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The theory of cancer stem cells (CSCs) proposes that the different cells within a tumor, as

well as metastasis deriving from it, are originated from a single subpopulation of cells with

self-renewal and differentiation capacities. These cancer stem cells are supposed to be

critical for tumor expansion andmetastasis, tumor relapse and resistance to conventional

therapies, such as chemo- and radiotherapy. The acquisition of these abilities has been

attributed to the activation of alternative pathways, for instance, WNT, NOTCH, SHH,

PI3K, Hippo, or NF-κB pathways, that regulate detoxification mechanisms; increase the

metabolic rate; induce resistance to apoptotic, autophagic, and senescence pathways;

promote the overexpression of drug transporter proteins; and activate specific stem cell

transcription factors. The elimination of CSCs is an important goal in cancer therapeutic

approaches because it could decrease relapses and metastatic dissemination, which are

main causes of mortality in oncology patients. In this work, we discuss the role of these

signaling pathways in CSCs along with their therapeutic potential.
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INTRODUCTION

The understanding on the tumorigenesis process has been explained during decades according
to the clonal evolution model. This model postulates that all cells within a tumor contribute
to the maintenance of the tumor at different levels (1). In the cell, a number of genetic and
epigenetic changes accumulate during time, and, by selection, the most aggressive cancer cells drive
tumor progression (1, 2). Therefore, any cancer cell can become highly malignant, contributing to
metastases and the resistance against therapies (2). However, currently, the cancer stem cell (CSC)
model proposes a more suitable explanation to cancer complexity. The tumors contain a subset
of different tumor cells, called cancer stem cells that are crucial for tumor initiation, progression,
and recurrence (3, 4). These CSCs, through self-renewal and differentiation, are critical for the
generation of most tumor cell types contributing to tumor heterogeneity. However, the rest of
mature cells compose the bulk of the tumor, but are not responsible for the tumor generation.
Therefore, tumor resistance to therapies and metastases are the direct result of these CSCs (5).

CSCs, or “tumor-initiating cells,” have the ability to self-renew and differentiate as normal stem
cells. However, the mechanisms that regulate these processes are deregulated; therefore, CSCs
continuously expand and produce differentiated progeny (5–7). Furthermore, CSCs can form new
form tumors when grown into animals, but normal stem cells are unable to do (8, 9). CSCs compose
a small population of cells within a tumor, share similar surface markers with normal stem cells
(10, 11) and share common signaling pathways with normal stem cells (12, 13).
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The size of the CSC pool is different in each tumor (14–
16) and show, in general, a good correlation with agresivity
and response, as well as patient survival (17, 18). CSCs show
great heterogeneity, and may be different between grades
and/or stages of the same type of tumors. The different
pools of CSCs usually coexist in the same tumor, even
within the same microenvironment niche. Interestingly, CSC
different pools may communicathe physiologically among them
thorugh phenotype interconversion (10, 19–21). CSCs are a
“status” rather than a fixed “category” of cells. CSCs and
non-CSCs can also interconvert in dynamic equilibrium. Non-
CSCs can acquire CSC properties through de-differentiation
(8, 22–24), and in this process, either genetic or epigenetic
alterations, as well as microenvironment may be involved
(25–28). Therefore, the CSCs model should be considered
to be bidirectional, switching between stem and mature cells
within the tumor (8, 22–24). Numerous studies support the
concept that mature tumor cells (non-CSCs) are respond to
cancer therapy, while CSCs are resistant to treatment [(29)
and references therein]. In tumor stem cells (CSCs), different
clonal evolution at the genetic and epigenetic levels generate
distinct tumorigenic potential and heterogeneity which greatly
influences disease progression and response to treatment (27,
29). On the other hand, the dynamic equilibrium between
CSCs and differentiated non-CSCs adds another level of
complexity. The potential for non-CSCs to revert to CSCs due
to genetic, epigenetic, or microenvironment alterations that
confer phenotypic plasticity to the tumor cell population is a
strong driving force of tumor evolution and resistance to cancer
therapy. Moreover, exposure of differentiated cells to therapeutic
doses of radiation or many therapeutic compounds increases
the CSC pool. To explain this CSC plasticity through cell
maturation and dedifferentiating processes, it has been described
that acquiring new genetic mutations, epigenetic changes, or
microenviromental conditions that are able to activate the
epithelial mesenchymal transition (EMT) induces the mature
non-CSCs to dedifferentiate and acquire the CSC phenotype.
Thus, activating TGF-β activates the EMT transcription factors
Twist or Snail, and/or hypoxic conditions seem to influence
dedifferentiation processes greatly, activating the SC pathways
in tumor mature cells, leading to new CSCs (21, 30–
33). Therefore, the phenotypic plasticity inducing conversions
between mature non-CSCs and CSCs influences tumor evolution
and clinical management.

The capability of one cell type to acquire the phenotype of
another or of differentiated somatic and stem cells to interconvert
states is denominated cellular plasticity (22, 34). This plasticity
may explain the altered gene expression found in different tumor
types resembling cell lineages that differ from the true progenitors
(22, 35–38). Indeed, the inherent plasticity of stem cell pathways
such as Wnt, Notch or Hedgehog, can be modified suggesting
that these pathways may be relevant for anticancer research
(5, 34, 39–41).

These and other results suggest that some oncogenic signals
are able to induce CSCs. These signals are accompanied by an
increase in resistance to chemotherapeutic treatments (35, 36)
and, in some cases, radiotherapy (42, 43). Therefore, wemust take

into account the processes involved in the activation of stemness
pathways and tumor evolution and evaluate how their influences
affect therapy to effectively eliminate a tumor (Figure 1).

Therefore, cancer cells can move from stem to differentiated
states, and viceversa, in response to therapy, transcription
changes or signaling in the microenvironment (20, 44, 45).
Moreover, inside a single tumor, CSCs can coexist in more
than one metabolic and/or pluripotency state. CSCs from breast
cancer, for example, can be found in different mesenchymal-
and epithelial-like states (24, 46). The transition between these
states has been reported to be regulated by epigenetic alterations
(47). Phenotypic plasticity contributes to the complexity of the
cancer ecosystem and represents a major challenge for tumor
eradication since it actively contributes to tumor cell survival
and metastasis.

CSC cells present many mechanisms for therapy resistance,
such as high-level of drug efflux pumps, reactive oxygen
species scavengers, antiapoptotic proteins, DNA repair efficient
mechanisms, interactions with the protective microenvironment
(37, 48–51) or exosomes loaded with proteins of non-coding
RNA prone to modify the environment to favor metastasis (51–
54). On the other hand, similar to normal stem cells, CSCs are
known to be slow cycling in many tumors and are maintained in
the G0 phase (55).

Epigenetic mechanisms may mediate therapeutic resistance
in CSCs in many different ways (27, 35, 43, 51, 56–59). The
silencing of the epigenome is also involved in maintaining
plasticity and the transition of mature tumor non-CSCs to
CSCs, as reported for the transition of metabolic states in renal
tumor cells by the inactivation of MYBBP1a and the activation
of MYB (60–62). For example, epigenetic demethylation of
MAP17 driving the resistance against some targeted therapies
was observed in lung adenocarcinoma (43). Additionally,
studying lung cancer, Sharma and coworkers reported that a
reversible drug-tolerant state of EGFR TKi therapy was obtained
by chromatin alterations induced by histone demethylase
activity (63). These and other results established that CSCs
can regulate epigenetic factors to maintain their pool and
overcome targeted therapies. However, the reversible nature
of these epigenetic alterations suggests that inhibitors of the
pathways modifying these epigenetic regulators may hold
promise as relevant clinical therapeutic targets, either alone or
in combination.

Thus, the CSC hierarchical model explains the failure of
treatment and tumor recurrence and promises new targets
for anticancer drug discovery. This article does not pretend
to be an exhaustive review of all CSC pathways related to
plasticity and/or therapeutic approaches. We summarize some
evolving treatment strategies related to these pathways with the
aim of shedding new light on current therapy development
with promising new anticancer agents. Other CSC-related
signaling pathways more commonly studied, not reviewed
here, but relevant to stemness include MYB, TGF-β, JAK-
STAT, FGFs, PI3K, or MEK. Targeting these pathways has been
shown to exert anti-CSC effects, and promising agents are
currently under investigation, as recently reviewed elsewhere
(30, 36, 37, 47, 48, 51, 62, 64–74).
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FIGURE 1 | Generation and maintenance CSCs. The activation of different signaling pathways leads to Yamanaka factors expression among other genes, promoting

the enrichment of CSC populations within the tumor.

WNT PATHWAY

The Wnt pathway is involved in embryonic development and
homeostasis. Moreover, this signaling pathway regulates cell
proliferation and survival (75). This pathway has two different
signaling pathways: canonical (β-catenin dependent) and non-
canonical (β-catenin-independent).

According to canonical signaling, Wnt is secreted and binds
to Frizzled receptors and/or the low-density lipoprotein-related
protein (LRP) 5 and 6 coreceptors. When R-spondin ligands
bind to Lgrs, the action of the Wnt pathway is enhanced.
In the presence of a Wnt ligand, Wnt interacts with Frizzled
and/or LRP5/6 (76). This situation generates a cascade in
which the phosphorylation of the cytoplasmic domain in LRP,
the recruitment of scaffolding protein Disheveled (Dvl) and
the hijack of GSK-3b and Axin are realized, with the last
molecule produced through tankyrases. Thus, β-catenin is

available for translocation into the nucleus, where it binds to
lymphoid enhancer factor (LEF)/T cell factor (TCF) transcription
factors and activates target gene transcription (76). In the
absence of a Wnt ligand, the level of intracellular β-catenin
is very low due to the action of the proteasome degradation
complex; this complex is composed of scaffolding protein Axin
and adenomatous polyposis coli (APC). Moreover, the kinase
proteins glycogen synthase kinase-3b (GSK-3b) and casein kinase
1a (Ck1a) phosphorylate β-catenin triggering its ubiquitination
(76) (Figure 2).

In non-canonical signaling, transduction proceeds in some
different ways; for example, in the Wnt/Ca2+ pathway. The
interaction between Wnt5A and Frizzled FZD2 receptors
activates Dvl. Moreover, it promotes the release of Ca2+ into the
cytosol as facilitated by FZD2, which cleaves guanine nucleotide-
binding protein (G protein). Ca2+ activates CaMKII_AD
(Ca2+/calmodulin-dependent protein kinase II) and suppresses

Frontiers in Oncology | www.frontiersin.org 3 August 2020 | Volume 10 | Article 1533

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Espinosa-Sánchez et al. Therapeutic Targeting of Stemness

FIGURE 2 | Wnt pathway including targets and drugs that could be employed to inhibit it. (Left) canonical Wnt signaling. (Right) non-canonical Wnt signaling.

the canonical Wnt pathway. This situation increases the
differentiation of cells in the neuronal system (77–80) (Figure 2).

Cancer Stem Cells
Some articles suggest that the role of Wnt in the regulation
of CSCs differs depending on the types of cancer, such as
blood, intestine, lung, mammary, gland, nervous system, skin,
and urinary tract. During the development and maintenance
of CSCs, the most common alteration is the hyperactivation
of Wnt signaling. In skin cancer, the role of the Wnt pathway
was discovered using a reporter mouse strain. It was observed
that the genetic deletion of β-catenin produced induced tumor
regression in chemically induced skin tumors through a decrease
in the pool of CD34+ stem cells (81). In human acute
leukemia, the crucial role of Wnt signaling activation in cell
self-renewal capacity and drug-resistant properties has been
suggested (82). Another article reported that the overexpression
of miR-582-3p causes Wnt signaling activation by targeting
multiple negative regulators of the Wnt pathway, such as
AXIN2, DKK3, and SFRP1. Therefore, miR-582-3p promotes
tumorigenesis in NSCLC and CSCs in vitro (83). Wnt enhancer
R-Spondin-2 (RSPO2) is highly expressed in subpopulations

with high intrinsic Wnt activity and with properties indicative
of CSCs. Therefore, the employment of promoter inhibitors
such as RSPO2 was proposed to block stemness-promoting
pathways (84). In metastatic colorectal cancer, an increase in
the level of progastrin, a tumor-promoting peptide essential
for the self-renewal of colon CSCs, was observed, implicating
β-catenin/TCF4 as a direct target gene. Therefore, therapy
employing antibodies directed against progastrin was proposed
for patients with metastatic colorectal cancer K-RAS-mutations
(85). A recent article suggested a role for SOX8 in cancer stem
cell properties and therapy resistance. It reported that SOX8
conferred chemoresistance and enhanced stemness properties.
Additionally, SOX8 mediated EMT via the FZD7-mediated
Wnt/β-catenin pathway (86).

Therapeutic Targets and Drugs
A large number of mutations in the Wnt pathway have been
identified. Above all, aberrations in the expression of Wnt
ligands, Frizzled receptors, β-catenin and APC were discovered
in many different tumors (87–89). According to these results,
this pathway has been researched in recent years to identify
potential therapeutic targets. Some drugs that may be potential
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therapeutics to be employed in the treatment of different tumors
are detailed.

A fusion protein called OMP-54F28, ipafricept (OncoMed
Pharmaceuticals), competes for the FZD8 receptor and
antagonizes Wnt signaling. Preclinical models with this
drug have shown reduced tumor growth as a single drug
in combination with other chemotherapeutic agents (90).
OMP-54F28 was studied in phase Ib clinical trials for different
types of cancer (ClinicalTrials.gov Identifiers: NCT02050178,
NCT02069145, and NCT02092363). In ovarian cancer patients,
ipafricept was well-tolerated in combination with sequential
carboplatin/paclitaxel, but it caused bone toxicity at efficacy
doses; therefore its use is limited (91).

Another drug of interest is SM08502 (Samumed LLC), which
is a potent CDC-like kinase (CLK) inhibitor. Moreover, CLKs
play important roles in the integral cellular mechanism of mRNA
splicing to induce the retention of introns in DVL2, TCF7,
ERBB2, and LRP5 and exon skipping in LEF1 and TCF7L2
(92). SM08502 inhibits the growth of gastrointestinal tumors
in xenograft mouse models (93). The molecule was recently
found in phase 1 (ClinicalTrials.gov Identifier: NCT03355066) to
show safety, tolerability and efficacy in patients with advanced
solid tumors.

On the other hand, the combination of gedatolisib (a pan-class
I PI3K/mTOR isoform inhibitor) and PTK7-ADC (an antibody-
drug conjugate used against the cell-surface PTK7 protein) has
a double synergistic effect, whereby gedatolisib increases the
expression of PTK7-ADC and an auristatin payload causes an
effect similar to that of gedatolisib. Currently, this combination is
in s phase I trial for patients with metastatic triple-negative breast
cancer because the PI3K pathway is dysregulated in most cells of
this type of cancer (94).

The inhibition of porcupine, an O-acyltransferase required
for Wnt activation and secretion, induced by LGK974 (Novartis,
Basel, Switzerland, https://www.novartis.com), reduced the
phosphorylation of the LRP6 receptor and the expression of
WNT target genes in preclinical models. Furthermore, in vivo
studies of LGK974 have demonstrated an antitumoral response
in different types of cancer (95). Phase I evaluation of LGK974
alone and in combination with PDR001 (spartalizumab, an
anti-PD-1 antibody) is ongoing (ClinicalTrials.gov Identifier:
NCT01351103) in patients with lobular or triple negative breast
cancer, melanoma or pancreatic cancer (96).

A monoclonal antibody against dickkopf WNT signaling
pathway inhibitor 1 (DKK1) and DKN-01 was discovered.
The high expression of DKK1 may be a predictive biomarker
for effective treatment with DKN-01 and pembrolizumab in
gastroesophageal adenocarcinoma (97). A phase 2 study is
assessing this molecule as a monotherapy or in combination with
paclitaxel in patients with endometrial, uterine or ovarian cancer
(ClinicalTrials.gov Identifier: NCT03395080).

PRI-724 (PRISM BioLab) is a small molecule that inhibits
the interaction between β-catenin and CBP in the nucleus.
Thus, the downregulation of genes involved in symmetric non-
differentiation division and increased p300/β-catenin binding
were produced. This situation promotes stem cell differentiation
and increases the sensitivity of cytotoxic drugs (98). Phase

IIb of this drug in combination with gemcitabine in patients
with advanced pancreatic adenocarcinoma (APC) has been
completed, and the results showed the necessity for more work
to find useful predictive and PD markers.

Aberrant activation of signaling from Wnt pathway usually
is associated with stem-like phenotypes and EMT, which
induce resistance to endocrine therapy. Plumbagin inhibited
colony formation and mammosphere formation and decreased
the number of cancer stem cell markers by inhibiting
the Wnt signaling pathway. Plumbagin also reduced Wnt-
dependent genes as well as β-catenin. Moreover, treatment
of orthotopic xenografts with Plumbagin inhibited tumor
growth, angiogenesis and metastasis without significant adverse
effects on body weight or blood coagulation; therefore,
Plumbagin may be useful to treat endocrine-resistant breast
cancer (99).

On the other hand, the inhibition of the non-canonical Wnt
pathway can be achieved through different drugs. Foxy-5 is
a mimetic Wnt5a molecule that binds to and activates the
Frizzled 2/5 receptor. Increased Wnt-5a signaling may inhibit
endothelial tumor cell migration and invasion. This effect may
decrease the metastasis of susceptible tumor cells (100). A phase
2 evaluation of it as a neoadjuvant therapy will be performed
for subjects with colon cancer who express low levels of Wnt-5a
(ClinicalTrials.gov Identifier: NCT03883802). Moreover, other
molecules, such as NH125, which is more selective as an eEF-
2 kinase inhibitor that is as an PKC, PKA, or CaMKII inhibitor
(101), and KN93, which is a selective inhibitor of CaMKII
(102), may be potential drugs to regulate the non-canonical
Wnt pathway (Table 1).

NF-κB PATHWAY

The NF-κB pathway is a complex and pathway that has been
studied mainly for its controversial roles in inflammation and
immune responses. This signaling also plays an important role
in cellular proliferation, survival and differentiation (103–105).

The inflammatory effects on cancer development have been
studied, above all the modulation of inflammation-associated
cancer through the transcription factor NF-κB (106). The
excessive innate immunity activation and growth caused by
NF-κB are involved in tumor development and progression
(107). Moreover, the activation of NF-κB could be caused
for genetic alterations such as amplification, mutations, or
deletions in different cancer cells. NF-κB binds to promoters
of genes such as IL1B, TNF, and IL6 which cause the secretion
of cytokines and chemokines (108). For this reason, it is
suggested that the exposure to proinflammatory stimuli in
tumor microenvironment or genetic alterations in components
of IKK—NF-κB pathway could cause the activation of NF-κB
in cancer.

The NF-κB family of transcription factors includes five
different proteins: p105/p50, p100/p52, p65 (RelA), c-Rel, and
RelB, which are inactivated in the cytoplasm upon binding to
IκB proteins (109). Two signals are differentiated: canonical
and non-canonical.
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TABLE 1 | Overview of drugs targeting CSC pathways.

Pathway Agent Mechanism of action Model Clinical trial phase

Wnt pathway OMP-54F28 Wnt antagonist Solid tumors Phase Ib

SM08502 CDC-like kinase (CLK) inhibitor Advanced solid tumors Phase I

Gedatolisib (1) and PTK7-ADC (2) (1) PI3K/mTOR inhibitor Metastatic triple-negative breast cancer Phase I

(2) PTK7 protein antagonist

LGK974 Porcupine inhibitor Melanoma, breast cancer, and pancreatic

cancer

Phase I

DKN-01 DKK1 inhibitor Endometrial, uterine, and ovarian cancer Phase II

PRI-724 CBP inhibitor Advanced pancreatic adenocarcinoma Phase IIb

Plumbagina Wnt ligands inhibitor Endocrine resistant breast cancer Preclinical

Foxy-5 Mimetic Wnt5a molecule Colon cancer Phase II

NH125 eEF-2 kinase inhibitor Solid tumors Preclinical

KN93 CaMKII inhibitor Solid tumors Preclinical

NFkB pathway Thalidomide TNF-a inhibitor Solid tumors Phase II

Bortezomib Proteosome inhibitor Myeloma, lymphoma, and acute leukemia Phase III

BMS-345541 IKKb and IkB protein inhibitor Lung cancer Preclinical

Bardoxolone methyl (RTA-402) IKKb and JAK1 inhibitor Pancreatic adenocarcinoma and lymphomas Phase I

IMD-0354 and KRT1853 IKKb inhibitor Lung cancer Preclinical

PS1145 IKK inhibitor Prostate cancer and nasopharyngeal

carcinoma

Preclinical

Notch pathway PF-03084014 γ-secretase inhibitor (GSI) Desmoid tumors Phase II/III

BMS-906024 γ-secretase inhibitor (GSI) T-ALL relapses and T cell lymphoblastic

lymphoma

Phase I

Adenoid cystic adenocarcinoma Phase II

MK-0752 γ-secretase inhibitor (GSI) Recurrent central nervous system tumors,

advanced breast cancer, and T-ALL

Phase I

MK-0752 +

docetaxel/gemcitabine

γ-secretase inhibitor (GSI) Locally advanced or metastatic breast and

pancreatic cancer, respectively

Phase I/II

RO4929097 γ-secretase inhibitor (GSI) Renal cell carcinoma, metastatic pancreatic

cancer, and non-small cell lung cancer relapses

Phase II

RO4929097 + temsirolimus/ γ-secretase inhibitor (GSI) Solid tumors Phase I

Cediranib/gemcitabine/

Bevacizumab

Enoticumab DLL-4 monoclonal antibody Advanced solid cancers (ovarian carcinoma) Phase I

Demcizumab + gemcitabine DLL-4 monoclonal antibody Pancreatic cancer Phase I

Demcizumab + FOLFIRI DLL-4 monoclonal antibody Colorectal cancer Phase I

Demcizumab + Carboplatin and

pemetrexed

DLL-4 monoclonal antibody Non-squamous NSCLC Phase II

Tarextumab Notch2, 3 monoclonal antibody Epithelial cancers (breas, small cell lung,

ovarian, and pancreatic cancers)

Phase I/II

Brontictuzumab Notch1 monoclonal antibody Hematological malignances and advanced

solid tumors

Phase I

AMG 757 DLL-3 Bi-specific T cell engager Neuroendocrine carcinomas (small cell lung

cancers)

Phase I

AMG 119 DLL-3 Chimeric antigen receptor

(CAR) T cell

Neuroendocrine carcinomas (small cell lung

cancers)

Phase I

Rovalpituzumab tesirine DLL-3 antibody-drug conjugate (ADC) Neuroendocrine carcinomas (small cell lung

cancers)

Phase II

CB-103 Pan-Notch inhibitor against

transcriptional complex

Advanced-stage solid tumors and

hematological malignancies

Phase I/IIa

Sonic Hedgehog

pathway

Vismodegib SMO inhibitor Metastatic basal cell carcinoma (BCC) or

recurrent locally advanced BCC

Approved by FDA

2012 + clinical trials

in other tumors

(breast cancer)

(Continued)

Frontiers in Oncology | www.frontiersin.org 6 August 2020 | Volume 10 | Article 1533

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Espinosa-Sánchez et al. Therapeutic Targeting of Stemness

TABLE 1 | Continued

Pathway Agent Mechanism of action Model Clinical trial phase

Sonidegib SMO inhibitor Recurrent locally advanced BCC Approved by FDA

2015

Saridegib SMO inhibitor Chondrosarcoma, head and neck, pancreatic,

adenocarcinoma, BCC, myelofbrosis

Phase II

BMS-833923 SMO inhibitor Basal cell nevus syndrome chronic myeloid

leukemia

Phase II

Glasdegib SMO inhibitor Acute myeloid leukemia, other cancers Phase II

Taladegib SMO inhibitor Various carcinomas and sarcomas Phase II

TAK-441 SMO inhibitor BCC, advanced non-hematologic malignancies Phase I

Arsenic trioxide GLI1, 2 inhibitor Acute promyelocytic leukemia Approved by FDA

2000 + phase I–IV

clinical trial in other

tumors

Genistein GLI1 inhibitor Different solid tumors (gastric, prostate, breast)

and hematological malignancies

Phase I/II

5,00E+01 SHH monoclonal antibody Various cancer types Preclinical

RU-SKI43 SHHat enzyme inhibitor Various cancer types Preclinical

Hippo pathway Verteporfin YAP-TEAD interaction inhibitor Metastatic breast cancer, pancreatic tumors,

prostate cancer

Phase I–II

CA3 YAP-TEAD interaction inhibitor Esophageal adenocarcinoma Preclinical

Flufenamic acid YAP-TEAD interaction inhibitor Metastatic breast tumor and hepatocellular

carcinoma

Preclinical

Chloromethyl ketone YAP-TEAD interaction inhibitor Various cancer types Preclinical

Super-TDU YAP-TEAD interaction inhibitor Pancreatic, gastric, and colorrectal cancer Preclinical

CT-707 YAP post-transcriptional

modifications

Non-small cell lung Phase I

C19 MST agonist Melanoma, breast cancer, colon cancer, and

neuroblastoma

Preclinical

BET inhibitors Epigenetic modulation Solid and hematological malignancies Phase I–II

Panobinostat Epigenetic modulation Solid and hematological malignancies Phase I–IV

TLR pathway Bacillus Calmette-Guerin (BCG) TLR2/4 agonist Carcinoma in situ or muscle non-invasive

cancer of the urinary bladder

FDA approved in

1998 + Clinical trials

(melanoma,

colorectal and lung

cancer…)

CADI-05 TLR2 agonist Advanced melanoma Phase I–II

Monophosphoryl lipid A (MPLA) TLR4 agonist Adjuvant in vaccines of human papillomavirus

(HPV)-associated cervical cancer

FDA approved +

Phase I–IV in other

tumors

Glucopyranosyl lipid A TLR4 agonist Skin and colorectal cancer, sarcoma,

lymphoma

Phase I–II

AS15 TLR4 agonist Various cancer types Phase I–III

Poly (I:C) TLR3 agonist Various cancer types Phase I–II

Poly-ICLC (Hiltonol® ) TLR3 agonist Solid tumors Phase I–II

Rintatolimod (Ampligen® ) TLR3 agonist Fallopian tube, ovarian, colorectal, prostate,

and brain tumors

Phase I–II

Entolimod (CBLB502) TLR5 agonist Local or metastatic malignancies Phase I-II

Imiquimod TLR7/8 agonist Superficial basal cell carcinoma FDA approved +

Phase I–IV in other

tumors

(Continued)
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TABLE 1 | Continued

Pathway Agent Mechanism of action Model Clinical trial phase

Resiquimod TLR7/8 agonist Skin tumors and vaccine adjuvant Phase I–II

852A TLR7 agonist Melanoma, breast, ovarian, endometrial,

cervical and esophageal cancer, and

hematological malignancies

Phase I–II

VTX-2337 TLR8 agonist Solid and hematological maliganancies Phase I–II

Agatolimod (CpG7909) TLR9 agonist Vaccine adjuvant in solid and hematological

malignancies

Phase I–II

SD-101 TLR9 agonist Various solid tumors and lymphoma Phase I–II

E5564 TLR4 antagonist Leukemia Phase I

CRX-526 TLR4 antagonist Colon cancer Preclinical

OPN305 TLR2 antagonist antibody Myelodysplastic syndrome Phase I–II

LPS and proinflammatory cytokines, such as IL-1, Toll-like
receptors (TLRs) and tumor necrosis factor alpha (TNF-α),
activate the NF-κB signaling pathway. The recruitment of a
receptor proximal adaptor protein facilitates the phosphorylation
and activation of IκB kinase (IKK) protein complex, which
subsequently initiates the phosphorylation of IκB proteins. IκB
proteins are degraded, allowing NF-κB translocation into the
nucleus to activate specific target genes. This pathway can activate
antiapoptotic factors and cytokines as well as proliferation
factors (109).

The non-canonical brand of the NF-κB pathwaymay activated
by different factors such as the receptor activator of NF-κB
(RANK) and CD40, leading to the stabilization of NF-κB-
inducing kinase (NIK). This molecule activates IKKα dimers,
promoting p100 phosphorylation and cleavage into p52. The
activated RelB/p52 dimer can be translocated into the nucleus
regulating specific target gene transcription (109, 110) (Figure 3).

Cancer Stem Cells
The link between inflammation and cancer stem cells (CSCs)
is found during tumorigenesis and disease progression (111,
112). The involvement of the NF-κB pathway in CSCs was
discovered in primary AML samples, in which the DNA in
CD34+ cells bind with NF-κB. However, this binding was not
observed in normal hematopoietic stem cells (113). In adult
murine neurogenesis, TLR2 and TLR4 were found to have
opposite functions in adult neural stem/progenitor cell (NPC)
proliferation and differentiation. Moreover, the inhibition of the
LRPs impacted the self-renewal and the cell fate decision of NPCs
(114). A MEC-targeted inducible transgenic inhibitor of NF-κB
was developed in mammary oncomice, and it inhibited breast
tumor stem cell markers and expanded NANOG and SOX2
expression in vivo and in vitro (115).

Chronic inflammation may be responsible for the
accumulation of proinflammatory cytokines, which increase
the action of NF-κB. This situation promotes a tumorigenic
microenvironment in colon cancer (116). In the basal-like
subtype of triple-negative breast cancer, high levels of activated
NF-κB pathway components were observed. Inflammatory
cytokines or dysregulated NIK expression induced this activation

and caused the upregulation of JAG1 expression in normal
cancer cells. NOTCH signaling was stimulated in cancer stem
cells and induced the expansion of CSC populations (117). The
upregulation of NIK caused a decrease in the CSC population,
and its reduction led to the results that were opposite those
found for breast cancer (118). In addition, mammary stem and
progenitor cells were expanded by constitutive RANK signaling,
and the overexpression of this activator increased tumorigenesis
properties (119).

IKKα and its activator, NF-κB-inducing kinase, were critical
for the expansion of tumor-initiating cells (TICs). IKKα is
translocated into the nucleus, where it phosphorylates the cyclin-
dependent kinase (CDK) inhibitor p27/Kip1 and promotes its
nuclear export or exclusion (120).

Therapeutic Targets and Drugs
To determine the efficacy of cancer treatment through the
inhibition of the NF-κB pathway, various problems have
been found: low efficacy of NF-κB inhibitors in addition to
lymphoma and leukemia (121), immunosuppression after long-
term systemic administration of these drugs (122) and the
appearance of short-term drug resistance (123, 124). However,
NF-κB inhibitors can be useful in combination with other
chemotherapies, as most anticancer agents can activate this
pathway, protecting cancer cells from apoptosis (125).

TNF-α is a target that can be employed to inhibit the NF-kB
pathway. Drugs such as thalidomide and its derivatives act in this
way (126, 127). However, thalidomide does not show good results
in combination with gemcitabine or irinotecan chemotherapy,
and its use increases the risk of thrombotic events (128).

On the other hand, bortezomib is an innovative drug with
remarkable preclinical and clinical antitumor activity in different
types of cancer. The mechanism of action consists of proteasome
inhibition, which causes inactivation of the canonical NF-
κB pathway (129, 130). Additionally, the prolonged inhibition
of this pathway accelerates chemical lung carcinogenesis by
perpetuating carcinogen-induced inflammation (131). Currently,
many phase III clinical trials are in the recruitment stage
for patients with myeloma, lymphoma or acute leukemia who
will be treated with bortezomib in combination with other
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FIGURE 3 | NF-κB pathway including targets and drugs that could be employed to inhibit it. (Left) canonical NF-κB signaling. (Right) non-canonical NF-κB signaling.

anticancer agents, and the results will be compared to those of
conventional treatments.

There is another type of drug that inhibits IKKβ and IκB
protein, BMS-345541, which causes the reduction of stemness,
self-renewal and migration capacity in lung cancer (132).
Another drug in this group, bardoxolone methyl (RTA-402),
is a triterpenoid and antioxidant inflammation modulator that
inhibits IKKβ and JAK1. Phase I studies have been conducted
for various types of cancer: pancreatic adenocarcinoma (133),
solid tumors and lymphomas (134). Additionally, IMD-0354 and
KRT1853 are IKKβ inhibitors and block IκBα phosphorylation,
inactivating its translocation into the nucleus and the activation
of NF-κB (135). In lung cancer, it was discovered that these
drugs can be potential anticancer agents through suppression of
cancer cell invasion, proliferation, and survival (136). In addition,
PS1145 reduced the growth of tumorigenic prostate cancer (137)
and nasopharyngeal carcinoma (PNC) cell lines (138). Moreover,
in the most recent study, it was observed that NF-κBp65 and
KLF4 upregulation was involved in drug resistance (138).

These drug groups only partially inhibit NF-κB signaling
because IKKα can also activate this pathway. Therefore,

inhibitors of IKKα and IKKβ need to be found to generate better
effects (139) (Table 1).

NOTCH PATHWAY

The Notch pathway is an evolutionarily conserved signaling
route involved in a variety of developmental and homeostatic
processes, such as proliferation, stem cell maintenance, cell
fate specification, differentiation, or angiogenesis, despite the
apparent simplicity of its signaling network. The effects of
activating this signaling pathway are very diverse, depending
on the signal dose and cell context (140–144). Its deregulation
contributes to a wide range of disorders and diseases, such as
congenital afflictions, viral infections, and/or different types of
cancer (142).

The Notch signaling pathway is composed of Notch receptors
and Notch ligands, as well as different proteins that serve as
posttranslational modifiers, but there is not an amplification
cascade induced by different proteins in well-known signaling
pathways (142, 145).

Frontiers in Oncology | www.frontiersin.org 9 August 2020 | Volume 10 | Article 1533

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Espinosa-Sánchez et al. Therapeutic Targeting of Stemness

There are four Notch receptors encoded by different
genes: Notch1–4. The general structure of Notch receptors
consists of a single-pass transmembrane protein composed
of different protein modules, with some differences: Notch3
and 4 have a shorter extracellular domain and lack the
intracellular transcription-activating region, and Notch4 lacks
the Notch cytokine response domain. Notch1 and Notch2
are expressed in many tissues during development and
in adults, whereas Notch3 is expressed mostly in vascular
smooth muscle and pericytes, and Notch4 is expressed in the
endothelium (142, 145–149).

There are four Notch ligands in humans: Dll1 and Dll4,
from the Delta family of ligands, and Jag1 and Jag2, from
the Serrate family. There is a Dll3 ligand, but it is not able
to activate Notch receptors. These ligands are also single-pass
transmembrane proteins. The expression pattern of these ligands
is less established than that of the Notch receptor ligands (142,
145, 150, 151).

Notch receptor activation begins with the binding of a
Notch ligand expressed in a neighboring cell upon the release
of the Notch receptor negative regulatory region (NRR). The
Notch ligand, which has been previously ubiquitinated in the
cytoplasmic tail by E3 ligases Neuralized or Mind Bomb to
trigger endocytosis, induces a conformational change in the
receptor, exposing cleavage sites for ADAM metalloproteases to
access to cleave the extracellular receptor domain. Then, the
transmembrane domain is cleaved by γ-secretase, releasing the
Notch intracellular domain (NICD). The NICD is translocated to
the nucleus and, together with the DNA-binding factor RBPJ and
coactivators in the Mastermind-like (MAML) family, it forms
the Notch transcription complex (NTC). NTC binds to Notch
regulatory elements (NREs), and transcriptional coregulators are
recruited, activating the transcription of Notch target genes, such
as HES and HEY (3, 142, 145, 152, 153) (Figure 4).

The Notch signaling pathway is highly regulated, and
its target genes vary according to different epigenetic
contexts, such as different cell subtypes, changing the
cellular outcomes. Indeed, NICD function is influenced by
other signaling routes and undergoes many posttranslational
modifications at different sites, with a variety of consequences,
which have not yet been fully elucidated. Notch receptor
expression is also closely regulated in normal cells.
Notch1 upregulation is crucial in the early stages of T cell
development, whereas its downregulation in later stages is
important to prevent the transformation in this lineage.
Furthermore, there are other levels of regulation, such as
inhibitory feedback loops or RBPJ binding to transcriptional
repressors, explaining why deregulation of this pathway can
lead to different pathologies, such as cancer development
(142, 145, 153, 154).

Cancer Stem Cells
Loss of balance in the Notch signaling pathway can lead to
tumor formation. Indeed, Notch has been implicated in all of
the hallmarks of cancers, including cell growth and survival,
the EMT, angiogenesis, and/or metastasis. The most frequent
alterations have been found in Notch receptor genes. Notch

might act as an oncogene or a tumor suppressor, depending on
the context and/or the tumor type (140, 142, 145, 149, 155).
Interestingly, in some cancers, such as head and neck squamous
cell carcinoma (HNSCC), Notch seems to have a bimodal role,
as it might function as an oncogene or a tumor suppressor
gene (149).

The Notch pathway can be deregulated by mutational
activation or inactivation, overexpression, posttranslational
modifications or epigenetic alterations (156). In T cell acute
lymphoblastic leukemia, translocation 7; 9 produces a fusion
gene consisting of the end of Notch1 and enhancer elements
or the TCRβ gene, causing a the removal of the NRR receptor
activation inhibitor, and ligand-independent activation of the
Notch pathway. Other tumors are characterized by mutations
in the Notch PEST domain (C-terminal domain), such as B cell
tumors (chronic lymphocytic leukemia, splenic marginal zone
lymphoma, etc.) or basal-like breast cancer (142, 157). In these
cases, among others, such as cancer of the pancreas, prostate,
and lung, hepatocellular cancer, esophageal tumors, and HNSCC
(149), Notch functions as an oncogene. On the other hand,
several tumors present with mutations in the Notch N-terminal
domain, producing a loss of function, such as squamous cell
carcinomas (skin, head and neck, esophagus and lung) and small
cell lung cancers, urothelial carcinomas, and low-grade gliomas;
in these cases, Notch acts as a tumor suppressor (142, 149).

Notch has also been associated with stemness maintenance,
important in adult organisms and in pathologies such as cancer.
In several cell types, Notch activation seems to maintain or
promote expansion of stem cell pools, especially in solid tumors
such as glioblastoma, hepatocellular carcinoma, ovarian cancer,
breast cancer, and HNSCC. Notch inhibitors can decrease
stemness marker expression and sensitize tumor cells to chemo-
and radiotherapy (142, 149, 153, 155, 157–160).

Notch signaling mediates the interactions between cancer
stem cells and tumor microenvironment cells (endothelial,
immune, and mesenchymal cells). The Notch pathway is
activated in tumor cells by ligands localized in the vascular
niche. Specifically, Jag1 is the main ligand that plays this role.
For example, in B cell lymphomas, this interaction induces
aggressive behavior and resistance to chemotherapy. In other
tumors, Jag1 promotes cancer stem cell self-renewal, proliferation
and stemness maintenance. Jag1 can eventually activate the
transcription of several genes, such as Klf4 in head and
neck cancer cell lines, inducing a stem cell phenotype and
chemotherapy resistance (145).

Therapeutic Targets and Drugs
Among the signaling pathways that are activated in cancer cells,
the Notch signaling pathway is among the most upregulated, and
it is implicated in cancer metastasis, angiogenesis and CSC self-
renewal, making it is an important target in cancer therapy (144).

There are two groups of inhibitors that have been developed
to target the Notch signaling pathway: γ-secretase inhibitors
(GSIs) and monoclonal antibodies against Notch ligand-
receptor interactions (mAbs). These therapeutic strategies can
be effective in combination with conventional therapies to
treat cancer patients with promising results. Furthermore,
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FIGURE 4 | Notch signaling pathway, including targets and drugs that could be employed to inhibit it.

GSIs and mAbs have been demonstrated to be useful as
single agents in the early stage of several tumors, such as
thyroid, lung, intracranial and colorectal cancers, and sarcomas.
However, Notch signaling is also crucial for normal tissue
homeostasis; therefore, its inhibition can induce serious side
effects, especially GSIs, such as gastrointestinal toxicity, diarrhea,
hepatotoxicity, and nephrotoxicity (3, 140, 144, 149, 161).
For this reason, these inhibitors are dose limiting and are
administered intermittently (144).

γ-Secretase Inhibitors (GSIs)
γ-Secretase is the enzyme critical for releasing the Notch
intracellular domain (NICD) and activating the signaling
pathway. Therefore, this enzyme may offer promising results as
an inhibiter of the Notch pathway. GSIs constituted the first class
of inhibitors developed to be used in cancer patients, and more
than 100 GSIs have been developed to date (162).

There are many GSIs currently in clinical trials in several
cancer types, as single agents or in combination. For example,
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PF-03084014 is a small reversible and non-competitive GSI that is
being studied alone or in combination in several cancer subtypes
(163, 164), but currently, its clinical development has focused
on desmoid tumors (phase II/III) (165). BMS-906024 is being
studied in relapsed T-ALL and T cell lymphoblastic lymphoma
(phase I) (166), as well as adenoid cystic adenocarcinoma (phase
II), with promising results (3). Another GSI, MK-0752, is a non-
competitive oral inhibitor that is being tested for use against
recurrent central nervous system tumors, advanced breast cancer
and T-ALL (phase I) and in combination with docetaxel or
gemcitabine for use in locally advanced or metastatic breast and
pancreatic cancer, respectively (phase I/II) (3, 144, 167, 168).
RO4929097 has been studied as a single agent in renal cell
carcinoma, metastatic pancreatic cancer, and non-small cell lung
cancer relapses (phase II) and in combination with temsirolimus,
cediranib, gemcitabine, or bevacizumab in different solid tumors
(phase I) (3, 144, 169–171).

All these GSIs have been demonstrated to promote the
inhibition of the Notch pathway, tumor growth, angiogenesis,
stem cell marker expression, and metastasis, etc. (3, 140, 144).
However, some of them, such as MK-0752 or RO4929097, are
not being developed for use in active clinical trials because of the
limited efficacy observed (3) (Table 1).

Monoclonal Antibodies (mAbs)
Several monoclonal antibodies have been developed to inhibit
Notch signaling as in inhibitors of ligands (DLL-4) and
receptors (Notch1–3). They impair ligand-receptor interactions
or extracellular domain conformational changes, which are
crucial for exposing Notch receptor cleavage sites (140, 144).

DLL-4 is one of the ligands that binds Notch receptors
and is involved in growth control, stem cell renewal and
development. The deletion of its gene has lethal consequences
in the vasculature, and its overexpression has been found
in cancer cells and tumor vasculature. Furthermore, DLL-4
inhibition impairs the formation of functional capillaries, leading
to aberrant angiogenesis and promoting direct effects that inhibit
Notch signaling in tumor cells (172–175).

Enoticumab is a humanized mAb against DLL-4 that seems
to have a reasonable safety profile and efficacy in advanced solid
cancers, such as ovarian carcinoma (phase I) but is no longer
in clinical development. Demcizumab is a DLL-4 antibody that
is being studied with gemcitabine in pancreatic cancer, with
FOLFIRI in colorectal cancer (phase I) and with carboplatin
and pemetrexed in non-squamous NSCLC (phase II), but it did
not improve efficacy; therefore, it not in clinical development
(3, 140, 144).

Monoclonal antibodies against Notch receptors have also been
studied. There are two groups of monoclonal antibodies: those
directed to the NRR domain, preventing the conformational
change necessary to activate Notch signaling, and those targeted
to the EGF-repeat region in Notch receptors to impede the
ligand-receptor interaction. Both groups promote substantial
downregulation of Notch1 signaling (161, 176).

Tarextumab is a humanized monoclonal antibody against
Notch2 and 3 that inhibits Notch signaling as a single agent
or in combination with chemotherapeutic agents in epithelial

cancers, such as breast, small cell lung, ovarian, and pancreatic
cancers (phase I/II). It can inhibit tumor cell proliferation, reduce
the number of CSCs and prolong the time before tumors recur
after chemotherapy. However, the clinical trials did not show
survival improvement; therefore, clinical development has been
discontinued (3, 140, 144). Brontictuzumab is an anti-Notch1
mAb that is being studied in hematological malignances and
advanced solid tumors (phase I) (177, 178) (Table 1).

Other Therapeutic Targets
The DLL-3 Notch ligand is highly expressed in neuroendocrine
carcinomas, such as most small cell lung cancers. DLL-3
can promote tumorigenesis through Notch signaling pathway
inhibition (in contrast to DLL-4). Therefore, DLL-3 is being
studied as a therapeutic target in these cancers. Some other
approaches include co-administering AMG 757, a bispecific T
cell engager; AMG 119, a chimeric antigen receptor (CAR) T cell
(phase I); or as an anti-DLL3 antibody-drug conjugate (ADC),
rovalpituzumab tesirine (phase II) (3, 179, 180).

Another strategy involves inhibiting the formation of the
Notch transcriptional complex, which acts downstream of
abnormal Notch receptor activation. CB-103 is an oral pan-
Notch inhibitor that belongs to a novel class of small molecules
that target the Notch transcriptional complex, inhibiting the
expression of target genes. CB-103 is being studied in phase I/IIa
clinical trials for patients with advanced-stage solid tumors or
hematological malignancies (181) (Table 1).

SONIC HEDGEHOG PATHWAY

The Sonic Hedgehog pathway plays a role in embryogenesis and
brain development. In adults, it is usually inhibited, although
it participates in the maintenance of somatic stem cells and
pluripotent cells of many organs, tissue repair, and regeneration
of several epithelial cells (182–186). Furthermore, there is
evidence that the Hedgehog pathway (Hh) is deregulated in
various cancer types, such as pancreatic, gastric, prostate, and
esophageal cancer (187–189). The activation of the Hh signaling
pathway may have a variety of effects involving cell proliferation,
cell fate determination, the epithelial-to-mesenchymal transition,
and cell motility or adhesion. Therefore, the deregulated
activation of this pathwaymay lead to the development of tumors
or resistance to treatment (190).

There are two different mechanisms by which Hh signaling
activated: ligand-receptor binding, known as the canonical
pathway, or as a consequence of the activation of another
downstream member of the signaling pathway, known as the
non-canonical pathway (191).

Canonical
The main receptor in the Hh signaling pathway is Patched
(Ptch1), which localized to the base of the primary cilia
(PCs), structures that protrude from the cell membrane
to sense a variety of stimuli (192). The main ligand that
binds Ptch1 is Sonic Hedgehog (SHh), but there are
two other ligands: Indian Hedgehog (IHh) and Desert
Hedgehog (DHh).
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In the absence of Hh binding, Ptch1 does not translocate
with the transmembrane protein Smoothened (SMO) to the
PCs. When Hh binds to Ptch1, Ptch1 is internalized and
degraded, causing the accumulation of SMO in the PC, and
as a consequence, the signaling cascade is initiated through a
complex formed by kinesin protein (Kif7), suppressor of fused
(SUFU) and full-length glioma-associated oncogene (GliFL).
This pathway eventually leads to the translocation of the Gli
transcription factor to the nucleus.

There are three Gli proteins: Gli1, Gli2, and Gli3. Gli1 is
a transcriptional activator, whereas Gli2 and Gli3 could act
as activators or repressors. However, Gli2 acts mainly as an
activator, and Gli3 acts as a repressor.

SUFU usually inhibits Gli transcription factor translocation
to the nucleus by direct binding. SUFU activates the
phosphorylation by glycogen synthase kinase 3 beta (GSK3β),
casein kinase I (CK1), and protein kinase A (PKA) and promotes
the recruitment of β-transducin repeat-containing protein
(β-TrCP), which causes the transformation of Gli2 and Gli3 into
the Gli repressors Gli2R and Gli3R, which are translocated to the
nucleus to inhibit the transcription of Hh pathway target genes
(186, 190, 193) (Figure 5).

When the signaling pathway is activated by the Hh ligand,
the accumulation of SMO leads to the hyperphosphorylation of
SUFU, releasing Gli proteins, which translocate to the nucleus
and activate the transcription of the target genes Ptch1 and Gli1
(186, 193) (Figure 5).

Non-canonical
The non-canonical signaling pathway is independent of
Gli proteins but is not yet fully understood. In the type
I non-canonical pathway, SMO appears to be critical for
modulating Ca2+ and the actin cytoskeleton, whereas
SMO does not participate in the type II non-canonical
signaling pathway, which may enable cell proliferation and
survival (194).

Cancer Stem Cells
The cancer stem cell (CSC) model explains tumor heterogeneity
through the presence of a small group of cells with unlimited
self-renewal capacity and the potential to regenerate all cell
types in the entire tumor. They seem to be critical for therapy
resistance and relapses. The Hh signaling pathway, as well as
other signaling pathways, has been implicated in themaintenance
of CSCs (190, 195, 196).

The mechanisms by which the Hh signaling pathway can
be activated are mutations in Hh signaling members or the
deregulation of Hh ligand release. Furthermore, the Hh signaling
pathway may participate in the formation of CSCs.

A variety of members of the Hh pathway have been found
to be affected by mutations in human cancers, such as the
inactivating mutations of Patch1 or SUFU or the activating
alterations of SMO, Gli1, and Gli2, which lead to signaling
pathway activation independently of ligand binding. Patch1
loss of heterozygosity is usually found in Gorlin syndrome or
nervoid basal cell carcinoma syndrome. Furthermore, alterations
to the Hh pathway in combination with tumor suppressor

mutations are able to generate other sporadic tumors, such as
skin, medulloblastoma, gastric, and rhabdomyosarcoma tumors
(190, 197–199).

In other cases, the Hh signaling pathway is stimulated by a
deregulation in ligand release, which could be autocrine (from
the tumor cell to itself, as it seems to occur in gliomas), paracrine
(from the tumor cell to the stroma or from the stroma to
the tumor cell, as it may happen in multiple myeloma, which
has been studied to a lesser extent) or both, as it might take
place in esophageal or gastric cancers (182, 190, 195, 196, 199).
It is thought that tumor cells can release ligands that may
stimulate the Hh signaling pathway in stromal cells via paracrine
signaling and then promote a supportive microenvironment for
the tumor (190).

Hh signaling pathways have been demonstrated to participate
in the formation andmaintenance of cancer stem cells in a variety
of tumors, such as hematological malignancies and gastric,
pancreatic, prostate, and lung cancers. The Hh signaling pathway
is able to activate the transcription of key genes that contribute
to the stem cell phenotype, such as Nanog, Oct4, Sox2, and Bmi1.
Targeting this pathway in CSCs may be a promising strategy to
reduce tumor growth, relapse, and metastasis (200–202).

Therapeutic Targets and Drugs
Tumors that present with mutations in signaling components
may be ameliorated by some Hh pathway inhibitors, but
the efficacy of these treatments is dependent on the level
of alterations in the signaling pathway. In addition, ligand-
dependent tumors may be treated by inhibitors of the Hh
signaling cascade that are directed against any of its signaling
components, regardless of the level in the route (190).

Among all proteins that may take part in the signaling
cascade, SMO and Gli transcription factors are the main targets
on which current research is focused. Although there are
currently many SMO inhibitors, spontaneous mutations can
arise as a consequence of the treatment, which may cause drug
resistance (203).

SMO Inhibitors
Cyclopamine, a natural alkaloid fromVeratrum californicum, was
the first SMO inhibitor, but the significant side effects in mice
did not allow it to be used in humans. Vismodegib, a second-
generation cyclopamine derivative approved by the FDA in 2012,
is being used in metastatic basal cell carcinoma (BCC) treatment
and in recurrent locally advanced BCC, which are not candidates
for surgery or radiotherapy. More than 85% of BCC patients
have constitutive activation of the SHH pathway, most of which
are due to a mutation in PCHT1. Vismodegib binds to SMO
and inhibits its function, but continuous exposure can induce
mutations in SMO, promoting drug resistance. Furthermore,
vismodegib is being studied in many clinical trials in a variety
of human cancers, such as breast cancer (204–206).

Sonidegib is another SMO antagonist, approved in 2015 by
the FDA, that is used in the treatment of patients with locally
advanced BCC that recurred disease after surgery or radiotherapy
or patients who are not able to receive surgery or radiation
treatments. Sonidegib, similar to vismodegib, binds SMO in

Frontiers in Oncology | www.frontiersin.org 13 August 2020 | Volume 10 | Article 1533

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Espinosa-Sánchez et al. Therapeutic Targeting of Stemness

FIGURE 5 | Sonic Hedgehog canonical signaling, including targets and drugs that could be employed to inhibit it. (Left) inactive signaling pathway. (Right) active

signaling pathway.

the “drug binding pocket,” and mutations at this site lead to
resistance (205, 206). Sonidegib and Vismodegib are teratogen,
as other Sonic Hedgehog pathway targeting drugs, due to the role
of this signaling route in embryogenesis (206).

There are other drugs that are currently in clinical trials for
different cancer types, such as Saridegib (phase II), BMS-833923
(phase II), glasdegib (phase II), taladegib (phase II), or TAK-441
(phase I), and they have shown promising results in preclinical
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models (205, 206). TAK-441 has shown efficacy in cells that
have developed adaptive mutations in SMO; therefore, it may be
relevant for patients with drug resistance (206) (Table 1).

GLI Inhibitors
Arsenic trioxide, a Gli inhibitor approved by the FDA for the
treatment of acute promyelocytic leukemia, binds directly to Gli1
and Gli2, among other actions, causing the inhibition of their
activity (205, 206). It has been shown to affect the viability of
cancer stem cells in pancreatic and prostate cancer (in the cancer-
initiating cells). This drug is being studied in phase I–IV clinical
trials for solid tumors and hematological malignancies. Arsenic
trioxide could imply some cardiac side effects such as QT interval
elongation or tachycardia, as well as circulatory, gastrointestinal
and respiratory disorders (205–207).

Genistein (phase I and II), an isoflavone isolated from Genista
tinctoria, has been shown to inhibit Gli1, causing the growth
suppression of different tumors and the cancer stem niche
(206, 208) (Table 1).

SHh Inhibitors
Inhibitors of SHh, which is the most important ligand, have not
yet been approved for use in the clinic, but they have been shown
to effectively inhibit the SHh pathway in mice. Some of these are
SHh monoclonal antibody 5E1, or RU-SKI43, which inhibits the
SHHat enzyme, critical for catalyzing the binding of palmitate to
SHh, one of the final steps in SHh synthesis (205, 206) (Table 1).

Other Therapeutic Targets
A truncated isoform of the Gli1 transcription factor, which
indicates a gain of function, has been discovered: tGli1. This
isoform has been detected exclusively in tumor cells, not in
normal cells, and promotes tumorigenesis to a greater extent than
does Gli1, which makes it a promising drug target. There is no
drug directed specifically against tGli1, but it may be possible
to target the genes activated by tGli1, such as CD24, VEGF-A,
VEGFR2, orHPA1, and inhibit their expression. A phase I clinical
trial is testing a CD24 monoclonal antibody. Furthermore, some
heparanase (HPA1) inhibitors, such as PI-88 or PG545, are being
studied as antiangiogenic anticancer drugs (PI-88 in phase III and
PG545 in phase I). Finally, there are several antiangiogenic drugs
approved by the FDA and directed against VEGF-A and VEGFR,
such as bevacizumab, Ziv-aflibercept, and sorafenib (205).

HIPPO PATHWAY

The highly evolutionarily conserved Hippo signaling pathway
regulates biological processes, such as survival, differentiation,
cellular proliferation, fate determination, organ size, or tissue
homeostasis (209). The core pathway consists of a kinase cassette
that is composed of MST1/2 and LATS1/2 (210). In addition
to MST1/2, MAP4K, and TAOK also directly phosphorylate
LATS1/2 (211–214). NF2 is critical for pathway activation
through the phosphorylation of MST1/2. The major target
of the Hippo pathway is YAP and its paralog transcriptional
coactivator TAZ. Phosphorylation of YAP and TAZ leads to
their sequestration in the cytoplasm by 14-3-3 proteins and

ubiquitination-dependent proteosomal degradation (215). In the
nucleus, YAP/TAZ it can bind and regulate a family of sequence-
specific transcription factors called TEA DNA-binding proteins
(TEAD1–4) that modulate genes such as CTGF, CRY61, BIRC5,
ANKRD1, and AXL, involved in proliferation and survival. In
addition to TEADs, the YAP/TAZ complex also cooperates with
RUNX1 and 2, TBX5, and SMADs, among others (216–219)
(Figure 6). High TEAD expression levels have been correlated
with poor clinical outcomes, and therefore, it can serve as a
prognostic marker in many solid tumor types (220–231).

Cancer Stem Cells
Hippo pathway effectors activated by YAP/TAZ have been shown
to induce cancer stem cell (CSC) properties in a wide range
of human cancers, including osteosarcoma, glioblastoma, and
chemoresistant breast cancer (232, 233). Moreover, breast cancer
tissues with a high content of CSCs show a gene expression profile
that overlaps with YAP/TAZ-induced gene expression, and breast
CSCs with a CD44+/CD24– phenotype have a relatively high
expression of TAZ (234).

YAP/TAZ are known to promote other properties of CSCs,
such as the epithelial-to-mesenchymal transition (EMT) and
metastasis, via activation of TEAD transcription factors in
different tumors, including breast cancer and melanoma (235–
241). In the context of these tumors, TEAD activation leads to the
disruption of cell–cell junctions, mesenchymal gene expression,
increased cell migration, anoikis resistance and cell invasion.
TEAD specifically regulates genes such as ZEB1, ZEB2, DNp63,
and Slug, which induce an increase in the progression and
metastatic potential of tumors such as squamous cell carcinoma,
breast cancer, and small-cell lung carcinoma (NSCLC) (242–244).
Interestingly, YAP expression was critical for the progression
of various KRAS-driven cancers, and YAP/KRAS converged on
FOS to promote the EMT, which contributed to oncogenic KRAS
oncogenic addiction (245).

It has also been proven that the activation of YAP/TAZ confers
resistance to chemotherapy in cancer cells, in part because of
the CSC characteristics acquired by the cells. YAP/TAZ has
been linked to castration resistance in prostate cancer and
paclitaxel and doxorubicin resistance in breast cancer (234, 246,
247). Moreover, different studies suggest that Hippo pathway
activation promotes cancer cell survival in the presence of DNA-
damaging agents such as UV exposure, radiation, cisplatin,
Taxol, and fluorouracil (5-FU) in a wide number of tumor
types (248–251).

YAP/TAZ, in conjunction with their target genes of secreted
ligands, also promote resistance to targeted therapies, such as the
drugs targeting RAF andMEK and BRAF inhibitors and receptor
tyrosine inhibitors, such as gefitinib (252–258).

The relevance of the Hippo pathway in cancer and,
more specifically, in the biology of CSCs has already been
demonstrated in multiple publications. Therefore, the Hippo
pathway is currently being studied as an interesting target for
use in developing targeted therapies for different types of tumors.
There are some approved compounds able to regulate this
pathway; however, they have shown to have some bioavailability
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FIGURE 6 | Hippo pathway including targets and drugs that could be employed to inhibit it. (Left) active signaling pathway. (Right) inactive signaling pathway.

or toxicity problems. Consequently, extensive effort is being
made in the research of new drugs to address these issues.

Therapeutic Targets and Drugs
Regarding therapeutic opportunities for the Hippo pathway, YAP
inhibition has been shown to produce promising therapeutic
effects in different types of tumors, such as NSCLC, breast cancer
and colorectal cancer (259–262). Additionally, the regulation of
upstream or downstream molecules of this pathway also show
antitumoral effects. However, the inhibition of the upstream
regulators of YAP might serve to increase transcriptional activity
and thus be counterproductive. This result makes the inhibition
of the YAP/TAZ interaction and the suppression of their binding
to their targets the most appealing strategies.

Verteporfin, an FDA-approved drug, was identified to inhibit
the interaction between YAP and TEAD (263, 264). Therefore, it
can decrease the expression of Hippo target genes; however, it has
shown low solubility and stability, unfavorable pharmacokinetics,
and rapid clearance; complicating its clinical use. Moreover,
this compound lacks tumor specificity and have serious Hippo-
independent effects, and thus, may originate adverse effects in
healthy tissues (265–267). In addition, its mode of inhibition

and mechanism of interaction with YAP remain unknown.
Considering all, verteporfin might not be the most promising
drug, nevertheless, some studies have shown that the loading
of verteporfin into microparticles improves its specificity and
pharmacokinetics, making it more suitable as a treatment (267–
269). Similarly, the CA3 compound has been reported as a
modulator of YAP/TEAD transcriptional activity through the
inhibition of YAP, but it has drawbacks similar to those of
verteporfin (270, 271).

Another possibility for YAP/TEAD inhibition is the lipid
pocket at the core of the TEAD family, which is essential for
TEAD folding, stability, and YAP binding (272–274). Some
compounds targeting this domain in cell assays, such as
flufenamic acid or chloromethyl ketone moieties, have been
shown to inhibit cell proliferation and several Hippo pathway
responsive genes. However, the underlying mechanism remains
unclear because, in some cases, YAP/TAZ binding remains
unchanged (275, 276). In recent studies, a cyclic YAP-like
peptide has been shown to block the YAP-TEAD interaction
through competition with endogenous YAP (277). However,
this peptide has not yet been converted into a cellularly active
compound. “Super-TDU,” a peptide mimicking VGLL4, has also
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been reported to compete with YAP binding to TEADs. Its
mechanism is based on the binding of vestigial-like proteins
(VGLL) to TEADs, and it has led to the reduced growth of gastric
cells in vitro and in vivo (278). All these antagonistic compounds
offer promising strategies; however, their clinical viability and
applicability remain unproven.

Due to YAP druggability problems, it has been proposed to
target its posttranscriptional modifications, which are critical for
its oncogenic properties. In this context, some already approved
drugs, including metformin, statins, dasatinib, pazopanib, and
nicotinamide (NAM), and some agents being tested in clinical
trials, such as the multikinase inhibitor CT-707, have been
reported to decrease YAP activation through the regulation
of posttranscriptional modifications (279, 280). These findings
suggest that they might be plausible cancer therapies, although
many more studies are needed.

Another potential approach to inhibiting the Hippo pathway
is through the activation of MST and LATS kinases, which
phosphorylate and inactivate YAP (281). The small-molecule
compound C19 has shown the ability to activate MST and
therefore to suppress melanoma cell growth in a mouse xenograft
model (282). Moreover, metformin and statins have been known
to activate LATS and inhibit YAP activity (283). However, their
applicability as cancer therapeutic agents is still controversial and
requires more clinical trials (284, 285).

Finally, the downregulation of Hippo pathway regulators
is also possible at the transcriptional level. The combination
of some epigenetic modulators, including I-BET151 and
panobinostat, has been shown to induce the synergistic
downregulation of the AKT and Hippo pathways in melanoma
cell lines without binding to the cytoplasmic proteins of
these pathways (286). Nevertheless, compounds regulating
the epigenome show some drawbacks, for instance, off-
target effects due to their lack of specificity, low stability
and sustainability, and significant toxicity in normal
cells (287).

Altogether, there are significant advances in the field of
developing targeted therapies for the Hippo pathway. They could
be a priceless weapon in the fight against cancer; nevertheless,
we need more research in this area. It is important to better
understand the mechanism of action of these compounds and
to develop clinical trials to test their secondary effects and their
applicability in cancer patients (Table 1).

TLR PATHWAY

Toll-like receptors (TLRs) belong to the pathogen recognition
receptor (PRR) group in the innate immune system. They
recognize exogenous ligands from invading pathogens
(pathogen-associated molecular patterns or PAMPs) and
endogenous ligands released from damaged host cells (damage-
associated molecular patterns or DAMPs) (288–290). Ten TLRs
are found in both human immune cells (T-cell and B-cell
subsets, macrophages, and dendritic cells) and non-immune
cells (epithelial cells and fibroblasts). Some of these TLRs are
localized in intracellular vesicles, for instance, TLR3, TLR7,

TLR8, and TLR9, while others are localized on the cell surface
(291). TLRs are type I glycoproteins that share some common
structural domains: an extracellular domain containing multiple
leucine-rich repeats that enable the recognition of the ligand,
a transmembrane region, and a highly conserved intracellular
Toll-interleukin 1 (IL-1) receptor domain (TIR) necessary for
signal transduction (292–294).

When a ligand binds to the extracellular domain of a TLR,
it induces a conformational change in the receptor allowing
for its homodimerization, and therefore, the binding of their
TIR domains and the recruitment of different intracellular
adaptor molecules. These adaptor proteins include Myd88,
TRIF/TICAM-1, TIRAP/Mal, TIRP/TRAM, and SRAM
(295, 296). All TLRs except TLR3 initiate signaling through
MyD88 (the classical inflammatory pathway), forming a
Myd88/IRAK1/IRAK4/TRAF6 axis that activates TAK1.
This pathway triggers the activation of transcription factors,
such as NF-κB, AP-1, and IFN regulatory factors (IRFs)
(297–300). On the other hand, TLR3 and TLR4 can induce
signaling through TRIF/TIRAM adaptor molecules instead
of Myd88, leading to the activation of IRFs (301). All
these activated transcription factors are translocated to
the nucleus and interact with their target genes, including
inflammatory cytokines, chemokines, and type I interferon
(IFNs) (Figure 7).

Alterations in TLR signaling can have both antitumoral and
protumoral effects on carcinogenesis and tumor progression.
These effects depend on the TLR class, the cell type and
the signaling pathway that is triggered in those cells. For
instance, TLR agonists have been used as adjuvants in
anticancer vaccines to stimulate immune cells to fight the
tumor (302, 303). However, TLR expression in some cancer
and immune cells is related to the activation of genes related
to tumor progression and thus to tumor growth (304). Due
to this double action of TLR signaling, it is important to
study the role of each type of TLR in cancer individually
and to always consider the origin of the tumor being
investigated. Additionally, various cells in the tumor and its
microenvironment can have different TLR expression patterns,
and therefore, they will react differently to TLR modulation
(305, 306).

Cancer Stem Cells
Despite their involvement in immunity against tumor invasion,
the TLR signaling pathway with cancer stem cell properties
have been found in different tumor types. For example,
TLR2 activation in epithelial ovarian cancer has been shown
to enhance a proinflammatory environment and thus to
increase cell self-renewal through the upregulation of stem
cell-associated genes (307). Similarly, targeting TLR3 with an
agonist in breast cancer cells led to the expression of stem-
associated genes, including OCT3/4, NANOG, and SOX2,
because of the activation of β-catenin and NF-κB signaling
pathways (308). Additionally, in murine models of hepatocellular
carcinoma, TLR4 expression was associated with stem-like
properties, including the invasion and migration of cells. TLR4
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FIGURE 7 | TLRs pathway including targets and drugs that could be employed to inhibit it. (Left) Myd88-dependent signaling. (Right) Myd88-independent signaling.

stimulation is suggested to enhance the emergence of stem-
like cancer cells through Nanog and STAT3, which cooperate
to activate the metastasis regulator TWIST1 (309). Accordingly,
there was a strong correlation between TLR4 expression and
poor prognosis for patients (310, 311). Moreover, in breast
cancer, TLR4 activation has resulted in enhanced stemness and
tumorigenicity of cells. It has also been linked to poor prognosis
and an increased relapse rate in patients (312). Nevertheless,
the downregulation of TLR4 in glioblastoma CSCs has been
observed. This result may be considered a mechanism by which
these CSCs escape immune surveillance and is thought to
be related to an increase in retinoblastoma-binding protein
5 (305).

In the case of TLR7, CD133+ cells in colorectal cancer
patients showed increased expression of this marker, which
was associated with a poor prognosis (313). Similarly,
it has been suggested that TLR9 is able to promote the
stem-like prostate cancer cell phenotype through NF-κB
and STAT3 upregulation of stem-related genes, including

NKX3.1, KLF-4, BMI-1, and COL1A1 (314). It has also
been demonstrated that the upregulation of TLR9 in
glioma cancer stem-like cells is able to activate STAT3 and
thus maintain the quiescent state of tumor-repopulating
cells (315).

All this information suggests a feedback loop of inflammation
and stemness in tumor cells. The presence of extrinsic stimuli
in the tumor microenvironment can activate proinflammatory
pathways, for instance, TLR signaling. This activation leads
to the upregulation of genes related to stemness and the
epithelial-to-mesenchymal transition (EMT), which are able to
induce and maintain the dedifferentiation of cells, converting
them to CSCs (115, 316–319). On the other hand, CSCs
constitutively exhibit deregulation in the expression of NF-kB,
increasing the levels of inflammation within the tumor (320).
This positive feedback loop might promote malignancy and
resistance to treatments. Therefore, targeting TLR signaling may
be a promising strategy for reducing CSC expansion and, thus,
tumor progression.
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Therapeutic Targets and Drugs
Targeting TLRs represents a promising strategy for tumor
immunotherapy due to their ability to activate innate immunity
and even stimulate adaptative responses for long-lasting
defense against tumor antigens. Furthermore, in some cases,
the activation of certain TLRs, such as TLR2 or TLR4,
can have direct antitumoral effects on cancer cells. These
TLRs have been used in different approaches; for example,
they have been used as adjuvants for cancer vaccines or
in combination with radiotherapy, chemotherapy and other
immunotherapies. However, when targeting this pathway, it is
important to consider that the same TLR can have different
behavior, either protumoral or antitumoral, depending on the
tumor type.

Treatments Based on TLR Agonism
There are multiple cancer treatments based on activating
the immune response through different TLR receptors. A
large number of compounds have been developed and used
as monotherapy or in combination with other strategies to
treat diverse types of tumors. Some molecules targeting this
pathway have already been approved by the Food and Drug
Administration (FDA) and are currently being used to treat
patients. Many more are being tested in preclinical and clinical
trials and might be in the clinic in the near future.

Bacillus Calmette-Guerin (BCG) is an FDA-approved
treatment that activates TLR2/4 through its cell wall and TLR9
through its bacterial DNA (321, 322). It is the standard of care for
patients with carcinoma in situ or urinary bladder cancer that has
not invaded muscle (323). However, it still shows a 50% risk of
failure (324) and the difficulty of its manufacturing process and
its increasing demand have created a shortage of this treatment
(325). Agents similar to BCG and their combination with other
therapies are being tested in multiple clinical trials for different
tumor types, such as colorectal cancer (326, 327), melanoma
(328–330), and small cell lung cancer (331). Other bacteria that
activate TLR2, such as Mycobacterium indicus pranii (Immuvac,
CADI-05), are also being studied. CADI-05 is an approved
treatment for leprosy, and interestingly, it has been shown to
reduce myeloma and thymoma tumor size in murine models
(332, 333). In addition, monophoryl lipid A (MPLA), currently
used as a synthetic adjuvant in vaccines, is a derivative of lipid A
and can stimulate TLR4. Some of its analogs are being tested as
adjuvants for cancer vaccines, for instance, glucopyranosyl lipid
A for skin cancer (334) and AS15 (a combination of MPLA with
other immune stimulators) in distinct types of tumors (335, 336).
These type of combinations might show a slight increase of mild
side effects probability, specially, local injection site reactions
(336, 337).

In the case of TLR3, Poly (I:C) is a TLR3 ligand that functions
as a potent adjuvant for cancer vaccines (338); however, due to its
fast degradation, new alternative agonists are being investigated.
Some Poly(I:C) derivatives are promising, for instance, poly-
ICLC (Hiltonol R©) for solid tumors (339) and rintatolimod
(Ampligen R©) for fallopian tube, ovarian and brain tumors
(NCT03734692 and NCT01312389).

Targeting TLR5 has shown promising effects in murine
models, in which flagellin and different nanoparticles have
shown antitumoral effects (340–342). A Salmonella flagellin
derivative, entolimod (CBLB502), is being tested in clinical
trials against advanced local and metastatic malignancies (343).
Additionally, it has demonstrated radioprotective effects in
animal models (344).

The TLR7/8 agonist imiquimod has been approved by the
FDA and is currently being used for treating superficial basal
cell carcinoma (345, 346). It has also shown efficacy in the
treatment of different cutaneous tumors (347–349), and it
is being tested in several clinical trials for skin and other
malignancies, such as glioma and breast and prostate cancer
(350, 351) (NCT01792505, NCT00899574, and NCT02234921).
It might cause some local inflammatory reactions and systemic
symptoms, including muscle aches, fatigue, and nausea, but, in
general terms, it is well-tolerated (352). Resiquimod is another
TLR7/8 agonist and has shown a more intense immune response
than imiquimod (353). It is being explored in precancerous
and malignant skin tumors (354, 355) and in multiple clinical
trials as a vaccine adjuvant. Additionally, 852A, a TLR7 agonist,
and VTX-2337, a TLR8 agonist, are being examined in clinical
trials against different tumor types, such as ovarian, breast,
cervical, endometrial, and head and neck cancers (NCT00319748
and NCT01334177).

Finally, CpG oligodeoxynucleotides are agonists of TLR9 and
are being tested in several tumor types and in some clinical trials
(356–359). For example, Agatolimod (CpG 7909) and is being
studied as a vaccine adjuvant and as a monotherapy for various
solid and hematological malignancies (360–362). Although
the tolerability and safety of TLR9 ligands in monotherapy
have been proven in numerous clinical trials, they have shown
scarce antitumoral efficacy (363). The combination with other
immune modulating compounds can greatly improve CpG
ODNs-based strategies. Hence, Agatolimod is also being tested
in combination with monophosphoryl lipid A and MAGE-A3 (a
melanoma antigen) in phase II clinical analysis (NCT00085189).
Furthermore, an alternative TLR9 agonist, SD-101, has been
shown to overcome resistance to checkpoint inhibitors and is
being investigated in association with these inhibitors in ongoing
clinical trials (NCT02521870). With these types of drugs the
primary adverse effects are also related to immunostimulation
or systemic-flu like symptoms (364). Nevertheless, they
could lead to autoimmune disorders if used as long-term
treatments (365) (Table 1).

Treatments Based on TLR Antagonism
In some cellular locations, TLR antagonism, not TLR activation,
is needed. For this purpose, inhibiting treatments are being
tested, and some have entered phase I and II clinical trials.
Molecules derived from LPS, such as E5564 and CRX-526,
and antibodies targeting TLRs, such as OPN305, are able to
inhibit TLR signaling and reduce inflammation, but they are not
currently being used against cancer (366–369) (NCT02363491).
Recently, various studies have shown that the blockade of TLR4
might have antitumoral effects in ovarian, breast and prostate
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cancer (370–372). In another possible approach, bacteria,
and/or gut microbiota are modulated by using probiotics or
antibiotics. This approach has been shown to reduce TLR tumor-
promoting signals and inflammation in several studies (373–
376). However, the use of this technique in cancer is still
being developed (Table 1).

Future Treatment Opportunities Targeting the TLR

Pathway
Immunomodulation in cancer is currently being intensely
researched, with some approved innovations showing
substantially positive results, such as antibodies targeting T
cell-mediated immune checkpoints, adoptive cellular therapies,
or cancer vaccines. In this context, numerous trials are
combining these novel treatments with TLR agonists to improve
their activity (377–380).

Another possible approach using TLR as a clinical cancer
treatment is based on targeting its downstream modulators.
The MYD88 protein is involved in surface and endosomal
TLR pathways and thus is considered an attractive candidate.
In addition, some studies suggest that it may be involved
in oncogenesis (381) and related to the clinical response to
ibrutinib (382, 383). Similarly, IRAK4 is a downstream mediator
of the pathway that links multiple TLRs to NF-κB activation.
Constitutive activation or increased expression of this gene has
been reported for different tumor types and is correlated with
chemoresistance (384, 385). Other proteins, including TRAF6
and NF-κB, have been shown to stimulate bortezomib activity in
preclinical models (386).

Finally, TLR might serve as a protective agent in cancer
treatment. TLR5 agonists have shown chemoprotective and
radioprotective effects in numerous studies (344, 387–389).
Furthermore, they have been demonstrated to improve the
outcome of bone marrow allotransplant and decrease the
incidence of graft-vs.-host disease (GVHD) (390, 391).

In summary, TLR-targeted therapies for cancer are currently
being successfully used, however, many opportunities remain
to develop new compounds to provide better treatment for
patients and to minimize the secondary effects of current
strategies (Table 1).

OXIDATIVE STRESS AND CSCs

The generation of reactive oxygen species (ROS) in a high
concentration is detrimental for the cell, due to the fact that
oxidative stress promotes DNA, RNA, proteins, and lipids
modifications. It is well-known that cancer cells, in consequence
of its active metabolism and altered oncogenic and tumor
suppressor signaling pathways, are usually characterized by a
high ROS level. However, cancer cells are able to adapt and
proliferate, becoming resistant to oxidative stress (392–394).

Oxidative stress has been associated with a variety of cancer-
related effects: cellular proliferation, apoptosis evasion, invasion,
metastasis, or angiogenesis. Different signaling pathways
mentioned in this review are implicated in these ROS production
outcomes. For instance, ROS could regulate EMT through
activation of NFkB signaling pathway, or metastasis through

Wnt signaling cascade stimulation, among other signaling routes
(392, 395–398).

Aerobic glycolysis is energetically more efficient than
anaerobic one, but leads to the generation of a big amount
of ROS. Tumor cells accomplish adapting to oxidative stress
switching aerobic glycolysis for anaerobic one, independently of
oxygen available in the microenvironment. This phenomenon is
called Warburg effect, and leads to a low ROS level formation,
accompanied by a redox potential increase, through NADPH
production (399–402). Furthermore, cancer cells possess higher
antioxidant efficiency than non-tumoral cells. In order to
counteract the less ATP generation in anaerobic glycolysis, tumor
cells considerably increase glucose intake. It has been shown that
cancer cells also activate the pentose phosphate pathway (PPP)
with a prolonged ROS exposure, in order to acquire NADPH and
nucleotides for DNA synthesis and repair (402–406).

Cancer stem cells seem to possess a lower ROS level than non-
tumoral stem cells, due to different mechanisms useful to reduce
oxidative stress and maintain stem cell properties (404, 407–
409). However, there are controversial aspects in the metabolism
regulation of CSCs. While several studies show that CSCs often
present a high glycolytic metabolism, which preserves them from
oxidative stress damaging, others highlight that they could be
more dependent on oxidative phosphorylation. Furthermore,
CSC could switch from anaerobic glycolysis to PPP in order to
obtain a stronger antioxidant potential to maintain stemness.
Also, increased PPP has been associated with drug resistance
(403, 405, 406, 408, 410, 411).

Due to the dual consequences of an augmented ROS levels,
the oxidative stress targeted therapies are under discussion. On
the one hand, several well-known anticancer treatments increase
ROS levels in cancer cells, in order to reach a threshold which
causes the cell death, such as radiation, arsenic trioxide, 5-
fluorouracil, or paclitaxel. Another strategies try to decrease ROS
scavengers in cancer cells. On the other hand, as it has been
mentioned above, ROS is related to several cancer-promoting
effects, thus it might be advantageous to reduce ROS levels or
increase antioxidant molecules, in order to restore de redox
balance in the cell. For these reasons, the efficacy of these
anticancer strategies depends on the ROS level in the tumor type
and the capacity of the tumor to modulate its metabolism routes
(404, 409, 412–419).

CONCLUSIONS

Currently, many observations have indicated the association
between the CSC content and clinicopathological characteristics
of tumors upon diagnosis. Additionally, CSC populations
are resistant to conventional therapies aimed at the bulk of
proliferative cells, and they can be enriched in a posttreatment
setting. Therefore, targeting stemness pathways may provide
promising strategies to actively eradicate tumors and metastasis.
There are many pathways that regulate the CSC phenotype
and its pluripotency state, providing mechanistic support for
acquired drug resistance, including altered metabolism and
oxidation states; phenotypic plasticity; increased membrane
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extrusion pumps and receptors; altered apoptosis, autophagy,
and/or cell cycle regulation; different DNA damage, and/or repair
responses; epigenetic regulation and/or differential secretion of
proteins or non-coding RNA. Some of these stemness pathways
have been reviewed here, and their targeting approaches have
been described. However, data on their proper response to
the inhibitors and accounts of the extent to which they have
antitumor efficacy are scarce. In most cases, the inhibitor
activity depends on the extent of the molecular dependence
on the specific targeted pathway in the CSCs or its ability to
avoid targeting mature cells or normal stem cells to prevent
undesirable toxicity.

Importantly, the stemness pathways are interconnected to
regulate the CSC phenotype and the transition among different
pluripotency states. This cross talk among pathways may drive
the resistance to single pathway inhibitors and maintain the CSC
phenotype. For example, cross talk between PI3K and Notch
may contribute to the resistance to therapeutic PI3K inhibitors
of breast cancer (420). Additionally, PIM inhibition might not
have the same effect as AKT on MEK targets, which may not be
effected by PIM single inhibitors in vivo. This phenomenon may
explain in part the negative results obtained in clinical trials with
single-agent therapy.

Other important reason for tumor resistance is based on
advanced tumors, in general, containing expanded polyclonal
CSC populations, which render them resistant to therapies
against single CSC signaling pathways. Therefore, ongoing
clinical trials using molecular biomarkers may be used to
overcome these challenges. Moreover, the incorporation of CSC-
based functional assays (for example, 3D organoids, pluripotency
assays) may provide a better view of CSCs and therefore of tumor,
eradication using these pathway-based therapeutic strategies.

Despite all of the challenges, some inhibitors for these
pathways are currently used as a standard of care for patients,
and many others are being tested in phases III and IV

clinical trials. A huge effort is being made in order to
develop more specific and less toxic compounds to target every
single pathway known to be involved in CSC establishment
and maintenance. Different drugs, antibodies, vaccines and,
even, immunotherapeutic approaches are being assayed for
this purpose. Therefore, although more research is needed to
undercover additional regulatory elements, we expect to see new
molecules targeting these pathways approved by the FDA in the
following years.
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