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Glioblastoma, also known as glioblastoma multiforme (GBM), is the most malignant

form of glioma and represents 81% of malignant brain and central nervous system

(CNS) tumors. Like most cancers, GBM causes metabolic recombination to promote

cell survival, proliferation, and invasion of cancer cells. In this study, we propose a

method for constructing the metabolic subpathway activity score matrix to accurately

identify abnormal targets of GBM metabolism. By integrating gene expression data

from different sequencing methods, our method identified 25 metabolic subpathways

that were significantly abnormal in the GBM patient population, and most of these

subpathways have been reported to have an effect on GBM. Through the analysis of 25

GBM-related metabolic subpathways, we found that (S)-2,3-Epoxysqualene, which was

at the central region of the sterol biosynthesis subpathway, may have a greater impact

on the entire pathway, suggesting a potential high association with GBM. Analysis of

CCK8 cell activity indicated that (S)-2,3-Epoxysqualene can indeed inhibit the activity

of U87-MG cells. By flow cytometry, we demonstrated that (S)-2,3-Epoxysqualene not

only arrested the U87-MG cell cycle in the G0/G1 phase but also induced cell apoptosis.

These results confirm the reliability of our proposed metabolic subpathway identification

method and suggest that (S)-2,3-Epoxysqualene has potential therapeutic value for

GBM. In order to make the method more broadly applicable, we have developed an

R system package crmSubpathway to perform disease-related metabolic subpathway

identification and it is freely available on the GitHub (https://github.com/hanjunwei-lab/

crmSubpathway).
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INTRODUCTION

The incidence of GBM accounts for 65% of all types of gliomas,
and glioblastoma is the highest grade of glioma according to the

World Health Organization (WHO) classification. GBM causes
many changes in the cellular molecular mechanisms (1–3). For
example, like most cancers, altered cellular metabolism is a

hallmark of GBM. GBM rewires metabolism for numerous pro-
growth and pro-survival functions, including macromolecule
synthesis, ATP generation, and antioxidant regeneration. Hence,

GBMmetabolism is an area of intense research aiming to identify
novel therapeutic targets and biomarkers (4).

At present, the analysis of GBM metabolism is basically
dependent on experiments. These methods are not only
long term but also costly. However, with the popularity
and reduced cost of high-throughput sequencing technologies,
high-throughput sequencing data related to malignant gliomas
continue to emerge. How to use these data to comprehensively
demonstrate the changes involved in the disease mechanism in
a cost-effective manner has become a popular research direction
(5). Currently, through the application of data mining algorithms
in biology, genes associated with GBM are constantly being
discovered (e.g., COL3A1, FN1, and MMP9) (6). However,
limitations, such as poor stability and the lack of consideration of
the biological relationships between genes, make the analysis at
the genetic level questionable. Therefore, methods and tools for
identifying pathways have been developed. For example, ctPath
identifies differentially expressed pathways via demixing pathway
crosstalk effect from transcriptomics data (7). ESEA (Edge

Set Enrichment Analysis) identifies dysregulated pathways by
investigating the changes in biological relationships of pathways
in the context of gene expression data (8). However, even the
smallest pathway still contains at least tens to hundreds of
genes and these traditional pathway identification methods do
not accurately consider the combined effect of the interesting
molecules and neglects expression correlations or topological
features embedded in the pathways (9). In the disease state,
not all genes in the pathway are dysfunctional; Instead, genes
usually exert abnormal functions in the sub-regions inside the
pathway. A large number of genetic components within entire
pathways presents a challenge for precise medical analyses
(9–11). Subpathways are defined as local gene subregions
within canonical biological pathways, and their dysfunction
has been reported to be associated with the occurrence,
development, and prognosis of cancer (12–14). Subpathways
are also used as signature, biomarkers, and drug recognition of
cancer (13, 15, 16).

The Metabolic dysfunction is an important cause of GBM.
Hence, the study of the metabolic subpathway changes involved
with GBM is of great significance to understanding the
underlying mechanisms of disease and developing treatment
strategies. The Kyoto Encyclopedia of Genes and Genomes
(KEGG) database is one of the most commonly used databases in
the world for storing high-quality biological metabolic pathway
information (17). KEGG’s metabolic pathway involves genes and
metabolites to provide a basis for integrating the genome and
metabolome. How to effectively use metabolic pathways and

gene expression data to accurately identify metabolic abnormal
subregions in GBM patients is a challenge.

Herein, we developed a method to accurately identify GBM-
related metabolic subpathways by constructing a metabolic
subpathway activity score matrix. According to metabolic
pathway structure information provided by KEGG, we adopted
the k-clique concept employed in social network analysis
to define pivotal metabolic subpathways based on distance
similarity among genes (12, 18). In order to more robust
and flexible identify GBM-related metabolic subpathways,
unsupervised Gene Set Variation Analysis (GSVA) methods were
adopted to enrich the metabolic subpathways into ranked list
of gene for each sample (19). At the same time, the use of
multiple GBM data sets improved the stability and universality
of subpathway recognition (13).

Through our method, 25 metabolic subpathways were
identified as GBM-related metabolic subpathways. Survival
analysis shows that gene LSS (lanosterol synthase) in metabolic
subpathway 00100_6 has a significant impact on the survival of
patients and some studies have proved that it may be a potential
therapeutic target of GBM. (S)-2,3-Epoxysqualene, which is the
substrate of the LSS, is located at a key position in the metabolic
subpathway and has the potential to regulate the entire pathway.
Therefore, we chose (S)-2,3-Epoxysqualene as the experimental
target to regulate metabolic subpathway 00100_6 to verify the
reliability of the GBM-related metabolic subpathway identified
by our proposed method. Through the CCK8 experiment and
wound-healing assay, we found that (S)-2,3-Epoxysqualene will
be consistent with the activity and migration of GBM cells. Flow
cytometry proved that (S)-2,3-Epoxysqualene can also inhibit the
cycle of GBM cells and promote the apoptosis of GBM cells.
These results indicate the reliability of our method for identifying
disease-related metabolic subpathways based on the metabolic
subpathway activity score matrix.

MATERIALS AND METHODS

Excavating Metabolic Subpathways From
the KEGG Database Using the k-clique
Algorithm
We manually downloaded the corresponding XML files for all
human metabolic pathways from the KEGG database. Each
metabolic pathways in the KEGG database was converted
into an undirected network diagram by connecting two genes
(enzymes) into an edge if there is a common compound in
their corresponding reactions. Based on the distance similarity
between genes, we use the K-clique method in social network
analysis to mine subpathways and the distance between all genes
is no exceeding K (K = 4 is used) is determined as the metabolic
subpathway. The R package crmSubpathway we developed can
perform the subpathway mining process. In the crmSubpathway,
subpathways can be mined by using the k-clique algorithm based
on SubpathwayMiner package that we previously published.
In the SubpathwayMiner, we have confirmed that the distance
among all genes in mined subpathways decreases as the value
of the parameter k reduces and the default value K = 4 can
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extract stable subpathways with consistent functions (20). Hence
the crmSubpathway provides users with the default value of
parameter k (k = 4). The setting of parameter k is flexible. Users
can choose an appropriate parameter according to their needs.

Constructing the Metabolic Subpathway
Activity Score Matrix
The R package crmSubpathway is based on the GSVA method
to construct a metabolic subpathway activity score matrix. The
GSVA is a gene set enrichment (GSE) method that estimates
variation of subpathway activity over a sample population in an
unsupervised manner (19). In order to be able to process data in
different formats of microarray and RNA-seq, kernel estimation
of the cumulative density function (including Gaussian kernel
and Poisson kernel) is used to evaluate the gene expression
level in these data. Next, we assessed the enrichment score
of metabolic subpathway, similar to the GSEA method using
the Kolmogorov-Smirnov (KS)-like random walk statistic (21).
We use the difference between the maximum and minimum
enrichment scores as the final metabolic subpathway activity
score. The metabolic subpathway activity score is a standard
Gaussian distribution under the null hypothesis of no change in
subpathway activity throughout the sample population.

GBM Data Set and Difference Analysis of
Subpathway Activity
We collected three independent GBM data sets totaling 427
patients from Sun et al. (22); Gravendeel et al. (23) and the cancer
genome atlas (TCGA). The somaticmutation data, which is in the
same batch as the gene expression data from the TCGA database,
is also downloaded. Detailed information concerning the data
is shown in Table 1 Probes containing zero values are deleted.
Multiple probes correspond to one gene, and the average value of
the probes is taken as the expression value of the gene. In order
to fully display metabolic abnormalities, all GBM samples did
not distinguish subtypes. These data were used to construct the
subpathway activity score matrix;We then performed differential
expression analysis on the subpathway activity scores using the
limma package (http://www.bioconductor.org/packages/release/
bioc/html/limma.html) (24). Finally, we took the intersection of
the significantly different subpathways of these three data sets as
GBM-related subpathways.

Survival Analysis
We downloaded the clinical data corresponding to the samples
in the TCGA GBM data set from the TCGA database (https://
xenabrowser.net/datapages/?dataset=TCGA-GBM.survival.tsv&
host=https%3A%2F%2Fgdc.xenahubs.net&removeHub=https
%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443). GBM samples
were divided into high expression group and low expression
group according to the median value of gene expression level
in TCGA GBM data set. Subsequently, the single factor cox
proportional-hazards model is used to calculate HR (hazard
ratio) and the Kaplan-Meier method is used for survival analysis
and the log rank test is used to assess significance. Survival
analysis is implemented by the package survival (https://cran.r-
project.org/web/packages/survival/index.html) and the survival

curve is drawn by the package survminer (https://cran.r-project.
org/web/packages/survminer/index.html).

Cell Culture and Reagent Preparation
Human glioblastoma multiforme cell line U87-MG (Non-IDH
mutation) was received from the College of Pharmacy, Daqing
Branch of Harbin Medical University, and maintained in a
humidified incubator at 37◦C in a 5% CO2 atmosphere in
Dulbecco’s modified Eagle medium (DMEM, Gibco, Grand
Island, NY, USA) supplemented with 10% fetal bovine serum
(FBS, Gibco) and antibiotics (Gibco). (S)-2,3-Epoxysqualene
used in all experiments was purchased from Sigma. The (S)-
2,3-Epoxysqualene powder was dissolved in dimethyl sulfoxide
(DMSO). The DMSO solution of (S)-2,3-Epoxysqualene
and the culture solution (DMEM for the wound-healing
assay) were further configured before use according to the
usage concentration.

Cell Viability Analysis
Cell viability was assayed using a Cell Counting Kit 8 (CCK8)
(Dojindo, Japan), according to the manufacturer’s instructions.
U87-MG cells were seeded into 96-well plates at 5,000 cells per
well for overnight incubation at 37◦C. Then, U87-MG cells (500
µl per well) were treated with different concentrations of (S)-
2,3-Epoxysqualene and cultured for 2, 4, 6, 8, or 12 h. Control
cells were cultured in medium with the same volume of DMSO
only. Ten microliters of CCK8 solution was added to each well
before harvesting, and the optical absorption value at 450 nmwas
measured after 4 h incubation.

Wound-Healing Motility Assay
A wound-healing assay was used to determine the ability of
cell migration. Twelve hour serum-starved U87-MG cells (5 ×

105/well) were seeded into six-well plates and allowed to adhere
for another 12 h. Confluent monolayer cells were scratched
with a sterile 200-µl pipette tip, followed by PBS washing to
remove debris and suspended cells. The experimental cells were
cultured with the serum-free medium plus 100 nmol/L (S)-
2,3-Epoxysqualene, and the control cells were incubated with
serum-free medium only. The wounds were observed under a
phase-contrast microscope at 0 and 12 h. Migration distance was
calculated from the change in wound size during the 12 h period
using Image J software.

Flow Cytometric Analysis of the Cell Cycle
and Apoptosis
Cell cycle analysis was performed using propidium iodide (PI)
staining for DNA quantitation. Cells were harvested, washed, and
centrifuged at 1,200 r/min for 5min, and subsequently fixed in
70% ethanol at 4◦C for >18 h, followed by washing with PBS.
Cells were then resuspended in 500 µl PBS with 0.1 mg/mL
DNase-free RNase A and 25µg/mL PI and incubated for 30min
at 37◦C in the dark. For cell cycle measurement, at least 2 ×

104 cells were collected and analyzed using a flow cytometer
(FACSCalibur, BD, USA) and ModFit LT 3.2 (Verity Software
House, Topsham, ME, USA).
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TABLE 1 | Details of three previous GBM transcriptomic studies from the GEO repository and TCGA.

Dataset ID GBM Normal Experiment type Contributors Download

GSE4290 77 23 Expression profiling by array Sun et al. (22) ftp://ftp.ncbi.nlm.nih.gov/geo/series/GSE4nnn/GSE4290/matrix/

GSE4290_series_matrix.txt.gz

GSE16011 159 8 Expression profiling by array Gravendeel et al. (23) ftp://ftp.ncbi.nlm.nih.gov/geo/series/GSE16nnn/GSE16011/matrix/

GSE16011_series_matrix.txt.gz

GDC TCGA

Glioblastoma

(GBM)

155 5 Expression profiling by RNA-seq Genomic data

commons

https://xenabrowser.net/datapages/?dataset=TCGA-GBM.

htseq_fpkm.tsv&host=https%3A%2F%2Fgdc.xenahubs.net&

removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443

Cell apoptosis was assessed by PI and Annexin V-FITC double
staining. Collected cells were washed in 1× binding buffer before
resuspension to a cell density of 5 × 106 cells/ml. The cells were
then incubated in a staining solution containing 5 µl Annexin V-
FITC and 5 µl PI (BD Sciences) for 15min in the dark at room
temperature according to the manufacturer’s instructions. The
analysis was conducted immediately using a flow cytometer.

Statistics
All experiments were performed in triplicate. Data were analyzed
using Origin 2018 statistical software and expressed as means
± SD. Heatmaps of the subpathway activity score matrix for
each data set were generated with pheatmap in R (https://CRAN.
R-project.org/package=pheatmap). K-means clustering and
clustering maps are completed by factoextra package (https://
cran.r-project.org/web/packages/factoextra/index.html). The
pathway relationship network is drawn by Cytoscape_v3.6.1.
Statistical comparisons between two groups were made using an
unpaired Student’s t-test, and p-values indicate significance as
follows: ∗p-value < 0.05, ∗∗p-value < 0.01, ∗∗∗p-value < 0.001.

RESULTS

Identification of GBM-Related Metabolic
Subpathways Based on the Subpathway
Activity Score Matrix
In order to obtain stable results, we selected the previous three
GBM transcriptome studies based on the following criteria:
(i) the data contain GBM and normal control samples, and
the total number of samples is <30; (ii) different sequencing
methods (DNA microarray or RNA-seq); (iii) the studies were
conducted by independent groups. The details of the data
are shown in Table 1. As shown in the metabolic subpathway
analysis workflow (Figure 1), our study was mainly composed
of three parts: (i) we first used the iSubpathwayMiner system
to disassemble the KEGG metabolic pathway into connected
metabolic subpathways based on the k-clique algorithm. The
nodes of the metabolic subpathway represented one gene.
We extracted the genes contained in each of the metabolic
subpathways and constructed a list of metabolic subpathway gene
sets. (ii) Then, three sets of gene expression profile data from
the Gene Expression Omnibus (GEO) and TCGA databases were
selected and input along with the list of metabolic subpathway
gene sets into the GSVA R package to obtain three metabolic
subpathway activity matrices. (iii) At last, for three metabolic

subpathway activity matrices, we use the limma package to
analyze the difference of metabolic subpathways between GBMs
and healthy people and set adjusted p-value < 0.05 to determine
significantly different metabolic subpathways.

In order to integrate these data from different batches and
sequencing methods, we use kernel estimation of the cumulative
density function (kcdf) to assess the relative expression of genes
in samples. Based on the ranking of genes in a single sample, we
evaluated the activity of metabolic subpathways in each sample
through gene enrichment. This can effectively reduce the batch
effect between the metabolic subpathway matrix (Figure S1).
In order to further obtain more stable results, we take the
intersection of the significant subpathways of the three data set
as GBM-related metabolic subpathways. This effort identified 25
significant subpathways as GBM-related metabolic subpathways.
Detailed information on these subpathways is shown in Table S1.
These subpathways showed significant differences in the heat
map of the three subpathway activity score matrix (Figure 2).

Analysis of GBM-Related Metabolic
Subpathways
To better analyze the GBM-related metabolic subpathways, we
use the subpathway activity matrix of all samples of the GSE4290
dataset to perform clustering analysis. The total within sum of
square (wss), average silhouette width and gap statistics method
are used to determine the optimal number of clusters of K-
means clustering (Figures S2A–C). The area under cumulative
distribution function (CDF) curve to evaluate the optimal
number of clusters for consistent clustering (Figure S2D). These
results indicate that the optimal number of clusters is two.
The results of consistent clustering and K-means clustering are
consistent (Figures 3A,B). As shown in Figure 2, hierarchical
clustering of GBM-related metabolic subpathways in GSE4290
data set has consistent results and has good reproducibility in
the GSE10611, TCGA GBM data set. This indicates that the 25
GBM-related metabolic subpathways identified by our method
are highly robust.

The activity of the first class metabolic subpathway is up-
regulated and the second class metabolic subpathway is down-
regulation in GBM patients. We also manually plotted the
relationship network diagram of these GBM-related metabolic
subpathways according to the KEGG database. Although these
subpathways have different degrees of misalignment in GBM,
they are closely related (Figure 3C). The development of GBM
cells may depend on the first class up-regulated metabolic
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FIGURE 1 | Outline of identification of GBM-related metabolic subpathways.

subpathway. Studies show that the metabolic subpathways of
first class contribute to the migration and invasion of GBM
cells and it has an impact on the treatment and prognosis of
GBM patients (25–31). There is a strong functional connection
between subpathways of the second class (Figure 3C). A
large number of studies have shown that some genes in
the second class subpathway are signatures related to the
survival of GBM patients or are targets for inhibiting GBM
cell activity (32, 33). For example, studies have reported that
ACAT1 (cholesterol acyltransferase 1) in subpathways 00640_1
(propanoate metabolism) and 00900_1 (terpenoid backbone
biosynthesis) may be a therapeutic target for the treatment
of GBM (34). In addition, the low expression of ABAT (4-
aminobutyrate aminotransferase) in subpathway 00640_1 is
linked to poor survival (32). Although, downstream compounds
of metabolic subpathway 00100_6 of the sterol biosynthesis
pathway (such as cholesterol and steroid hormones) are closely
related to GBM (33–35).

However, There is no study to elucidate the relationship
between metabolic subpathway 00100_6 and GBM. We used
the TCGA GBM data set and sample clinical data for survival
analysis (see materials and methods for detailed procedures).
The result of survival analysis shows that LSS in metabolic
subpathway 00100_6 plays a significant role in the prognosis
of GBM patients (HR = 1.5) (Figure 3D). LSS has also been

proved to have a significant effect on GBM and may be a
potential therapeutic target (36, 37). These results indicate that
LSS may be a key gene of metabolic subpathway 00100_6. (S)-
2,3-Epoxysqualene, which is the substrate of the LSS, is located
at a key position in the metabolic subpathway and has the
potential to regulate the entire pathway (Figure S3). In order to
verify the reliability and accuracy of the GBM-related metabolic
subpathway identification method we constructed and the effect
of (S)-2,3-Epoxysqualene on GBM cells, we next conducted
experiments with (S)-2,3-Epoxysqualene as the target to regulate
metabolic subpathway 00100_6.

(S)-2,3-Epoxysqualene Significantly
Inhibited GBM Cell Viability and Migration
(S)-2,3-Epoxysqualene is an intermediate compound of the
steroid biosynthesis pathway. It is in the middle of subpathway
00100_6 and is also at the initial critical position of the
steroid biosynthesis pathway. In our results for the metabolic
subpathway analysis, subpathway 00100_6 was significantly
down-regulated in GBM patients compared to healthy people.
Therefore, we assumed that the metabolic subpathway 00100_6
would be activated by increasing the amount of (S)-2,3-
Epoxysqualene to affect the GBM. A related study has shown
that the inhibitory concentration of the inhibitor of the lanosterol
cyclase downstream of (S)-2,3-Epoxysqualene is 10 nmol/L (38).
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FIGURE 2 | Activity score heat map of GBM-related metabolic subpathways in the activity score matrix of GSE4290 (A), GSE10611 (B), and GDC TCGA

Glioblastoma (C).

Therefore, we selected a small concentration gradient of (S)-
2,3-Epoxysqualene within 1-10 nmol/L to treat U87-MG cells,
and we measured cell viability with CCk8 at 2, 4, 6, and 8 h
(Figure 4A). We found that 3 nmol/L of (S)-2,3-Epoxysqualene
had a significant inhibitory effect on GBM cells at 2 h of
treatment. The inhibition effects of 6, 8, and 9 nmol/L at 6 h were
the most significant. We also examined the effect of 5, 10, 20,
and 30 nmol/L (S)-2,3-Epoxysqualene on GBM cell activity at 1–
8 h. Although not significant, these concentrations have a strong
tendency to inhibit cell viability at 4 h (Figure S4). However, this
inhibitory effect time of (S)-2,3-Epoxysqualene on GBM cells is
far from reaching the time when the cells begin to proliferate
(39). In order to study the effects of (S)-2,3-Epoxysqualene on cell

migration, cell cycle, and apoptosis of GBM, we tested the activity
of higher concentrations of (S)-2,3-Epoxysqualene on GBM cells
after 12 h of treatment (Figure 4B). We found that most of the
concentrations of 40–150 nmol/L were significant after 12 h of
treatment. Among these, 100 nmol/L (S)-2,3-Epoxysqualene had
the most significant effect (p = 0.0002) on the activity of GBM
and the inhibitory effect of (S)-2,3-Epoxysqualene on GBM cells
has maintained a high significance after 100 nmol/L. Therefore,
GBM cells cultured at 100 nmol/L (S)-2,3-Epoxysqualene for 12 h
were used for subsequent experiments. In these results, we found
that the inhibitory effect of (S)-2,3-Epoxysqualene on GBM cell
activity is not stable, such as GBM cell activity increases at 4 h and
then decreases at 6 h. However, this trend is consistent in 3, 6, 8,
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FIGURE 3 | Cluster analysis of GBM-related metabolic subpathways and the survival analysis curve of key genes LSS. (A) Consistent clustering and (B) K-means

clustering results of 25 GBM-related metabolic subpathways in GSE4290 data set. (C) The GBM-related metabolic subpathway relationship network map is manually

drawn according to the functional relationship between the pathways in the KEGG database. The size of each node represents the significance of the difference in the

activity scores of the sub pathways. The color represents the category of clustering. Arrows represent metabolic subpathway linked to other metabolic sub pathways

and it is upstream of the linked metabolic subpathways. (D) Survival curve of the gene LSS of metabolic subpathway 00100_6 in TCGA GBM data set.

9, and 30 nmol/L. This phenomenon indicate that GBM is more
sensitive to (S)-2,3-Epoxysqualene and the trend of inhibition
is reproducible.

We next performed a wound-healing assay using a 100 nmol/L
(S)-2,3-Epoxysqualene treatment of GBM cells for 12 h. To
limit the impact of cell growth on our wound-healing assay,
we starved the cells before and during the wounding assay.
The results showed that the migration distance of GBM cells
was significantly reduced during 12 h of (S)-2,3-Epoxysqualene
treatment (Figures 4C,D).

Treatment With (S)-2,3-Epoxysqualene
Induced GBM Cell Apoptosis and Cell
Cycle
To further verify whether (S)-2,3-Epoxysqualene affects the cell
cycle and apoptosis of GBM cells, we compared cell apoptosis
and cell cycle between (S)-2,3-Epoxysqualene-treated and control
GBM cells by flow cytometry. We also used 100 nmol/L (S)-2,3-
Epoxysqualene to treat U87-MG cells and to detect apoptosis
and cycle after 12 h. By counting the ratio of the number of

cells in each cell cycle to the total number of cells, we found
that U87-MG cells in the G0/G1 phase were accumulated in the
(S)-2,3-Epoxysqualene-treated group, and there was a significant
difference compared with the control group. The number of
U87 cells in the S phase also decreased significantly after
(S)-2,3-Epoxysqualene treatment (Figures 5A,B). This result
indicates that (S)-2,3-Epoxysqualene can inhibit the proliferation
of GBM cells by affecting the early stages of DNA synthesis
(G0/G1). In addition, (S)-2,3-Epoxysqualene can also promote
the apoptosis of U87-MG cells, and the apoptosis of U87-MG
cells doubled compared with the control group (Figures 5C,D).
Thus, treatment of (S)-2,3-Epoxysqualene can decrease cell
numbers by inducing early apoptosis in U87-MG cells.

Identify Metabolic Subpathways
Associated With IDH Mutations in GBM
The metabolic subpathway identification method we constructed
can be used not only for disease and normal but also
for identifying metabolic subpathways related to specific
phenotypes. Current research has confirmed that IDH (IDH1
and IDH2) mutations have an important effect on the metabolic
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FIGURE 4 | Cellular activity and migration analysis. (A) U87-MG cells were treated with the 3-9 nmol/L (S)-2,3-Epoxysqualene for 2–8 h, and cell viability was

measured by the CCK8 assay. (B) CCK8 assay measures cell viability after treatment of 100 nmol/L (S)-2,3-Epoxysqualene of U87-MG cells for 12 h. (C) Effects of

100 nmol/L (S)-2,3-Epoxysqualene on U87 cell migration. The scale bar = 50µm. (D) The migration distance of U87cells after 100 nmol/L (S)-2,3-Epoxysqualene

treatment quantified by Image J software. Data represent means ± SD (n = 3). *P < 0.05, **P < 0.01, ***P < 0.001 by Student’s t test.

mechanism and prognosis of GBM patients (40, 41). Hence
aiming to elucidate the metabolic sub-regions affected by IDH
mutations, we downloaded the somatic mutation data from
the TCGA database. According to the mutation status of
IDH, GBM patients are divided into IDH-mutant GBMs and
IDH-WT GBMs. Through the method we constructed and
set p < 0.05, we identified 13 and 7 significant metabolic
subpathways for IDH-mutant GBMs vs. Normal and IDH-
mutant GBMs vs. IDH-WTGBMs, respectively. These significant
metabolic subpathways are shown in Table S2. In our results,
changes in fatty acid metabolism related subpathway 00062_9
(Fatty acid elongation) and 00071_1 (Fatty acid degradation)
between IDH mutations and normal healthy person may
contribute to the tumorigenesis of gliomas by priming cells
for growth (42, 43). ALDH6A1 (Aldehyde dehydrogenase
6), which is involved in metabolic subpathway 00280_7
(Valine, leucine and isoleucine degradation), 00640_4, and
00640_5 (Propanoate metabolism), has a significant change
in abundance in relation to the IDH1 mutation (44, 45).

Moreover, BCAT1 (branched-chain amino acid transaminase
1) in metabolic subpathway 00280_2 is only expressed in
IDH wild-type tumors. BCAT1 expression could be suppressed
by ectopic overexpression of mutant IDH1 in immortalized
human astrocytes and suppression of BCAT1 significantly reduce
tumor growth in a glioblastoma xenograft model (46). For
the significant metabolic pathways of IDH-mutant GBMs vs.
Normal and IDH-mutant GBMs vs. IDH-WT GBMs, the
metabolic subpathway 00630_1 (Glyoxylate and dicarboxylate
metabolism) and 00120_11 (Primary bile acid biosynthesis)
are mined by taking the intersection. The areas of these
two metabolic subpathways in the KEGG pathway diagram
are shown in Figures S5, S6. The study has confirmed
that the gene ACOX2 (acyl-CoA oxidase 2) in subpathway
00120_11 and GLDC (glycine decarboxylase), SHMT 1/2 (serine
hydroxymethyltransferase 1/2) of 00630_1 are closely related
to IDH mutation in GBM (47–49). These results indicate that
metabolic subpathways 00120_11 and 00260_1 are key regulatory
targets for IDH mutations.
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FIGURE 5 | Cell cycle and apoptosis analysis. (A) Flow cytometry for cell cycle detection after treatment with 100 nmol/L (S)-2,3-Epoxysqualene U87 cells for 12 h.

(B) Cell number distribution in each cell cycle. (C) Cell apoptosis detected by FACS analysis. (D) The ratio of apoptotic cells in U87 cells treated with 100 nmol/L

(S)-2,3-Epoxysqualene for 12 h. Data represent means ± SD (n = 3). *P < 0.05, **P < 0.01, ***P < 0.001 by Student’s t-test.

DISCUSSION

Metabolic changes are an important hallmark of cancer. At
present, the analysis of GBM metabolic changes mainly depends

on basic experimental means. However, the emergence of
high-throughput sequencing data provides a basis for a more
comprehensive understanding of the metabolic changes involved
in GBM. Herein, we integrated gene expression data with the
metabolic subpathways from the KEGG database to construct a
metabolic subpathway activity score matrix and mine all GBM-
related metabolic subpathways. Using this method, we found that
(S)-2,3-Epoxysqualene as a potential therapeutic target of GBM
could inhibit cell activity, migration, and proliferation and that it
could promote apoptosis of U87-GM cells.

In order to better identify the abnormal metabolic pathways

of GBM, we developed a method based on the metabolic
subpathway activity score matrix. By analyzing three GBM

gene expression data sets from the TCGA and GEO databases,
our method identified 25 GBM-related metabolic subpathways.
Through the K-means clustering method, these subpathways

were clustered into three categories. The first class of metabolic

subpathway activity was significantly upregulated in GBM,
probably because GBM cells need these metabolites. Likewise,
previous research indicates that serine and glycine, which
belong to our first class of subpathways, are essential precursors
of proteins, nucleic acids, and lipids involved in cancer
growth and that they contribute significantly to the energy
requirements of cancer cells. In some cancers, an increase
in serine synthesis is used as a marker of poor prognosis
(50, 51). Similarly, Wang et al. have also confirmed that
mitochondrial serine hydroxymethyltransferase 2 (SHMT2) in
serine and glycine metabolism is overexpressed in gliomas
and promotes tumor cell proliferation (52). In addition,
the metabolic subpathways 00510_7/00510_10, 00531_2, and
00760_2 belonging to the respective pathways N-Glycan
biosynthesis, Glycosaminoglycan degradation, and Nicotinate
and nicotinamide metabolism, have been confirmed to be closely
related to the migration and invasion of GBM (25–28). The
MTHFD2 (methylenetetrahydrofolate dehydrogenase (NADP+
dependent) 2) gene in the metabolic subpathway 00670_1 of
the one carbon pool by folate pathway is one of the features of
GBM prognosis by survival analysis and the random survival
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forest algorithm (29). Elevated expression of purine synthetic
enzymes (PRPS1, ADSL, and GMPS) in metabolic subpathway
00230_5/00230_6 of the purine metabolic pathway is correlated
with poor prognosis in glioblastoma patients (30). Azacoccone
E, an aza-epicoccone derivative from the culture of Aspergillus
flavipes, is used in treatment for GBM by inhibiting PHGDH (3-
phosphoglycerate dehydrogenase) in the metabolic subpathway
00260_5 (31). Metabolic subpathway 00052_2, which belongs
to the pathway of galactose metabolism, has been shown to be
involved in galactose-specific C-type lectin receptor stimulant
immunotherapy of an experimental glioma (53).

The activities of the second types of metabolic subpathways
are down-regulated in GBM. This may be because these
metabolic processes or some genes in the metabolic subpathway
are not conducive to the maintenance and growth of GBM
cells. Similar to our results, the arginine and 2-Oxoarginine
signal intensities in the second class of metabolic subpathway
00330_1 belonging to the arginine and proline metabolism
pathways are inversely related to the risk of glioma (54). The
enzyme ABAT in the second class of metabolic subpathway
00640_1 demonstrated that its low expression in GBM patients
is associated with poor survival (32). The expression levels of
genes ASS1 (arginosuccinate synthase 1), ASPA (aspartoacylase),
GOT1 (glutamic-oxaloacetic transaminase 1), GAD1 (glutamate
decarboxylase 1), GAD2 (glutamate decarboxylase 2) and ABAT
in the metabolic subpathways 00250_1 (alanine, aspartate
and glutamate metabolism), 00330_1 (arginine and proline
metabolism), 00220_2 (arginine biosynthesis), and 00430_2
(taurine and hypotaurine metabolism) will affect the survival
of GBM patients (32). These results indicate the reliability
of the method we constructed to identify disease-related
metabolic subpathways.

The metabolic subpathway 00100_6 in the second class
belongs to the sterol biosynthesis pathway. No related studies
have shown that it is related to the occurrence and development
of GBM. However, previous research has established that
downstream cholesterol and sterol hormones regulated by
00100_6 will affect the progression of GBM (35, 55–58). In
addition, vitamin D metabolism is directly regulated by calcidiol
1-monooxygenase (CYP27B1) and vitamin D 1,25-hydroxylase
(CYP105A1) downstream of the metabolic subpathway 00100_6,
and studies have shown that the level of 25-hydroxyvitamin
D (25(OH)D) in the serum of intermediates of vitamin D
metabolism is opposite to that of patients with GBM-specific
subtypes (59). Similar results were also confirmed in the study
of Ida Emanuelsson et al. experiments with T98G Human
Glioblastoma Cells treated with vitamin D analogs tacalcitol and
calcipotriol showed that vitamin D inhibits the proliferation
and migration of GBM cells (60). Hence, we inferred that the
metabolic subpathway 00100_6 may be a potential therapeutic
target for GBM. (S)-2,3-Epoxysqualene is located in the central
region of the subpathway and the gene LSS downstream of
(S)-2,3-Epoxysqualene has a significant impact on the survival
of GBM patients, suggesting a greater impact on the entire
subpathway and a potential high association with GBM. Through
the CCK8 experiment, we found the inhibitory effect of (S)-2,3-
Epoxysqualene on GBM cells was fluctuating. However, volatility

trend is consistent at 3, 6, 8, 9, and 30 nmol/L. This phenomenon
has high reproducibility. In addition, after 12 h of treatment,
100 nmol/L (S)-2,3-Epoxysqualene had themost significant effect
on the activity of GBM and the inhibitory effect of (S)-2,3-
Epoxysqualene on GBM cells has maintained a high significance
after 100 nmol/L. This results of CCK8 also verified that (S)-
2,3-Epoxysqualene significantly inhibited the activity of U87-GM
cells, with small-scale short-term or large-dose long-term effects
(Figures 4A,B).We then used flow cytometry to find that (S)-2,3-
Epoxysqualene inhibits GBM cell activity by promoting apoptosis
and inhibiting the cell cycle. Further, the wound-healing motility
assay found that the migration distance of cells after (S)-2,3-
Epoxysqualene treatment was significantly shorter than that of
the control group. These experimental results not only indicate
that (S)-2,3-Epoxysqualene can effectively inhibit the activity,
amplification, and migration of GBM cells but further verify the
reliability of our method.

Therefore, according to our current research, we can infer that
the therapeutic mechanism of (S)-2,3-Epoxysqualene on GBM
is to affect downstream sterols and steroid hormones. These
results also prove the reliability of the metabolic subpathway
identification method we constructed.

Our method creatively combined gene expression profile
data with metabolic subpathways by constructing a metabolic
subpathway activity score matrix to elevate research levels from
genes to gene sets. As reported by Wenhua Lv et al., even the
smallest pathways have tens to hundreds of bases. The traditional
pathway identification methods do not accurately consider
the combined effect of the interesting molecules and neglects
expression correlations or topological features embedded in the
pathways (11). Some studies suggest that the functional similarity
between two genes increases as their distance in pathways
decreases (61, 62). In social network analysis, a k-clique in a graph
is considered as a sub-graph where the distance between any two
nodes is no >k (63). Li et. al. proposed that it is appropriate
to mine subpathway in the pathway networks with k = 4 and
they have demonstrated that “4-clique” method could effectively
identify risk subpathways associated complex diseases (20).
Hence, we extracted the metabolic subpathway data from the
KEGG database using the k-clique algorithm to make up for the
defects of single-gene analysis and to consider gene interactions.
Our method for constructing a metabolic subpathway activity
score matrix is based on the GSVA method. The Gaussian kernel
and discrete Poisson kernel methods provided by the GSVA
method enable us to process gene sequencing data from different
sources (DNA microarray and RNA-seq) (19). To make the
results more stable, we selected the GBMgene expression datasets
from the TCGA and GEO databases. These three data sets were
obtained by different high-throughput sequencing techniques,
including microarray and RNA-seq, and we considered the
intersection of the significant metabolic subpathways of these
three data as GBM-related metabolic subpathways. Moreover,
the metabolic subpathway identification method can be used not
only for disease and normal but also for identifying metabolic
subpathways related to specific phenotypes. Herein, we also
identified metabolic subpathways related to IDH mutations
in GBM. Compared with traditional methods based on basic
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biological experiments on the metabolic mechanism of GBM, our
method not only shortens the research cycle but also displays a
robust and accurate performance in more completely identifying
the metabolic changes involved in GBM.

Our study has several limitations: First, our study is based on
high-throughput sequencing data and KEGG metabolic pathway
data from GBM patients. We have not integrated more data sets,
as for example the GBM dataset in the Chinese Glioma Genome
Atlas (CCGA) database or the metabolic gene set in the Gene
Ontology (GO) database. A more comprehensive description
of the metabolic mechanisms of GBM remains to be found
in the development of these databases. In another aspect, the
study of (S)-2,3-Epoxysqualene’s therapeutic effects on GBM was
performed at the cell line level. However, our data for GBM
metabolic subpathway analysis are the sequencing results of
human tissue samples, and we have integrated three data sets
to compensate for the lack of cell-based analyses. In addition,
our constructedmetabolic pathway activity score matrix contains
sample information, which provides the possibility to combine
subpathways with samples to identify biomarkers of specific
disease subgroups and their associated metabolic subpathways.
As a next step, we will integrate more gene regulatory
mechanisms such as DNA methylation and micRNA to more
deeply investigate disease abnormalities.

In conclusion, we have developed a new method for
stable and accurate identification of GBM-associated metabolic
subpathways. The subpathway 00100_6 of the sterol synthesis
pathway was determined to be abnormal in GBM patients.
The experimental results also showed that the regulation of
subpathway 00100_6 by targeting (S)-2,3-Epoxysqualene could
affect the activity, proliferation, and apoptosis of GBM cells
to achieve antitumor effects. All of these results indicate that
our method provides an accurate and reliable approach for the
identification of metabolic abnormalities associated with GBM
or other diseases, and the method provides effective guidance for
clinical studies of disease treatment and metabolic pathogenesis.
We also identified subpathway 00100_6 as a novel target for GBM

treatment, and (S)-2,3-Epoxysqualene may be used as a drug for
the treatment of GBM.
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