ 5% ones. The

color ranging from green to dark blue, and bright yellow to red, both indicated the p value from 0.05 to 0.0001.

statistical power. Another two reasons for not including the
subtypes are the following: (1) the methodology of the voxel-
wise analysis requires paired features (like WHO grade I vs.
WHO grades II and III), and analyzing up to 15 categories
simultaneously is difficult; and (2) some early pathological
reports did not provide detailed subtype information. Future
studiesmay focus on the different subtypes ofmeningiomas using
other statistical methods.

As the molecular alterations might be responsible for the
heterogeneity of meningioma, the expression of p53, Ki67, PR,
EMA, and CD34 were further speculated to be related to the
preferred locations of meningioma (23, 25). Expression of p53
is an indicator of the possible mutation of tumor suppressor gene
p53, and Ki67 antigen protein is a cellular proliferative marker.
The two markers predicted oncogenic ability and malignant
degree (26, 27). EMA and PR were described as markers
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FIGURE 6 | p-value heatmaps of meningioma comparing immunohistochemical epithelial membrane antigen (EMA) and CD34. (A) p-value heatmap showed

statistically significant clusters after comparing EMA positivity with negativity. (B) p-value heatmap showed statistically significant clusters after comparing CD34

positivity with negativity. The color ranging from green to dark blue, and bright yellow to red, both indicated the p-value from 0.05 to 0.0001.

identifying a more advanced differentiated state (23). CD34
is commonly used for evaluating neovascularity and tumor
behavior (23). Our results revealed that positive p53 and higher
Ki67 lesions presented strong predominance in the falx, frontal
and parietal convexity, and bilateral parasellar/cavernous sinus,
which was consistent with the investigation by Maiuri et al. (17).
This is probably associated with the distinct distribution of high-
grade meningiomas. No significant cluster was noticed for PR,

and meningioma with negative EMA predominantly located at
the olfactory groove and middle fossa. However, Maiuri et al.
pointed out that 75% of cases with PR expression >50% were
located at the medial skull base (17). The high incidence of
female patients was associated with the expression of PR in
meningiomas. Furthermore, our results interestingly found that
the proportion of male patients in the higher grades subgroup
was significantly increased compared with that in the grade
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FIGURE 7 | Recurrence-free survival (RFS) analyses of biological characteristics and p-value heatmap of meningioma comparing recurrence. (A) RFS analysis

comparing older (age ≥ 56 years) with younger (age < 56 years) patients. (B) RFS analysis comparing WHO grade I lesions with grades II and III ones. (C) RFS

analysis comparing Ki67 > 5% lesions with Ki67 ≤ 5% ones. (D) RFS analysis comparing larger preoperative lesions (≥22.828 cm3 ) with smaller ones (<22.828 cm3 ).

(E) RFS analysis comparing gross total resection with subtotal resection. (F) P-value heatmap showed statistically significant clusters after comparing gross total

resection with subtotal resection. The color ranging from green to dark blue, and bright yellow to red, both indicated the p-value from 0.05 to 0.0001.

I subgroup, partially in accordance with the previous study
(28). Higher CD34 levels were found in skull-base meningioma
compared to the non-skull-base lesion by Haciyakupoglu et al.
(29) and similar findings were found in sellar regions and
sphenoid wing in our study.

According to the prognosis, there were expected findings that
older patients, higher Ki67 expression, high-grade lesions, and a
larger preoperative volume resulted in shorter RFS. Falcine and
tentorial meningiomas were reported to have a high chance of
recurrence, partially in agreement with our results (30). However,
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no superior RFSwas shown in the gross total resection group. The
role of the Simpson grading system for predicting recurrence was
questioned, but Nanda et al. (6) maintained its prognostic value.
It was reported that a higher risk of recurrence could be observed
in STR for convexity lesions. In contrast, the recurrence was
not correlated with the EOR for falx and posterior fossa lesions,
leading to the unequally prognostic value of Simpson grading
in terms of tumor locations (9). Further studies are needed to
investigate the prognostic value of the Simpson grading system.

There are several limitations in the present study. First, the
retrospective nature of the current study can be challenging. A
prospective study, controlling field strength, imaging-section
thickness, and applying fully automatic segmentation to improve
accuracy, and analyzing more clinical characteristics [e.g.,
presenting symptoms, Karnofsky performance status (KPS), and
postoperative radiotherapy] to improve prognostic prediction, is
warranted. Notably, it is believed that obtaining a Simpson grade
I resection for the skull-base meningiomas is difficult, and it may
be inaccurate to evaluate the Simpson grade based on surgical
reports or pre- and postoperative MRI. Thus, complete surgical
video records might be more accurate for further evaluating the
EOR of skull-base lesions in a retrospective study. Following
that, the mechanism of preferred locations (e.g., laterality) of
meningioma should be investigated in the future. Additionally,
the genomic mutations were not analyzed in the present study.
The clinical significance of the mutations of NF2, KLF4, and
TRAF7 were proven in meningiomas, and studies have shown a
significant association between mutations and specific locations
(5, 31). The preferred locations of meningioma according to
distinct mutations are to be analyzed in our following study.
Lastly, it was not reported in the previous literature whether the
voxel-wise Fisher’s exact tests have multiple comparison problem
when applied in multiple hypotheses testing. The implications
of our research via Fisher’s exact tests may give a hint to the
nature of meningiomas but need further test by more prudent
statistical analysis.

In conclusion, this is the first study visualizing the preferred
locations of meningioma according to different biological
characteristics by voxel-wise constructing stereospecific
frequency and p-value heatmaps in a large surgery-treated
patient cohort. Our findings might be a valuable reference for
clinical decisions.
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