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Chemotherapy-induced polyneuropathy (CIPN), one of the most severe and

incapacitating side effects of chemotherapeutic drugs, is a serious concern in

breast cancer therapy leading to dose diminution, delay, or cessation. The reversibility of

CIPN is of increasing importance since active chemotherapies prolong survival. Clinical

assessment tools show that patients experiencing sensorimotor CIPN symptoms not

only do they have to cope with loss in autonomy and life quality, but CIPN has become

a key restricting factor in treatment. CIPN incidence poses a clinical challenge and

has lacked established and efficient therapeutic options up to now. Complementary,

non-opioid therapies are sought for both prevention and management of CIPN. In this

perspective, we explore the potential that digital interventions have for sensorimotor

CIPN rehabilitation in breast cancer patients. Our primary goal is to emphasize the

benefits and impact that Virtual Reality (VR) avatars and Machine Learning have in

combination in a digital intervention aiming at (1) assessing the complete kinematics

of deficits through learning underlying patient sensorimotor parameters, and (2)

parameterize a multimodal VR simulation to drive personalized deficit compensation.

We support our perspective by evaluating sensorimotor effects of chemotherapy, the

metrics to assess sensorimotor deficits, and relevant clinical studies. We subsequently

analyse the neurological substrate of VR sensorimotor rehabilitation, with multisensory

integration acting as a key element. Finally, we propose a closed-loop patient-centered

design recommendation for CIPN sensorimotor rehabilitation. Our aim is to provoke the

scientific community toward the development and use of such digital interventions for

more efficient and targeted rehabilitation.

Keywords: breast cancer, chemotherapy-induced peripheral neuropathy, virtual reality, machine learning,
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1. INTRODUCTION

Breast cancer remains the most prevalent chronic disease
in women, with a predicted 5 million new cases reported
annually and among those with higher survival rates (i.e., 5-
years median survival in most developed countries is more
than 80%). Following the initial diagnosis, the increasing
number of survivors for relatively long periods highlights
the need for adequate supporting rehabilitation interventions.
Chemotherapy-induced polyneuropathy(CIPN) is among the
most severe side effects of many regularly used chemotherapy
drugs with a direct impact on the autonomy and quality of
life of patients (1–3) with incidence varying between 12 and
96% in the case of taxane- and platinum-based chemotherapy
(4–6). In both the prevention and treatment of CIPN,
innovative rehabilitation approaches that can be implemented
as an alternative to traditional pharmacological treatments are
absolutely necessary (7). The current landscape of solutions is
broad and diverse comprising:

Intervention Study

Wearable sensors (8)

Sensorimotor balance training (9)

Specialized physical exercise training (10–13)

Physiotherapy (14, 15)

Joint stabilizers and orthotics (16)

Impact and vibration training (17, 18)

Closed kinematic chain exercise (19)

Visual computer-feedback balance training (20, 21)

Transcutaneous electrical stimulation (22)

These studies have laid the foundation for using technology
in assessing, monitoring and controlling sensorimotor deficits
associated with CIPN. Yet, none of them considered whole-
body kinematic assessment of deficits and closed-loop deficit
compensation. Our perspective sheds the light on the possibility
to use commodity digital technologies, such as Virtual Reality
(VR) and Machine Learning (ML), in combination, for
personalized CIPN sensorimotor rehabilitation. We discuss the
applicability of such a digital intervention facilitating motor
deficits (e.g., gait and posture) in breast cancer patients.

We start our perspective by evaluating the impact
chemotherapy has upon patient’s sensorimotor system. We
briefly introduce the typical metrics in sensorimotor deficits
assessment and motivate the need kinematics assessment.
Afterwards, we analyse the rehabilitation facilitating effects that
VR offers, highlighting aspects, such as validity, multisensory
integration, and neuroplasticity. Finally, we consolidate this
thesis and propose a patient-centered design recommendation
for CIPN sensorimotor rehabilitation.

2. ANALYSIS OF SENSORIMOTOR
EFFECTS OF CIPN

CIPN defines the harm to the peripheral nervous system
experienced by a patient who has been administered a neurotoxic

chemotherapeutic agent. The substances that most frequently
cause CIPN in breast cancer are: vinca alkaloids, taxanes, and
platin derivates.

2.1. Sensorimotor Deficit Assessment
Independent of the mechanisms of action, the targeted impact
of such agents is on axonal transmission (1, 23, 24) with
consequences leading up to neuronal apoptosis (25). CIPN
generates sensory (26) as well as motor symptoms (27),
with a high prevalence between 30 and 83% of the patients
reporting persistent neuropathy, with 68.1% in <30 days
following termination of the chemotherapy (6). Considering
wider timescales, the average occurrence of CIPN was shown to
be up to 28.7% in the first year after diagnosis, with more than
80% of the patients presenting symptoms after 6 months (28).

Joint deficits and dysfunction in the sensorimotor domain
due to neurotoxicity can influence everyday activities, including
gait, posture, and induce falls (29, 30). Any such deterioration
in the sensory and motor information available can affect
cortical integration of sensory and motor streams and the
learning of internal models (31–33). Thus, any contradiction
or inconsistency in sensorimotor input, or a decline in the
reliability of perceptual information, facilitates the formation
of sensorimotor aberrations, further hindering motor planning
and execution during biomechanical processes, such as gait and
postural control (34, 35).

In rehabilitation, the severity of such sensorimotor
effects induced by CIPN is traditionally measured with
subjective scales, such as the Functional Assessment of
Cancer Therapy/Gynecologic Oncology Group Neurotoxicity
(FACT/GOG-Ntx) and the European Organization for
Research and Treatment in Cancer Quality of Life Quest
CIPN 20/30 (EORTC QLQ—CIPN 20/30) (36). Their ability
to ascertain deficiencies in body structure/function and
restrictions in tasks during the therapy is confined and tied
to the subjectivity of the patient (37). Typically, to support
rehabilitation, such scales are complemented by quantitative
scales of neurotoxic impact on perception [e.g., Fullerton
Advanced Balance Scale (FABS), the Balance Evaluation
Systems Test (BESTest)] (38). These standardized measures
enrich whole-body assessment of sensorimotor deficits and
provide patient motion context information (39), but lack the
kinematic assessment. This is crucial, especially in the light
of closed-loop training, where perceptual information needs
to drive compensation of the deficits. In the next section,
we analyse existing sensorimotor rehabilitation techniques
used in CIPN with respect to kinematics assessment and
sensorimotor training.

2.2. Sensorimotor Rehabilitation
Continuous monitoring after initiation of a neurotoxic
intervention is critical for the formation and advancement
of CIPN related symptoms (40). A large number of interventions
have been developed to cope with the prevention or management
of CIPN. With up to 26 identified complementary therapies for
the typical neurotoxic agents used in typical chemotherapy
schemes (i.e., Oxaliplatin, Cisplatin, Platinum/Taxane
combination, Taxanes), Kalisch et al. emphasized the rather
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scarce space of efficient solutions in supportive therapies (7). We
now analyse the most relevant interventions, highlighting the
need for kinematics assessment in sensorimotor training.

2.2.1. Primary Rehabilitation Strategies
Physical training can attenuate CIPN symptoms and reduce
deficits manifested in both sensory and motor domains.
Streckmann et al. supports such hypothesis by evaluating the
adaptations of the neuromuscular system through EORCT-QLQ-
CIPN20, FACT/COG-Ntx and a batch of sensorimotor exercises
(41). Moreover, McCrary et al. (10) argued about the importance
and the impact of multimodal exercise interventions on CIPN
symptoms by emphasizing that neuromuscular system structural
changes are sophisticated, and depend on the amount and vigor
of the exercise. Interestingly, most relevant studies employing
physical training (10–13) only evaluate a subset of motion
parameters and pay the price for the high variability between
interventions, such as the variety and length of exercises. In
addition, the measurement procedures of the investigations were
not compatible; for example, balance control was measured with
different scales (9).

Providing a richer depiction of patient’s motion parameters,
the next level in CIPN sensorimotor rehabilitation focuses on the
use of wearable sensors in physical training (8, 17, 19). Such an
approach is an inexpensive, robust, and efficientmethod to screen
motor performance deterioration by assessing spatio-temporal
parameters of gait and balance [as shown by (8, 18)]. Extending
the range of wearable rehabilitation modalities, whole-body
vibration (WBV) training, has proven to attenuate sensorimotor
deficits by de-conditioning skeletal muscles in order to reduce
fall frequency (9). Our perspective is that such sensor-based
rehabilitation systems have the potential to capture patient
motion peculiarities, mainly in an open-loop configuration, but
without compensating for deficits thorough closed-loop sensory
feedback control (42).

2.2.2. Advanced Rehabilitation Strategies
Targeting a closed-loop approach, the most advanced
rehabilitation systems to date look at interactive motor
adaptation training programs based on wearable sensors and
visual animation (18). Such approaches exploit the benefit of the
interactive joint movement feedback (43) and tap into error-
dependent cortical learning rules between reference/desired
motor action and the measured/executed motor action. Such
techniques trigger adaptation of the neural internal model
through closed-loop stimulation (32). Such systems promote the
role of interactivity for motor rehabilitation through significant
reduction of deficits (e.g., center of mass sway, disturbed postural
stability, and coordination) (21). As vision dominates perception,
visual computer-feedback balance training systems have the
potential to improve balance in patients with CIPN (20), as
measured by static-dynamic posture and balance scales and
kinematic chains (19). Such rehabilitation methods emphasize
the role of precise kinematic assessment and the potential
that wearable sensors and interactive visual feedback have in
compensating deficits, such as impaired joint proprioception
(21, 44, 45).

3. ANALYSIS OF VIRTUAL REALITY FOR
SENSORIMOTOR REHABILITATION

3.1. Virtual-Real Feedback Loop
VR enables a rich patient-centered and patient-tailored
interaction with the virtual environment via tools, such as head
mounted devices which require less set-up and effort than
would be needed to train a patient for a rehabilitation routine
in the real environment (46). Moreover, VR technology can
be used to deliver rich and targeted stimulation to a patient’s
nervous system and thereby take advantage of the plasticity
of the brain to promote learning and re-learning and, hence,
support sensorimotor rehabilitation (47). Significantly important
and relevant for the adoption of VR in rehabilitation is the
assessment of the consistency and resemblance of responses
within a virtual environment to those in the corresponding
physical environment. Transferring such responses to the real
world after training would trigger perceptual-motor adaptation
and motor re-learning (46, 48, 49). Hence brain’s adaptation to
VR changing environment circumstances could be similar to
those in the physical world (50). The validity of the sensorimotor
stimulation in VR is crucial, to make sure that there is a
consistent match between the real and the virtual world,
especially when assessing deficits. Supporting our hypothesis,
Mellet et al. proved, through fMRI, that the neural correlates of
recalling patterns acquired when moving in VR were equivalent
to those evoked when walking in a physical environment,
while ensuring movement quality and parameters (51). In
CIPN rehabilitation the goal is improving movement quality
through deficit compensation and we hypothesize that a digital
intervention should guarantee that movements made in VR are
equivalent in spatial and temporal structure to those which have
to be reacquired in the physical environment. But the nervous
system’s underlying redundancy might eventually restrict the
degree of motor recuperation that can be attained (52).

3.2. Compensation Through Adaptive
Multisensory Integration
Human perception of motion and bodily self involves
multisensory integration, with vision playing an especially
important role (53–58). The flexibility of VR allows for a
deliberately vivid visual experience that can be “mismatched”
from the bodily signals (57, 59). Such a context allows to
investigate how far would the brain perform multimodal
integration and solve sensorimotor inconsistencies (60, 61). Such
multisensory processes describe the impact that VR has upon
the compensation of sensorimotor deficits, by guiding patients’
perception toward correcting for the inconsistencies that the
real deficits determine. Information from afferents in joints,
muscles, and tendons as well as visual, vestibular, and auditory
signals reach cortical integration areas in the frontal, parietal,
and temporal lobes, where the fusion of these body signals occurs
(55, 62–65). Thus, it appears likely that the self-identification of
body motion and underlying kinematics is achieved in a similar
manner, by dynamic multisensory integration processes known
to be elicited in VR. After VR immersion, the brain is biased
to estimate self-motion from visual cues in a vestibular cue
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conflicting process (66, 67). Our perspective is that such error
correction mechanism, at cortical level, or the underlying re-
cueing needs to occur in order to decorrelate the current percept
from the adapted stimuli in VR. Thus, a subsequent re-weighting
of sensory signals from the different modalities is necessary
for optimal sensory integration (68, 69). Our hypothesis is that
the stimulation environment richness modulates multisensory
integration to compensate for sensorimotor deficits. Moreover,
we believe that a digital intervention tapping into motion
deficits should target the underlying correlates of cortical
multisensory integration. VR has the potential to offer such
targeted multimodal stimulation and elicit re-weighting and
adaptation processes driving compensation. In order to drive
compensation self-presence is vital. In VR self-presence is
the feeling that my avatar is me. Using an interactive virtual
environment that requires the use of avatars adds the component
of self-presence, which turns the intervention into a personal
experience (70) given the many factors that determine the
cognitive connection or sense of identification between user and
avatar (71). Our belief is that the precise mapping of one’s motion
peculiarities, the quality of the multimodal perception, and the
consistency and validity of the internal model predictions can
support a successful intervention (72, 73).

4. RECOMMENDATION FOR A
PATIENT-CENTERED VIRTUAL REALITY
INTERVENTION

In this final section, given the generous frame we already
unfolded, we provide a concept VR system for CIPN
sensorimotor rehabilitation. Our aim is to provoke the scientific
community to develop and use digital technologies for efficient
patient-centered rehabilitation interventions.

The conceptual architecture depicted in Figure 1 looks at
kinematics assessment and multimodal sensorimotor training
from a closed-loop control system perspective [as we previously
shown in (74)]. Such a system would simultaneously update two
models, a world model (i.e., avatar rendered in the training lab
through VR system) and one self-motion model (i.e., obtained
through wearable sensors). Such models can extract through
machine learning algorithms the particularities of each patient’s
kinematics (i.e., joint angles and translation velocities ranges)
and the world (i.e., peripersonal space and distal obstacles) using
efficient correlation learning previously developed in Axenie
et al. (75). Basically, by extracting the correlations among the
various sensory streams describing the 3D motion of the patient
(e.g., joint angles), the machine learning algorithms are able to
regress the underlying dependencies in high-dimensional spaces
among the motion variables (e.g., forearm w.r.t shoulder). The
machine learning algorithms will, hence, use more complex
features (e.g., trend detection, frequency, amplitude) and patterns
underlying the sensory streams to extract motion peculiarities
(e.g., drift, offset). The world model would hence describe the
spatio-temporal aspects (i.e., patient executing a task: heading to
an object and grasping), whereas the self-motion model would
describe the kinematics (i.e., how to change trunk center of mass
to move and arm joint angles to grasp). During the execution
of the task each patient’s brain will update the internal models
of the world and the self (i.e., marked as neural processing in
Figure 1). The mismatch between the internal neural models
updates during the task and the external assessment of the
rehabilitation system would then be used to parametrize the
VR stimulation through the avatar. Preliminary experiments in
Axenie et al. (76) confirm this hypothesis. The parametrization
assumes the particular rendering of the patient avatar (i.e., with
deficits) against a healthy patient avatar (i.e., no deficit). This
way, the patient visually perceives the mismatch and will try to
compensate for it.

FIGURE 1 | Recommended architecture for a patient-centered adaptive VR system for CIPN rehabilitation.
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Such an architecture has the potential to influence
multisensory processes in the brain that account for both
the perception of the surrounding space and self-motion. We
hypothesize that this is possible through a series of processes
that can also account as effects of VR stimulation, namely:
the predictive adaptation of internal models, motion memory
as adaptation to a changing body and optimal feedback
control, respectively.

4.1. Predictive Error Adaptation of Internal
Models
Under CIPN, peripheral nerves controlling muscles and tendons
stiffness change, altering the kinematic and dynamic coupling
between motor commands (e.g., torques) and motion of the
limb (i.e., position and velocity). Along such progressive
variations, the patient’s body dynamics change. Hence in order
to maintain a desired level of performance, the brain needs to
be “robust” to such changes. This robustness may be attained
through continuous update, or adaptation, of the internal
kinematic model that predicts the sensory consequences of
motor commands.

4.2. Memory as Adaptation to a Changing
Body
Human brains exhibit patterns of learning and forgetting.
Such processes unfold over different timescales where motion
memory is consolidated as a consequence of the adaptation to
a changing body. Chemotherapy neurotoxic effects, induces such
changes in both sensory and motor systems. When considering
sensorimotor rehabilitation, if a patient performs a task and
observes an error, the brain tries to estimate the source of the
error and to evaluate if the sensory encoding is still valid or
exposed to aberrations.

4.3. Optimal Feedback Control
Our perspective is that under VR stimulation the patient’s brain
can act as a feedback compensator for sensorimotor deficits. This

view taps into a core postulate of sensorimotor learning, namely
optimal feedback control. In this framework, based on previously
acquired experience, the brain computes a time-varying mapping
from its internal states (i.e., internal models) into actions that
minimize a total expected cost of responding to the incoming
sensory input. Such learnt mappings/associations are essential
to tune future motor responses to sensory information and,
implicitly, compensate for eventual deficits.

5. LOOKING AHEAD

Virtual environments facilitate the transfer and generalization of
sensorimotor learning into the physical environment. Transfer is
promoted if the avatar engagement with the virtual environments
is equivalent to that expected in the physical world and the
patient cognitive processing involved in task completion similar
to the one required in the physical instantiation. Validating this
hypothesis yields kinematics assessment and at the same time a
rich multimodal stimulation.

Such a system could bring unique advantages through cost
reduction for the clinics and an easy deployment for home-
based rehabilitation. This offers an important advantage to the
patients that will not need to visit the clinic often, rather focus on
their daily lives allowing the system to non-intrusively monitor
and learn their deficits and adaptively compensate for them.
Our belief is that such a digital intervention holds the promise
of offering truly personalized rehabilitation for life after cancer
through a unique combination of technologies, such as VR
and ML.
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